
Jean-Paul van Brakel (14-720-262)

September 21, 2014

Response paper 01

The paper Code Context Models for Change tasks made me quite skeptical about its proposed

conclusion. This because the paper tried to tackle a hard-to-quantify concept: the construction

of context models, as perceived by developers in general. Indeed, the paper appeared to strug-

gle with bringing quantitative results and remained relatively superficial throughout, mainly

describing already known characteristics of context models. Instead, it would have been inter-

esting to use the proposed experiment, not just to describe how context models appear, but also

how context models develop over time (longitudinal opposed to cross-sectional) and how the

proposed tool (in the discussion) can use context models to more effectively guide the process

of change tasks. For example, a statistical analysis concerning the most effective developers

opposed to the least effective developers would have been a great addition. Even though the

paper was quite persuasive in the methodology of the experiment, it seemed to lack a clear con-

nection to drawn inferences (which according to both guideline papers should be avoided). The

paper is therefore less powerful in its discussion section as the proposed inferences do not utilize

the full potential of the performed experiment and subsequently, the acquired data. Terms like

personalised and the developer’s current context model are ill-defined in the context of the per-

formed research and it’s not clear how a tool could tailor-fit solutions (and be advantageous)

to a developer when according to the paper “Even for concise and successful changes, code

navigation models can differ substantially on class as well as method level.” (page 4, point 03).

However, some of the inferences are elaborately discussed and have a powerful and (seemingly)

valid motivation. Especially the inferences concerning lexical similarities and lexical cohesion

are well-argued and provide useful insights and a strong basis for further research.

Opposed to the more objective methodology from paper 1, paper 2 (Information Needs in

Collocated Software Development Teams) only draws from subjective observations. This cre-

ated initial skepticism as the case study presented in the paper might not be very representative

for the explored issue. However, my skepticism was quickly refuted as the paper proceded with

an extremely detailed description (and limitations) of the performed experiment. Addition-

1



ally, the researchers tested their found inferences by presenting (backtesting) the results to the

participants. This makes for an interesting extra perspective. For example “Coworkers were

the most frequent source of information..”, but “.. developers rated coworker awareness (a2)

as relatively unimportant, which conflicts with its frequency in our observations”. Concerning

the conclusions, this paper seemed to largely agree with many of the conclusions from paper 1.

Especially, it also emphasizes the difference in the thought processes among developers. How-

ever, instead of proposing tailor-fitted solutions like paper 1, it favours cooperative solutions

such as pair programming and development teams. The investigated advantages are increased

awareness and heightened effectiveness that cohesive teams are likely to exhibit. This paper is

especially pursuasive in how it transforms the downsides of cooperation, interruptions and the

lack of available information into valuable guidelines for further study and development teams

in general. Eventhough the paper appears to have solid motivation for the drawn inferences,

it could have been improved by employing additional statistical tools to strengthen these con-

clusions. Currently, the acquired data heavily relies on the capability of objective observation

of the researchers (also mentioned in limitations). Post-analysis of screen capturing (like in

research 1) or other objective observational methods (eye-tracking) could have decreased the

subjective character of the employed analysis methodology.

Concerning the guideline papers for research in software engineering, both aforementioned

papers seem to adhere to the guidelines pretty well. However, as described in What makes good

research in software engineering, both papers seem to have a common problem: “The low ratio

of validated results appears to be a serious weakness in CS research.”. For example, paper 1

seems to lack a statistical model. This provokes the following question: is it possible to predict

how the context model of a developer looks like, given the explanatory variables? As answers

to questions like these are missing, it mismatches the advice that ’personal tools’ should be

developed, as the authors fail to describe analytically how such a tool would work. A similar

problem exists for paper 2. According to the guideline papers, “Good research requires not only

a result, but also clear and convincing evidence that the result is sound.”. As an example, paper

2 makes strong inferences about the interdependence of coworkers while it fails to perform a

sensitivity analysis on this inference (a crucial design guideline from Preliminary guidelines for

empirical research in software engineering, page 729).

To conclude, both papers are interesting, well-written and contribute to computer science in

its own way. Especially, both papers offer fresh perspectives in complex domains. �

2


