Chapter 9

Graphs and Networks

9.1 Examples of Networks in the Real World

Over the last few decades the term OnetworkO has gained increasing importance.
Many phenomena in the real world can in fact benebpcially be viewed as networks.
One might even want to call the 21st century the century of networks.

Newman (2003) makes a distinction between four types of networks, social
networks, information networks, technological networks, and biological networks
(note that this is only one way to classify networks, many other alternatives would
be equally valid). Social networks include friendships, business partners, sexual
relations, scientibc communities; information networks, also called Oknowledge
networksO, comprise citation networks, the World Wide Web, peer-to-peer net-
works (which can also be viewed as social networks), relations between word
classes in a thesaurus, and preference networks (connecting individuals and ob-
jects of their preference such as books or PIms). Technological networks include
electrical power grids, airline routes, networks of roads, railways, and pedestrian
trafbc, telephone networks, delivery networks, the Internet, other kinds of com-
puter networks, etc. Finally, biological networks encompass metabolic pathways,
food webs (e.g. how whales and dophins feed), water cycles (or in general ecolog-
ical networks), brain networks, spread of diseases (e.qg. bird Bu, SARS, AIDS).

A particularly interesting type of biological network that received a lot of at-
tention in the context of the human genome project, are the genetic regulatory
network: Rather than assuming that genes in the genotype are mapped onto traits
in the phenotype, the idea is that there are complex networks of genes interact-
ing, which are responsible for the developmental processes. This enumeration of
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networks could be extended almost indepPnitely.

9.2 The discovery of small world networks

In the 19600s, Stanley Milgram did an experiment using real people and the US
Postal service. He distributed letters all addressed to a stock broker in Boston,
MA among 160 people from Kansas and Nebraska and asked them to forward this
letter to the stock broker in Boston. The task was to only send or give the letter
to someone they knew personally and who they thought should be more likely to
know the stock broker (or someone else who might know him). About 3/4 of the
letters were lost but those letters that made it to the stock broker travelled from
person to person in a small number of steps (the Osix degrees of separationO). This
phenomenon holds of all kinds of social networks, e.g. for connections between
black people in L.A. and whites in New York, or, as empirically determined by a
German newspaper, between a kebab shop owner in Frankfurt and Marlon Brando.

Another experiment which started out as a kind of game was the Oracle of
Kevin Bacon. As a database served the Internet Movie Data Base (www.imdb.com)
which contains over 800,000 actors and all the movies that they played in. If you
consider actors as nodes and movies as links or edges, almost all actors are con-
nected to each other via movies that they or others played in together. Kevin
Bacon was used as a center to which the average number of steps was computed
and it turns out to be quite small ( 3). A similar point can be made about
the famous mathematician Paul Bsj who co-authored over 1500 publications
with other mathematicians. In this case, the nodes designate mathematicians, the
links co-authorship. The Eeg-number represents the number of steps a particular
mathematician is away from Esd himself.

In 1998, Watts and Strogatz published a seminal paper in Nature, which inves-
tigated how a few far-reaching connections can dramatically reduce the average
path length between any two nodes even in a highly clustered network.

9.3 Some basic concepts for graphs and networks

While graph theory is mostly interested in characteristics of individual nodes or
specibc paths, network theory focuses on global properties as characterized by
various statistical measure. Here is a list of basic concepts:
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¥ vertex (pl. vertices): The fundamental unit of a network, also called a node
in computer science, or an actor in sociology.

¥ edge: The line connecting two nodes. This is also called a link (or an arc)
in computer science, or a tie in sociology.

¥ graph: a set ofi nodes (or vertices) ankl edges (or links, arcs). Graphs
can be directed or undirected. Formall, we can write a graph as an ordered
pair: G = (V, E) with vertices (nodes) and edges (linksk. This can be
represented in a diagram such as Figure 9.1 where:

G =({A,B,C}{(A B),(B,0C),(A,0)})

Figure 9.1: Example of a directed graph.

Tiny networks as the three-node example can be examined Oby eyeO, but for
very large networks statistical measures are usually used to study the global char-
acteristics of a network.

¥ directed/undirected: An edge is directed if it runs in only one direction
(typically indicated by unidirectional arrows). A graph is directed if all of
its edges are directed (sometimes called a OdigraphO). A graph is undirected
if all its links are symmetric.

¥ degree: The number of edges connected to a node. A directed graph has
both an in-degree and an out-degree for each node, which are the number of
incoming and outgoing edges respectively.
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¥ component: The component to which a node belongs is the set of nodes
that can be reached from it. In a directed graph, a vertex has both an in-
component and an outcomponents (corresponding to the nodes from which
it can be reached, and the nodes that can be reached from the current node).

¥ distance: The distance between a source node j and a target node i is equal
to the shortest path.

¥ adjacency matrix: The adjacency matric or connection matrix of a graph is
an" nwith entriesa(i, j) = 1 if nodej connects to nodg anda(i, j) =0,
if there is no connection from nodeto node;.

¥ distance matrix: The entries of the distance maf(ix j) correspond to the
distance between nogeand node. If no path exists¢(i, j) = # .

¥ path: A path is an ordered sequence of distinct nodes and links, linking a
source nodg to a target nodeé. No connection or node is visted twice in a
path. The length of a path is equal to the number of distinct connections.

¥ cycle: A cycle is a path that links a node to itself.

And here are some examples of properties or measures that characterize entire
networks and are not debned for individual nodes:

¥ average path length: The average path length, also called average degree of
separation (or charcteristic path length) is the mean over all the path lengths
in the network, i.e. for all pairs of nodes (i,j).

¥ average degree of a node: The average degree is the mean over all degrees
in the network.

¥ distribution of degrees: Often we are not only interested in the average, but
how the degrees are distributed (e.g. how many nodes with low degress, how
many with high degrees, etc.).

¥ clustering coefbcient: The number of connections between the nodes that
are connected to a particular node. Intuitively, in a friendship network, this
coefbcient measure to what extent my friends are also friends of each other.
Formally it is the maximum number of connections between the number
divided by the actual number of connections.
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¥ average clustering coefbcient: Calculate the clustering coefbcient for every
node and take the mean.

¥ betweenness: Betweenness indicates the number of shortest paths going
through a particular node. This number is used, for example, to characterize
airports in a Bight network.

¥ random network: A network with uniform connection probabilities and
a binomial degree distribution. All nodes have roughly the same degree
(Osingle-scaleO).

¥ scale-free networks: Gaph with a power-law degree distribution. OScale-
freeO means that degrees are not grouped around one characteristic average
degree (scale), but can spread over a very wide range of values, often span-
ning several orders of magnitude. Scale-free networks play a particularly
important role in network theory.

¥ aristocratic networks: Because scale-free networks have a highly uneven
degree distribution, they are sometime called aristocratic networks.

¥ egalitarian networks: In these types of networks, the nodes have roughly
equal degree.

9.4 Analytical Approach to an Undirected, Regular
Lattice

Consider a regular graph (Figure 9.2) with= 10 nodes and a neighbourhood of

k = 2. Neighbourhood of means that each node is connected to those neigh-
bours that aré: or fewer nodes away. The number of edges in such a network is
n k. The average degree2sak.

9.4.1 Computing the Average Path Length

For a graph with 13 nodes and a neighbourhook sf2, the average path length
(avp) is:
_44(1+2+3)

|
13 I 184

avp
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Figure 9.2: Undirected, regular graph with 10 nodes and a neighbourhood of 2.

In general, for this kind of regular graph:

2ka(1+2+3+ ...+ 5

avp !
n
Using
1 x 2
14243+ +o= 4= @D,
. 2 2
i=1
we obtain: s
2k(2) n
Y S
avp ! o T (9.1)

The larger the number of nodesthe more steps are required. The larger the
neighborhood (the degree), the smaller the number of steps.

9.4.2 Random Rewiring Procedure (after Watts and Strogatz,
1998)

We start with a regular lattice (as described above), a ringmddes, each node
being connected to its nearest neighbors (see Figure 9.3) by undirected edges.
We choose a node and an edge that connects it to its nearest neighbor. With
probability p, we connect this edge to a node chosen at random from the entire
network (duplicate edges are forbidden). This process is repeated moving around
the ring. Next, edges that connect the nodes to their second nearest neighbors are
chosen and rewired in the same way as before. (As therféﬁa?éges in the entire
graph, the procedure stops aﬂgaiaps). Forp = 0, we have a fully structured
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Regular Small-world Random

p=0 » p=1
Increasing randomness

Figure 9.3: Random rewiring procedure (from Watts and Strogatz, 1998, Fig. 1,
p. 441).

lattice. Asp increases, the disorder increases, untibat 1 we have a fully
random network.

Figure 9.4 shows the characteristic path length and the clustering coefbcient
as a function of the probability. The scale fop is log. It is interesting to ob-
serve that on the one hand the characteristic path length drops quite dramatically,
even for lowp (corresponding to relatively few rewired connections), whereas the
clustering coefbcient (corresponding to our local environment, so to speak, if we
take our social network) remains quite high even for relatively high valugs of

9.4.3 Random Networks

Formally, assume that we have a random network with an adjacency matrix such
as:

Vi ... Vi
V1|0

Va 0
The maximum number of edges,ax in such a graph (with zeros in the diag-
onal) is:

a) for a directed grapmmax= n(n" 1), and

b) for an undirected graphumax = %n(n " 1).
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Figure 9.4: Characteristic path lengtiip) and clustering coefcientt(p) for the
family of randomly rewired graphs described in Fig. 9.3 (from Watts and Strogatz,
1998, Fig. 2, p. 441).

Assuming statistical independence for the connections, we can compute the prob-
ability that an undirected graph hasedges given that nodes are connected with
probability p:

p" (1§ p)mmet T

The mean degre#in such a random graph is approximately:
d! p(n$ 1)
Problems arise when random graphs are used to represent the real world:
¥ The assumption of statistical independence is often not valid
¥ The degree of adjacent vertices often differs strongly
¥ Random graphs have no community structure

¥ Navigation using local rules is not used

9.4.4 Clustering Coefbcient (Degree of Clustering)

Informally, this measures whether Omy friends are also friends amongst each
otherO.
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More formally, the clustering coefbcie6tis debned as:

number of acutal edges between neighbours

C= (9.2)

number of possible egdes between neighbours

For a regular graph of the kind shown in bgure 9.2, we have for example
C = g = 0.5for k = 2. More generally, it can be shown that for this kind of

graph:

_3%k$3

¢= 4k $ 2

(9.3)

For large values of, C'!

Blw

9.4.5 Understanding small world networks

How is it possible that everybody is connected to everybody via just 6 people, if
there are ove8" 1(° people on earth? One approach is: assume everyone knows
50 people. Then, | am connected to 50 people directly, via 2 steps already with
50a50 = 2500and at 6 steps, | am already connected to 15,625,000,000 people,
which is more than the current population of the planet.

Of course, this is a RBawed calculation because acquaintances are highly clus-
tered, in other words, the 50 people | know do not know 50 different people, but
there is likely to be a signibcant overlap, i.e. my friends will often also be each
otherOs friends.

The Strength of Weak Ties

Consider the whole population of human beings (6 billion) connected as a regular
network with a neighbourhood of 50. Using Equation (9.1), the average path
length for such a case can be computed as:

6" 1¢°
4850

If you replace 2 out of 10,000 connections with a random connection, the
avp drops to about 8. If you replace 3 out of 10,000 connections with a random
connection, thewp drops to about 5! (instead 8f* 10").

This means that while your close friends (strong ties) are mostly connected
among each other, they do not contribute very much to the overall connectedness
of the network. On the other hand, loose connections (weak ties), your distant

I 3" 10

avp !
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acquaintances, are the links to whole new clusters in the network and therefore
much more important in terms of average path lengths.

9.5 Growing Networks

Networks that grow in the real world typically develop a different structure than
the model analyzed by Watts and Strogatz. One example is the Internet. In the
Internet, one bnds many computers with only one connection, but only few com-
puters with a large number of connections. One can say, the network has a Ohub
structureO.

If the distribution of the number of nodes is plotted versus the number of links
from each node on a log-log scale, the result is a straight line. Such a distribution
is called aOpower lawO (as we have seen) orOscale-freeQ. In real-world networks,
such power law distributions are ubiquitious. The same distribution can also be
found in many other real world phenomena such as the size of earthquakes vs. the
frequency with which they occur, or the size of avalanches vs. their frequency.

Although the Internet and the WWW are distinct entities D the Internet is phys-
ical while the WWW is logical D they both show the same structure and exhibit
small world properties (meaning short avp). In the WWW for example, any web
page can be accessed with about 19 clicks. The question that is often asked:
Given that the WWW continues to grow at the present rate, will it still work in
a few years. Estimates for an increase of factor of 1000 in the number of web-
pages forecast an avp of about 21 clicks - fortunately. In recent years the term
Osmall worldO has been used in a more precise way: in a Osmall world networkO
the value of avp scales logarithmically or slower with network size than for bPxed
mean degree.

Table 9.1: Examples of the different types of small world networks.

Egalitarian Aristocratic
neurons in C.elegans Internet
WwWwW
web of roads and railways sexual contacts
power networks scientibc papers linked by citations

The Ohub structureO is enhanced by the nature of the growth process: new
nodes tend to associate with existing hubs in order to get connected to as many
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other nodes as possible. This method, also called Opreferential attachmentO, makes
existing hubs even more connected. Such networks are also eaigtocratic
networks, whereas networks with approximately the same degree of each node
(e.g. Watts and Strogatz) are calleghlitariannetworks.

Case Study: Airline Transportation Networks

As an example for one of the worldOs busiest airport take AtlantaOs Hartsbeld-
Jackson Intl. with over 88 Mio passengers in 2005. Analyses have shown that an
airport operating close to half its maximum capacity will have many delays. When
the airport system developed, it Prst became an aristocratic network. But when
the maximum capacity of the big hubs was approached, the structure changed to
a more egalitarian one as it became more attractive to also use smaller airports. In
contrast to the Internet and the WW\W, it is very costly to increase the capacity of
an airport. Also, the capacity of airports cannot easily be expanded indePnitely.
This is why it seemed cheaper to move to nearby smaller airports that still have
Spare capacity.

Guimes et al. (2005) did a study on 3,883 locales (villages, towns, and cities
with at least one airport) and established links between them if they are connected
by nostop passenger Rights. They found that the air transportation network is a
small-world network for which the number of nonstop connections from a given
city and the number of shortest paths going through a given city have distributions
that are scale-free. However, in contrast to what one would expect, the most-
connected cities are not ncessarily the most OcentralO, that is, the cities through
which most shortest paths go. This is because of the existence of several dis-
tinct OcommunitiesO. Figure 9.5 shows the cumulative degree and betweenness
distributions (i.e.P(> k/z), wherek is the degree, and the average degree in
the network; andP(> b) whereb is the betweenness). (Cumulative means the
fraction of nodes that have degree greater than or equgl tBurprisingly, there
are only few cities with large degree and high betweenness. Anchorage has low
degree (compared to other cities) but high betweenness, which is due to the fact
that, because of politicial reasons most Bights from Alaska go through Anchor-
age, rather than directly to other destinations which give the city a kind of key
position. In other words, Anchorage lies at the interface between two (or several)
communities (corresponding roughly to sub-networks, or components).
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Figure 9.5: Degree and betweenness distributions of the worldwide air transporta-
tion network. (a) Cumulative degree distribution plotted in double-logarithmic
scale. The degrekis scaled by the average degreef the network. The distri-
bution displays a truncated power-law behavior with expoadt?+: 0.1. (b) Cu-
mulative distribution of normalized betweennesses plotted in double-logarithmic
scale. The distribution displays a truncated power-law behavior with exponent
0.9?2 0.1. For arandomized network with exactly the same degree distribution as
the original air transportation network, the betweenness distribution decays with
an exponen.5??+ 0.1. A comparison of the two cases clearly shows the exis-
tence of an excessive number of large betweenness values in the air transportation
network (from Guimea et al., 2005, Fig. 1, p. 7796).
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Figure 9.6: Betweenness as a function of the degree for the cities in the worldwide
air transportation network (circles). For the randomized network, the betweenness
is well described as a quadratic function of the degree (dashed line) with 95% of
all data falling inside the gray region. In contrast to the strong correlation between
degree and betweenness found for randomized networks, the air transportation
network comprises many cities that are highly connected but have small between-
ness and, conversely, many cities with small degree and large betweenness. We
dene a blue region containing the 25 most central cities in the world and a yel-
low region containing the 25 most connected cities. Surprisingly, we nd there are
only a few cities with large betweenness and degree (green region, which is the
intersection of the blue and yellow regions). (from Guienet al., 2005, Fig. 2a),

p. 7796).

The next Figure 9.6 shows a plot of degree vs. betweennes. Interestingly, there
are only few cities that have high degree and at the same time high betweenness
(the green area).

The average degree in Asia and Middle East is 3.5, in the global network only
1 step larger, 4.4. The growth rate is roughly logarithmic. The longest path is
between Mount Pleasant in the Falkland Islands, and Wasu in Papua New Guinea
which requires 15 different Rights.
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Applications and Relevance of these Analyses

What can we learn from these analysis? Questions we would like to be able to ask
are

¥ How robust, how stable is the network agains attacks? (e.g. against terrorist
attacks?) What about security

¥ identify bottlenecks, potential for congestion (e.g. betweenness)

¥ predict the spread of viruses and diseases

9.6 Analysis of threats

The analysis of networks is of practical importance, especially when you want to
Pnd out how brittle your network (e.g. a power network for the SBB) is.

9.6.1 Network resilience to deletion of nodes

To analyse this, randomly chosen nodes are deleted from the network (preferably
in simulation), and the effect on the average path length (avp) is calculated. Previ-
ously, we have identibed two kinds of small-world networks, aristocratic and egal-
itarian networks. Simulations have shown that if 5% of the nodes are destroyed,
the avp of aristocratic networks remains unchanged, while it increaslesli2$o

in egalitarian networks. If 28% of the nodes are destroyed, egalitarian networks
disintegrate completely, while aristocratic are still mostly connected (this is called
graceful degradation). Note however that if nodes are not destroyed randomly but
instead the hubs are attacked, an aristocratic network is more vulnerable.

9.6.2 Percolation models

Other threats are e.g. the spread of disease or of viruses. For such an analysis it is
crucial to determine whether a node is Ooccupied/not occupiedO and which nodes
have the highest degree as these should be the brst protected against Ooccupa-
tionO (infection). In order to bnd these nodes, one follows edges at random. The
probability of Pnding a particular node is proportional to the degree of a node.

Similar ideas are used by Google for WWW search: the information contained
both in the vertex and in the edge (the hyperlinks) is used (as well as e.g. the
OauthorityO of a node).



9.7. BIOLOGICAL NETWORKS 9-15

9.7 Biological networks

As mentioned earlier, examples can be given indebnitely. We briel3y look at three
of them. The discipline of bio-informatics capitalizes, among other things, on the
analysis of networks. Here are a few case studies:

¥ genetic regulatory networks (see Human Genome Project); models of GRNs
for modeling ontogenetic development of artibcial creatures, such as Josh
BongardOs block pushers (e.g. Pfeifer and Bongard, 2007).

¥ motifs in brain networks (e.g. Milo et al., 2002; Sporns ansttkr, 2004,
papers available from the lecture webpage).

¥ ant networks for foraging, pheromone trails; application to load-balancing
in telecommunication networks.

9.8 OTipping pointsO

A good way to understanding the emergence of fashion trends, the ebb and R3ow
of crime waves, the transformation of unknown books into bestseller, the rise of

teenage smoking, is to view them in terms of epidemics. Epidemics have three
essential characteristics:

(i) they are contagious,
(ii) little causes can have big effects, and
(iif) change happens not gradually but at one dramatic moment.

And all epidemics have tipping points. A popular science book that nicely de-
scribes the idea behind Otipping pointsO is Malcolm Caldwells book OThe Tipping
PointO (2001). Here are a few examples. Because of the highly non-linear na-
ture of the dynamics of large networks, they are hard to analyze analytically, and
simulations are often the preferred means of study.

9.8.1 The Schelling Model of Segregation

As early as 1969, Thomas Schelling was interested in how micro-level preferences
for like-colored neighbors might manifest themselves at the macro-level Schelling
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(1969). Neighborhood relations can be depicted as networks where the nodes
represent individuals (or families) and the links are only short-range indicating
neighborhood (i.e. is neighbor of). In the simulation models that people have
applied, there are typically constraints on the maximum number of neighbors, e.g.
four. He debPned a Omovement ruleO:

(1) the agent computes the fraction of neighbors who are its own color;

(2) if this number is greater than or equal to its preference, the agent is considered
satisbed;

(3) if this number is smaller than its preference, it will move to a different neigh-
borhood.

Here is a summary of the results. If agents want at least 25% of their neighbors
to be of the same color there is already a certain degree of segregation. However
if you increase this threshold to 50%, but still allowing half of the neighbors to
be of a different color, there is complete segregation. One of the points this study
illustrates is that what looks like a dramatic issue at the macroscopic level, may
not be refRected in individual preferences.

9.8.2 The Reappearance of OHush PuppiesO

OHush PuppiesO are legendary shoes, soft suede slip-ons, that made their debut in
1958. After a number of years they had almost completely gone from the market,
selling a mere 30,000 pairs a year.

Then, to everyones surprise, the company, in a span of two years after its
rebirth in 1994 managed to increase its sales to over 1,000,000 pairs, setting the
fashion trends among young Americans for the second time. The reason might
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have been, as Caldwell suggests, that just a few kids in New York wore them to a
trendy club, in other words, a very minor event that eventually lead to the spread
of the OfadO over the entire continent.

9.9 Network Motifs: Simple Building Blocks of Com-
plex Networks

As we have seen, many networks in the real world are extremely large and their
dynamics is very complex. Prominent examples of highly complex networks are
genetic regulatory networks, biological brains (in particular the human brain),
food webs, virus-spread networks (e.g. bird Bu, SARS, AIDS), and WWW and
the Internet. As a consequence, their structure and behavior is hard to understand.
Or put differently, what would it mean to understand these networks? Often, it
is difbcult to try and explain them on the basis of brst principles. What has been
tried instead, or in addition, is to look for certain building blocks, the Onetwork
motifsO. Motifs are patterns of interconnections occurring in complex networks at
numbers that are signibcantly higher than those in randomized networks.

When we conceptualize a phenomenon in the real world as a network we have
to debne the nodes and links. For example, genetic regulatory networks are di-
rected graphs, in which the nodes represent the genes. Edges are directed from a
gene that produces a particular chemical (called the transcription factor) to a gene
that is being regulated by this chemical (as described in Bongards simple model
of genetic regulatory networks that control the growth of the Oblock pushersO, e.g.
Bongard). In food webs, the nodes represent groups of species. Edges are di-
rected from a node representing a predator to the node representing its prey. In
neural networks, nodes represent neurons (or neuron classes), and edges represent
synaptic connections between the neurons.

Figure 9.7 shows all 13 types of three-node connected subgraphs.

Figure 9.9 shows a real-world network and several randomized networks. The
networks are balanced in that each node in the randomized network has the same
number of incoming and outgoing edges as does the corresponding node in the
real network. The so-called feed-forward loop motif (number 5 in Figure 9.7) is
detected. Note that its frequency is much higher in the real-world network that in
the randomized ones.

The big question then is to Pgure out what these motifs might mean in terms
of information processing in the network; identifying motif patterns is nice, but it
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Figure 9.7: All 13 types of three-node connected subgraphs. From Milo et al.
(2002).

randomized networks

real network

Figure 9.8: Real-world network and several randomized networks.
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would be even nicer if they had a plausible interpretation of their functionality.
Milo et al. (2002) found that genetic regulatory networks, neural networks, and
electronic circuits (forward logic chips) all contained the three-node feedforward
loop motif (which seems to be in agreement with anatomical observations of trian-
gular connectivity in some neural systems), and the four-node bi-fan motif. This
similarity may point to a fundamental similarity in the design constraints of both
types of networks. Both networks carry information from sensory components
(sensory neurons/transcription factors regulated by chemical signals) to effectors
(motor neurons/structural genes being produced under certain conditions).

X Feed- X Y Bi-fan
\ forward M

Y loop

\V% Z W

7

Figure 9.9: Feedforward loop (3 nodes) motif, and bi-fan (4 nodes) motif.

One of the important reasons why networks in the real world have a more
pronounced motif structure than random network is that they are constrained by
particular types of growth rules which in turn depend on the specibc nature of the
network.

9.9.1 Motifs in Brain Networks

When analyzing brain networks, often a distinction between structural and func-
tional motifs is made (e.g. Sporns anetker, 2004). Structural motifs represent
anatomical building blocks, whereas functional motifs represent elementary pro-
cessing modes of a network. Functional motifs refer to specibc combinations of
nodes and connections (contained within structural motifs) that may be selectively
activated in the course of neural information processing.

It has been found that the repertoire of functional interactions (i.e. functional
motifs) is large and highly diverse, while their physical architecture is constructed
from structural motifs that are less numerous and less diverse. This makes sense
because a large functional repertoire facilitates Rexible and dynamic processing,
while a small structural repertoire promotes efpcient encoding and assembly.

As can be seen from these considerations, it will be extremely important to
have efbcient network-processing algorithms.
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