
Chapter 9

Graphs and Networks

9.1 Examples of Networks in the Real World

Over the last few decades the term ÒnetworkÓ has gained increasing importance.
Many phenomena in the real world can in fact beneÞcially be viewed as networks.
One might even want to call the 21st century the century of networks.

Newman (2003) makes a distinction between four types of networks, social
networks, information networks, technological networks, and biological networks
(note that this is only one way to classify networks, many other alternatives would
be equally valid). Social networks include friendships, business partners, sexual
relations, scientiÞc communities; information networks, also called Òknowledge
networksÓ, comprise citation networks, the World Wide Web, peer-to-peer net-
works (which can also be viewed as social networks), relations between word
classes in a thesaurus, and preference networks (connecting individuals and ob-
jects of their preference such as books or Þlms). Technological networks include
electrical power grids, airline routes, networks of roads, railways, and pedestrian
trafÞc, telephone networks, delivery networks, the Internet, other kinds of com-
puter networks, etc. Finally, biological networks encompass metabolic pathways,
food webs (e.g. how whales and dophins feed), water cycles (or in general ecolog-
ical networks), brain networks, spread of diseases (e.g. bird ßu, SARS, AIDS).

A particularly interesting type of biological network that received a lot of at-
tention in the context of the human genome project, are the genetic regulatory
network: Rather than assuming that genes in the genotype are mapped onto traits
in the phenotype, the idea is that there are complex networks of genes interact-
ing, which are responsible for the developmental processes. This enumeration of
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networks could be extended almost indeÞnitely.

9.2 The discovery of small world networks

In the 1960Õs, Stanley Milgram did an experiment using real people and the US
Postal service. He distributed letters all addressed to a stock broker in Boston,
MA among 160 people from Kansas and Nebraska and asked them to forward this
letter to the stock broker in Boston. The task was to only send or give the letter
to someone they knew personally and who they thought should be more likely to
know the stock broker (or someone else who might know him). About 3/4 of the
letters were lost but those letters that made it to the stock broker travelled from
person to person in a small number of steps (the Òsix degrees of separationÓ). This
phenomenon holds of all kinds of social networks, e.g. for connections between
black people in L.A. and whites in New York, or, as empirically determined by a
German newspaper, between a kebab shop owner in Frankfurt and Marlon Brando.

Another experiment which started out as a kind of game was the Oracle of
Kevin Bacon. As a database served the Internet Movie Data Base (www.imdb.com)
which contains over 800,000 actors and all the movies that they played in. If you
consider actors as nodes and movies as links or edges, almost all actors are con-
nected to each other via movies that they or others played in together. Kevin
Bacon was used as a center to which the average number of steps was computed
and it turns out to be quite small (! 3). A similar point can be made about
the famous mathematician Paul Erd¬os, who co-authored over 1500 publications
with other mathematicians. In this case, the nodes designate mathematicians, the
links co-authorship. The Erd¬os-number represents the number of steps a particular
mathematician is away from Erd¬os himself.

In 1998, Watts and Strogatz published a seminal paper in Nature, which inves-
tigated how a few far-reaching connections can dramatically reduce the average
path length between any two nodes even in a highly clustered network.

9.3 Some basic concepts for graphs and networks

While graph theory is mostly interested in characteristics of individual nodes or
speciÞc paths, network theory focuses on global properties as characterized by
various statistical measure. Here is a list of basic concepts:
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¥ vertex (pl. vertices): The fundamental unit of a network, also called a node
in computer science, or an actor in sociology.

¥ edge: The line connecting two nodes. This is also called a link (or an arc)
in computer science, or a tie in sociology.

¥ graph: a set ofn nodes (or vertices) andk edges (or links, arcs). Graphs
can be directed or undirected. Formall, we can write a graph as an ordered
pair: G = ( V, E) with vertices (nodes)V and edges (links)E. This can be
represented in a diagram such as Figure 9.1 where:

G = ( { A, B, C} , { (A, B), (B, C), (A, C)} )

Figure 9.1: Example of a directed graph.

Tiny networks as the three-node example can be examined Òby eyeÓ, but for
very large networks statistical measures are usually used to study the global char-
acteristics of a network.

¥ directed/undirected: An edge is directed if it runs in only one direction
(typically indicated by unidirectional arrows). A graph is directed if all of
its edges are directed (sometimes called a ÒdigraphÓ). A graph is undirected
if all its links are symmetric.

¥ degree: The number of edges connected to a node. A directed graph has
both an in-degree and an out-degree for each node, which are the number of
incoming and outgoing edges respectively.
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¥ component: The component to which a node belongs is the set of nodes
that can be reached from it. In a directed graph, a vertex has both an in-
component and an outcomponents (corresponding to the nodes from which
it can be reached, and the nodes that can be reached from the current node).

¥ distance: The distance between a source node j and a target node i is equal
to the shortest path.

¥ adjacency matrix: The adjacency matric or connection matrix of a graph is
an " n with entriesa(i, j) = 1 if nodej connects to nodei, anda(i, j) = 0 ,
if there is no connection from nodej to nodei.

¥ distance matrix: The entries of the distance matrixd(i, j) correspond to the
distance between nodej and nodei. If no path exists,d(i, j) = # .

¥ path: A path is an ordered sequence of distinct nodes and links, linking a
source nodej to a target nodei. No connection or node is visted twice in a
path. The length of a path is equal to the number of distinct connections.

¥ cycle: A cycle is a path that links a node to itself.

And here are some examples of properties or measures that characterize entire
networks and are not deÞned for individual nodes:

¥ average path length: The average path length, also called average degree of
separation (or charcteristic path length) is the mean over all the path lengths
in the network, i.e. for all pairs of nodes (i,j).

¥ average degree of a node: The average degree is the mean over all degrees
in the network.

¥ distribution of degrees: Often we are not only interested in the average, but
how the degrees are distributed (e.g. how many nodes with low degress, how
many with high degrees, etc.).

¥ clustering coefÞcient: The number of connections between the nodes that
are connected to a particular node. Intuitively, in a friendship network, this
coefÞcient measure to what extent my friends are also friends of each other.
Formally it is the maximum number of connections between the number
divided by the actual number of connections.
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¥ average clustering coefÞcient: Calculate the clustering coefÞcient for every
node and take the mean.

¥ betweenness: Betweenness indicates the number of shortest paths going
through a particular node. This number is used, for example, to characterize
airports in a ßight network.

¥ random network: A network with uniform connection probabilities and
a binomial degree distribution. All nodes have roughly the same degree
(Òsingle-scaleÓ).

¥ scale-free networks: Gaph with a power-law degree distribution. ÒScale-
freeÓ means that degrees are not grouped around one characteristic average
degree (scale), but can spread over a very wide range of values, often span-
ning several orders of magnitude. Scale-free networks play a particularly
important role in network theory.

¥ aristocratic networks: Because scale-free networks have a highly uneven
degree distribution, they are sometime called aristocratic networks.

¥ egalitarian networks: In these types of networks, the nodes have roughly
equal degree.

9.4 Analytical Approach to an Undirected, Regular
Lattice

Consider a regular graph (Figure 9.2) withn = 10 nodes and a neighbourhood of
k = 2. Neighbourhood ofk means that each node is connected to those neigh-
bours that arek or fewer nodes away. The number of edges in such a network is
n ák. The average degree is2 ák.

9.4.1 Computing the Average Path Length

For a graph with 13 nodes and a neighbourhood ofk = 2, the average path length
(avp) is:

avp =
4 á(1 + 2 + 3)

13
! 1.84
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Figure 9.2: Undirected, regular graph with 10 nodes and a neighbourhood of 2.

In general, for this kind of regular graph:

avp !
2k á(1 + 2 + 3 + . . . + n

2k )
n

Using

1 + 2 + 3 + . . . + x =
x!

i =1

i =
x(x + 1)

2
!

x2

2
,

we obtain:

avp !
2k( n

2k )2

2n
=

n

4k
(9.1)

The larger the number of nodesn, the more steps are required. The larger the
neighborhood (the degree), the smaller the number of steps.

9.4.2 Random Rewiring Procedure (after Watts and Strogatz,
1998)

We start with a regular lattice (as described above), a ring ofn nodes, each node
being connected to itsk nearest neighbors (see Figure 9.3) by undirected edges.
We choose a node and an edge that connects it to its nearest neighbor. With
probability p, we connect this edge to a node chosen at random from the entire
network (duplicate edges are forbidden). This process is repeated moving around
the ring. Next, edges that connect the nodes to their second nearest neighbors are
chosen and rewired in the same way as before. (As there arenk

2 edges in the entire
graph, the procedure stops afterk

2 laps). Forp = 0, we have a fully structured
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removedfrom aclusteredneighbourhoodto makeashort cuthas,at
most,alineareffectonC; henceC(p) remainspracticallyunchanged
for smallp eventhough L(p) dropsrapidly. Theimportant implica-
tion hereisthatatthelocallevel(asreßectedbyC(p)), thetransition
to asmallworld is almostundetectable.To checktherobustnessof
theseresults,wehavetestedmany different typesof initial regular
graphs,aswellasdifferentalgorithmsfor randomrewiring, andall
givequalitativelysimilar results. The only requirementis that the
rewirededgesmust typicallyconnectverticesthat would otherwise
bemuch farther apart than Lrandom.

The idealizedconstruction above revealsthe key role of short
cuts. It suggeststhat the small-world phenomenon might be
common in sparsenetworkswith many vertices,as even a tiny
fraction of short cuts would sufÞce.To test this idea, we have
computedL andC for the collaborationgraphof actorsin feature
Þlms (generatedfrom data availableat http://us.imdb.com), the
electricalpowergrid of the westernUnited States,and the neural
networkof thenematodeworm C.elegans17. All threegraphsareof
scientiÞcinterest.Thegraphof Þlmactorsisasurrogate for asocial
network18, with theadvantageof beingmuchmoreeasilyspeciÞed.
It is alsoakin to thegraphof mathematicalcollaborationscentred,
traditionally, on P. Erdo¬s (partial data available at http://
www.acs.oakland.edu/! grossman/erdoshp.html). The graph of
the power grid is relevant to the efÞciencyand robustnessof
powernetworks19. AndC.elegansisthesoleexampleof acompletely
mappedneuralnetwork.

Table1 showsthat all three graphs are small-world networks.
Theseexampleswerenot hand-picked;theywerechosenbecauseof
their inherentinterestandbecausecompletewiring diagramswere
available.Thus the small-world phenomenonis not merely a
curiosity of social networks13,14 nor an artefact of an idealized

modelÑ it is probably genericfor many large, sparsenetworks
found in nature.

We now investigatethe functional signiÞcanceof small-world
connectivity for dynamicalsystems.Our testcaseis a deliberately
simpliÞed model for the spreadof an infectious disease.The
populationstructure is modelledby the family of graphsdescribed
in Fig. 1. At time t ! 0, a single infectiveindividual is introduced
into an otherwise healthy population. Infective individuals are
removed permanently(by immunity or death) after a period of
sicknessthat lastsoneunit of dimensionlesstime.During this time,
eachinfectiveindividual caninfect eachof its healthy neighbours
with probability r. On subsequenttime steps,the diseasespreads
along the edgesof the graph until it either infects the entire
population, or it dies out, having infectedsomefraction of the
population in the process.

p = 0 p = 1 
Increasing randomness

Regular Small-world Random

Figure 1 Random rewiri ng procedure for interpo lating between a regular ring

lattice and a rando m network, withou t altering the number of vertices or edges in

the graph. We start with a ring of n vertices, each connected to its k neares t

neighbours by undirected edges. (For clarity, n ! 20 and k ! 4 in the schem atic

example s shown here, but muc h larger n and k are used in the rest of this Letter.)

We choose a vertex and the edge that connects it to its nearest neigh bour in a

cloc kwise sense. With probabil ity p, we recon nect this edge to a vertex chosen

uniformly at random over the entire ring, with dup licate edges forbidden; othe r-

wis e we leave the edge in place. We repeat this process by moving clock wise

around the ring, cons idering each vertex in turn until one lap is completed. Next,

we conside r the edges that connect vertices to their second -nearest neigh bours

cloc kwise. As befor e, we randomly rewire each of these edges with prob ability p,

and contin ue this process, circulating around the ring and proceedin g outward to

more distant neigh bours after each lap, until each edge in the original lattice has

been considere d once. (As there are nk/2 edges in the entire graph, the rewir ing

process stops after k/2 laps.) Three realization s of this process are shown, for

different values of p. For p ! 0, the original ring is unchange d; as p increases , the

graph becomes increasingly diso rdered until for p ! 1, all edges are rewired

random ly. One of our main results is that for interme diate values of p, the graph is

a small-w orld network: high ly cluster ed like a regular graph, yet with small

characteris tic path length, like a rando m graph. (See Fig. 2.)

Table 1 Empirica l examp les of small-world networks

Lactual Lrandom Cactual Crandom
.............................................................................................................................................................................
Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05
.............................................................................................................................................................................
Characteristic path length L and clustering coefÞcient C for three real network s, compar ed
to random graphs with the same number of vertices (n) and average number of edges per
vertex (k). (Actors: n ! 225;226, k ! 61. Power grid: n ! 4;941, k ! 2:67. C. elegans: n ! 282,
k ! 14.) The graphs are deÞned as follows. Two actors are joined by an edge if they have
acted in a Þlm together. We restrict attention to the giant connected component 16 of this
graph, which includes ! 90% of all actors listed in the Internet Movie Database (available at
http://us.imdb.com), as of April 1997. For the power grid, vertices represent generators,
transformer s and substations, and edges represent high-volt age transmission lines
betwe en them. For C. elegans, an edge joins two neurons if they are connected by either
a synapse or a gap junction. We treat all edges as undirected and unweighte d, and all
vertices as identical, recognizing that these are crude approximations. All three networks
show the small-world phenomenon: L ! Lrandom but C q Crandom .
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Figur e 2 Charac teristic path length L(p) and clust ering coefÞcie nt C(p) for the

family of rando mly rewired graphs descri bed in Fig. 1. Here L is deÞned as the

number of edges in the short est path between two vertices, averaged over all

pairs of vertices. The clusterin g coef Þcient C(p) is deÞned as follows . Suppose

that a vertex v has kv neighbours; then at mos t kv"kv " 1#=2 edges can exist

between them (this occurs when every neigh bour of v is connected to every othe r

neighbou r of v). Let Cv denote the fraction of these allowab le edges that actual ly

exist. DeÞne C as the average of Cv over all v. For friendsh ip networks, these

statistics have intuitive meani ngs: L is the average numbe r of friendsh ips in the

shortest chain connec ting two people; Cv reßects the exten t to which friends of v

are also friends of each othe r; and thus C measure s the cliquishness of a typical

friendsh ip circle. The data shown in the Þgure are averages over 20 random

realizations of the rewiring proce ss described in Fig.1, and have been normaliz ed

by the values L(0),C(0) for a regular lattice. All the graphs have n ! 1;000 vertices

and an average degree of k ! 10 edges per vertex. We note that a logarithmic

horizontal scale has been used to resolve the rapid drop in L(p), correspo nding to

the onset of the small-w orld phenome non. During this drop, C(p) remains almost

constan t at its value for the regular lattice, indicating that the transition to a small

world is almost undetectable at the local level.

Figure 9.3: Random rewiring procedure (from Watts and Strogatz, 1998, Fig. 1,
p. 441).

lattice. Asp increases, the disorder increases, until atp = 1 we have a fully
random network.

Figure 9.4 shows the characteristic path length and the clustering coefÞcient
as a function of the probabilityp. The scale forp is log. It is interesting to ob-
serve that on the one hand the characteristic path length drops quite dramatically,
even for lowp (corresponding to relatively few rewired connections), whereas the
clustering coefÞcient (corresponding to our local environment, so to speak, if we
take our social network) remains quite high even for relatively high values ofp.

9.4.3 Random Networks

Formally, assume that we have a random network with an adjacency matrix such
as:

V1 . . . Vn

V1 0
...

...
Vn 0

The maximum number of edgesmmax in such a graph (with zeros in the diag-
onal) is:

a) for a directed graphmmax = n(n " 1), and

b) for an undirected graphmmax = 1
2n(n " 1).
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removed from a clustered neighbourhood to make a short cut has, at
most, a linear effect on C; hence C(p) remains practically unchanged
for small p even though L(p) drops rapidly. The important implica-
tion here is that at the local level (as reflected by C(p)), the transition
to a small world is almost undetectable. To check the robustness of
these results, we have tested many different types of initial regular
graphs, as well as different algorithms for random rewiring, and all
give qualitatively similar results. The only requirement is that the
rewired edges must typically connect vertices that would otherwise
be much farther apart than Lrandom.

The idealized construction above reveals the key role of short
cuts. It suggests that the small-world phenomenon might be
common in sparse networks with many vertices, as even a tiny
fraction of short cuts would suffice. To test this idea, we have
computed L and C for the collaboration graph of actors in feature
films (generated from data available at http://us.imdb.com), the
electrical power grid of the western United States, and the neural
network of the nematode worm C.elegans17. All three graphs are of
scientific interest. The graph of film actors is a surrogate for a social
network18, with the advantage of being much more easily specified.
It is also akin to the graph of mathematical collaborations centred,
traditionally, on P. Erdös (partial data available at http://
www.acs.oakland.edu/!grossman/erdoshp.html). The graph of
the power grid is relevant to the efficiency and robustness of
power networks19. And C.elegansis the sole example of a completely
mapped neural network.

Table 1 shows that all three graphs are small-world networks.
These examples were not hand-picked; they were chosen because of
their inherent interest and because complete wiring diagrams were
available. Thus the small-world phenomenon is not merely a
curiosity of social networks13,14 nor an artefact of an idealized

model—it is probably generic for many large, sparse networks
found in nature.

We now investigate the functional significance of small-world
connectivity for dynamical systems. Our test case is a deliberately
simplified model for the spread of an infectious disease. The
population structure is modelled by the family of graphs described
in Fig. 1. At time t ! 0, a single infective individual is introduced
into an otherwise healthy population. Infective individuals are
removed permanently (by immunity or death) after a period of
sickness that lasts one unit of dimensionless time. During this time,
each infective individual can infect each of its healthy neighbours
with probability r. On subsequent time steps, the disease spreads
along the edges of the graph until it either infects the entire
population, or it dies out, having infected some fraction of the
population in the process.

p = 0 p = 1 
Increasing randomness

Regular Small-world Random

Figure 1 Random rewiring procedure for interpolating between a regular ring

lattice and a random network, without altering the number of vertices or edges in

the graph. We start with a ring of n vertices, each connected to its k nearest

neighbours by undirected edges. (For clarity, n ! 20 and k ! 4 in the schematic

examples shown here, but much larger n and k are used in the rest of this Letter.)

We choose a vertex and the edge that connects it to its nearest neighbour in a

clockwise sense. With probability p, we reconnect this edge to a vertex chosen

uniformly at random over the entire ring, with duplicate edges forbidden; other-

wise we leave the edge in place. We repeat this process by moving clockwise

around the ring, considering each vertex in turn until one lap is completed. Next,

we consider the edges that connect vertices to their second-nearest neighbours

clockwise. As before, we randomly rewire each of these edges with probability p,

and continue this process, circulating around the ring and proceeding outward to

more distant neighbours after each lap, until each edge in the original lattice has

been considered once. (As there are nk/2 edges in the entire graph, the rewiring

process stops after k/2 laps.) Three realizations of this process are shown, for

different values of p. For p ! 0, the original ring is unchanged; as p increases, the

graph becomes increasingly disordered until for p ! 1, all edges are rewired

randomly. One of our main results is that for intermediate values of p, the graph is

a small-world network: highly clustered like a regular graph, yet with small

characteristic path length, like a random graph. (See Fig. 2.)

Table 1 Empirica l examp les of small-world networks

Lactual Lrandom Cactual Crandom
.............................................................................................................................................................................
Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05
.............................................................................................................................................................................
Characteristic path length L and clustering coefficient C for three real networks, compared
to random graphs with the same number of vertices (n) and average number of edges per
vertex (k). (Actors: n ! 225;226, k ! 61. Power grid: n ! 4;941, k ! 2:67. C. elegans : n ! 282,
k ! 14.) The graphs are defined as follows. Two actors are joined by an edge if they have
acted in a film together. We restrict attention to the giant connected component16 of this
graph, which includes !90% of all actors listed in the Internet Movie Database (available at
http://us.imdb.com), as of April 1997. For the power grid, vertices represent generators,
transformers and substations, and edges represent high-voltage transmission lines
between them. For C. elegans , an edge joins two neurons if they are connected by either
a synapse or a gap junction. We treat all edges as undirected and unweighted, and all
vertices as identical, recognizing that these are crude approximations. All three networks
show the small-world phenomenon: L ! Lrandom but C q Crandom.
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Figur e 2 Characteristic path length L(p) and clustering coefficient C(p) for the

family of randomly rewired graphs described in Fig. 1. Here L is defined as the

number of edges in the shortest path between two vertices, averaged over all

pairs of vertices. The clustering coefficient C(p) is defined as follows. Suppose

that a vertex v has kv neighbours; then at most kv"kv " 1#=2 edges can exist

between them (this occurs when every neighbour of v is connected to everyother

neighbour of v). Let Cv denote the fraction of these allowable edges that actually

exist. Define C as the average of Cv over all v. For friendship networks, these

statistics have intuitive meanings: L is the average number of friendships in the

shortest chain connecting two people; Cv reflects the extent to which friends of v

are also friends of each other; and thus C measures the cliquishness of a typical

friendship circle. The data shown in the figure are averages over 20 random

realizations of the rewiring process described in Fig.1, and have been normalized

by the values L(0), C(0) for a regular lattice. All the graphs have n ! 1;000 vertices

and an average degree of k ! 10 edges per vertex. We note that a logarithmic

horizontal scale has been used to resolve the rapid drop in L(p), corresponding to

the onset of the small-world phenomenon. During this drop, C(p) remains almost

constant at its value for the regular lattice, indicating that the transition to a small

world is almost undetectable at the local level.

Figure 9.4: Characteristic path lengthL(p) and clustering coefcientC(p) for the
family of randomly rewired graphs described in Fig. 9.3 (from Watts and Strogatz,
1998, Fig. 2, p. 441).

Assuming statistical independence for the connections, we can compute the prob-
ability that an undirected graph hasm edges given that nodes are connected with
probabilityp:

pm (1 $ p)mmax! m

The mean degreed in such a random graph is approximately:

d ! p(n $ 1)

Problems arise when random graphs are used to represent the real world:

¥ The assumption of statistical independence is often not valid

¥ The degree of adjacent vertices often differs strongly

¥ Random graphs have no community structure

¥ Navigation using local rules is not used

9.4.4 Clustering CoefÞcient (Degree of Clustering)

Informally, this measures whether Òmy friends are also friends amongst each
otherÓ.
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More formally, the clustering coefÞcientC is deÞned as:

C =
number of acutal edges between neighbours

number of possible egdes between neighbours
(9.2)

For a regular graph of the kind shown in Þgure 9.2, we have for example
C = 3

6 = 0 .5 for k = 2. More generally, it can be shown that for this kind of
graph:

C =
3k $ 3
4k $ 2

(9.3)

For large values ofk, C ! 3
4.

9.4.5 Understanding small world networks

How is it possible that everybody is connected to everybody via just 6 people, if
there are over6" 109 people on earth? One approach is: assume everyone knows
50 people. Then, I am connected to 50 people directly, via 2 steps already with
50á50 = 2500and at 6 steps, I am already connected to 15,625,000,000 people,
which is more than the current population of the planet.

Of course, this is a ßawed calculation because acquaintances are highly clus-
tered, in other words, the 50 people I know do not know 50 different people, but
there is likely to be a signiÞcant overlap, i.e. my friends will often also be each
otherÕs friends.

The Strength of Weak Ties

Consider the whole population of human beings (6 billion) connected as a regular
network with a neighbourhood of 50. Using Equation (9.1), the average path
length for such a case can be computed as:

avp !
6 " 109

4 á50
! 3 " 107

If you replace 2 out of 10,000 connections with a random connection, the
avp drops to about 8. If you replace 3 out of 10,000 connections with a random
connection, theavp drops to about 5! (instead of3 " 107).

This means that while your close friends (strong ties) are mostly connected
among each other, they do not contribute very much to the overall connectedness
of the network. On the other hand, loose connections (weak ties), your distant



9-10 CHAPTER 9. GRAPHS AND NETWORKS

acquaintances, are the links to whole new clusters in the network and therefore
much more important in terms of average path lengths.

9.5 Growing Networks

Networks that grow in the real world typically develop a different structure than
the model analyzed by Watts and Strogatz. One example is the Internet. In the
Internet, one Þnds many computers with only one connection, but only few com-
puters with a large number of connections. One can say, the network has a Òhub
structureÓ.

If the distribution of the number of nodes is plotted versus the number of links
from each node on a log-log scale, the result is a straight line. Such a distribution
is called aÒpower lawÓ (as we have seen) orÒscale-freeÓ. In real-world networks,
such power law distributions are ubiquitious. The same distribution can also be
found in many other real world phenomena such as the size of earthquakes vs. the
frequency with which they occur, or the size of avalanches vs. their frequency.

Although the Internet and the WWW are distinct entities Ð the Internet is phys-
ical while the WWW is logical Ð they both show the same structure and exhibit
small world properties (meaning short avp). In the WWW for example, any web
page can be accessed with about 19 clicks. The question that is often asked:
Given that the WWW continues to grow at the present rate, will it still work in
a few years. Estimates for an increase of factor of 1000 in the number of web-
pages forecast an avp of about 21 clicks - fortunately. In recent years the term
Òsmall worldÓ has been used in a more precise way: in a Òsmall world networkÓ
the value of avp scales logarithmically or slower with network size than for Þxed
mean degree.

Table 9.1: Examples of the different types of small world networks.
Egalitarian Aristocratic
neurons in C.elegans Internet

WWW
web of roads and railwayssexual contacts
power networks scientiÞc papers linked by citations

The Òhub structureÓ is enhanced by the nature of the growth process: new
nodes tend to associate with existing hubs in order to get connected to as many
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other nodes as possible. This method, also called Òpreferential attachmentÓ, makes
existing hubs even more connected. Such networks are also calledaristocratic
networks, whereas networks with approximately the same degree of each node
(e.g. Watts and Strogatz) are calledegalitariannetworks.

Case Study: Airline Transportation Networks

As an example for one of the worldÕs busiest airport take AtlantaÕs HartsÞeld-
Jackson Intl. with over 88 Mio passengers in 2005. Analyses have shown that an
airport operating close to half its maximum capacity will have many delays. When
the airport system developed, it Þrst became an aristocratic network. But when
the maximum capacity of the big hubs was approached, the structure changed to
a more egalitarian one as it became more attractive to also use smaller airports. In
contrast to the Internet and the WWW, it is very costly to increase the capacity of
an airport. Also, the capacity of airports cannot easily be expanded indeÞnitely.
This is why it seemed cheaper to move to nearby smaller airports that still have
spare capacity.

Guimer̀a et al. (2005) did a study on 3,883 locales (villages, towns, and cities
with at least one airport) and established links between them if they are connected
by nostop passenger ßights. They found that the air transportation network is a
small-world network for which the number of nonstop connections from a given
city and the number of shortest paths going through a given city have distributions
that are scale-free. However, in contrast to what one would expect, the most-
connected cities are not ncessarily the most ÒcentralÓ, that is, the cities through
which most shortest paths go. This is because of the existence of several dis-
tinct ÒcommunitiesÓ. Figure 9.5 shows the cumulative degree and betweenness
distributions (i.e.P (> k/z), wherek is the degree, andz the average degree in
the network; andP (> b) whereb is the betweenness). (Cumulative means the
fraction of nodes that have degree greater than or equal tok). Surprisingly, there
are only few cities with large degree and high betweenness. Anchorage has low
degree (compared to other cities) but high betweenness, which is due to the fact
that, because of politicial reasons most ßights from Alaska go through Anchor-
age, rather than directly to other destinations which give the city a kind of key
position. In other words, Anchorage lies at the interface between two (or several)
communities (corresponding roughly to sub-networks, or components).
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where ! ! 0.9 " 0.1 is the power law exponent,g(u) is a
truncation function, and b# is a crossover value that depends on
the size of the network.

A question prompted by the previous results regarding the
degree and the centrality of cities is: ÔÔAre themost connectedcities
also themost central?ÕÕ To answer this question, we analyzed first the
network obtained by randomizing the worldwide air transportation
network (Fig. 1b). We found that the distribution of betweennesses
still decays as a power law but, in this case, with a much larger
exponent value,! ! 1.5" 0.1. This finding indicates the existence
of anomalously large betweenness centralities in the air transpor-
tation network.

For the randomized network, the degree of a node and its
betweenness centrality are strongly correlated; i.e., highly con-
nected nodes are also the most central (Fig. 2a). In contrast, for the
worldwide air transportation network, it turns out that there are
cities that are not hubs, i.e., have small degrees but that nonetheless
have very large betweennesses (Fig. 2a).

To better illustrate this finding, we plotted the 25 most connected
cities and contrasted such a plot with another of the 25 most central
cities according to their betweenness (Fig. 2b andc). Although the
most connected cities are located mostly in Western Europe and
North America, the most central cities are distributed uniformly
across all of the continents. Significantly, each continent has at least

one central city, which is typically highly connected when compared
with other cities in the continent, i.e., Johannesburg in Africa or
Buenos Aires and Sa÷o Paulo, Brazil, in South America. Interest-
ingly, besides these cities with relatively large degree, there are
others, such as Anchorage (AK) and Port Moresby (Papua New
Guinea), that, despite having small degrees, are among the most
central in the network (Table 2).

Degree-Betweenness Anomalies and Multicommunity
Networks
Nodes with small degree and large centrality can be regarded as
anomalies. Other complex networks that have been described in the

Fig. 1. Degree and betweenness distributions of the worldwide air transpor-
tationnetwork. ( a)Cumulativedegreedistributionplotted indouble-logarithmic
scale. The degree k is scaled by the average degree z of the network. The
distribution displays a truncated power-law behavior with exponent " ! 1.0 "
0.1. (b) Cumulative distribution of normalized betweennesses plotted in double-
logarithmic scale. The distribution displays a truncated power-law behavior with
exponent ! ! 0.9 " 0.1. For a randomized network with exactly the same degree
distribution as the original air transportation network, the betweenness distri-
bution decays with an exponent ! ! 1.5 " 0.1. A comparison of the two cases
clearly shows the existence of an excessive number of large betweenness values
in the air transportation network. Fig. 2. Most-connected versus most-central cities in the worldwide air

transportation network. ( a) Betweenness as a function of the degree for the
cities in the worldwide air transportation network (circles). For the random-
ized network, the betweenness is well described as a quadratic function of the
degree (dashed line) with 95% of all data falling inside the gray region. In
contrast to the strong correlation between degree and betweenness found
for randomized networks, the air transportation network comprises many
cities that are highly connected but have small betweenness and, conversely,
many cities with small degree and large betweenness. We deÞne a blue region
containing the 25 most central cities in the world and a yellow region con-
taining the 25 most connected cities. Surprisingly, we Þnd there are only a few
cities with large betweenness and degree (green region, which is the inter-
section of the blue and yellow regions). ( b) The 25 most connected cities in the
world. ( c) The 25 most central cities in the world.

7796 ! www.pnas.org " cgi" doi " 10.1073" pnas.0407994102 Guimerà et al.

Figure 9.5: Degree and betweenness distributions of the worldwide air transporta-
tion network. (a) Cumulative degree distribution plotted in double-logarithmic
scale. The degreek is scaled by the average degreez of the network. The distri-
bution displays a truncated power-law behavior with exponent1.0??± 0.1. (b) Cu-
mulative distribution of normalized betweennesses plotted in double-logarithmic
scale. The distribution displays a truncated power-law behavior with exponent
0.9??± 0.1. For a randomized network with exactly the same degree distribution as
the original air transportation network, the betweenness distribution decays with
an exponent1.5??± 0.1. A comparison of the two cases clearly shows the exis-
tence of an excessive number of large betweenness values in the air transportation
network (from Guimer̀a et al., 2005, Fig. 1, p. 7796).
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where ! ! 0.9 " 0.1 is the power law exponent,g(u) is a
truncation function, and b# is a crossover value that depends on
the size of the network.

A question prompted by the previous results regarding the
degree and the centrality of cities is: ÔÔAre themost connectedcities
also themost central?ÕÕ To answer this question, we analyzed first the
network obtained by randomizing the worldwide air transportation
network (Fig. 1b). We found that the distribution of betweennesses
still decays as a power law but, in this case, with a much larger
exponent value,! ! 1.5" 0.1. This finding indicates the existence
of anomalously large betweenness centralities in the air transpor-
tation network.

For the randomized network, the degree of a node and its
betweenness centrality are strongly correlated; i.e., highly con-
nected nodes are also the most central (Fig. 2a). In contrast, for the
worldwide air transportation network, it turns out that there are
cities that are not hubs, i.e., have small degrees but that nonetheless
have very large betweennesses (Fig. 2a).

To better illustrate this finding, we plotted the 25 most connected
cities and contrasted such a plot with another of the 25 most central
cities according to their betweenness (Fig. 2b andc). Although the
most connected cities are located mostly in Western Europe and
North America, the most central cities are distributed uniformly
across all of the continents. Significantly, each continent has at least

one central city, which is typically highly connected when compared
with other cities in the continent, i.e., Johannesburg in Africa or
Buenos Aires and Sa÷o Paulo, Brazil, in South America. Interest-
ingly, besides these cities with relatively large degree, there are
others, such as Anchorage (AK) and Port Moresby (Papua New
Guinea), that, despite having small degrees, are among the most
central in the network (Table 2).

Degree-Betweenness Anomalies and Multicommunity
Networks
Nodes with small degree and large centrality can be regarded as
anomalies. Other complex networks that have been described in the

Fig. 1. Degree and betweenness distributions of the worldwide air transpor-
tationnetwork. ( a)Cumulativedegreedistributionplotted indouble-logarithmic
scale. The degree k is scaled by the average degree z of the network. The
distribution displays a truncated power-law behavior with exponent " ! 1.0 "
0.1. (b) Cumulative distribution of normalized betweennesses plotted in double-
logarithmic scale. The distribution displays a truncated power-law behavior with
exponent ! ! 0.9 " 0.1. For a randomized network with exactly the same degree
distribution as the original air transportation network, the betweenness distri-
bution decays with an exponent ! ! 1.5 " 0.1. A comparison of the two cases
clearly shows the existence of an excessive number of large betweenness values
in the air transportation network. Fig. 2. Most-connected versus most-central cities in the worldwide air

transportation network. ( a) Betweenness as a function of the degree for the
cities in the worldwide air transportation network (circles). For the random-
ized network, the betweenness is well described as a quadratic function of the
degree (dashed line) with 95% of all data falling inside the gray region. In
contrast to the strong correlation between degree and betweenness found
for randomized networks, the air transportation network comprises many
cities that are highly connected but have small betweenness and, conversely,
many cities with small degree and large betweenness. We deÞne a blue region
containing the 25 most central cities in the world and a yellow region con-
taining the 25 most connected cities. Surprisingly, we Þnd there are only a few
cities with large betweenness and degree (green region, which is the inter-
section of the blue and yellow regions). ( b) The 25 most connected cities in the
world. ( c) The 25 most central cities in the world.

7796 ! www.pnas.org " cgi" doi " 10.1073" pnas.0407994102 Guimerà et al.

Figure 9.6: Betweenness as a function of the degree for the cities in the worldwide
air transportation network (circles). For the randomized network, the betweenness
is well described as a quadratic function of the degree (dashed line) with 95% of
all data falling inside the gray region. In contrast to the strong correlation between
degree and betweenness found for randomized networks, the air transportation
network comprises many cities that are highly connected but have small between-
ness and, conversely, many cities with small degree and large betweenness. We
dene a blue region containing the 25 most central cities in the world and a yel-
low region containing the 25 most connected cities. Surprisingly, we nd there are
only a few cities with large betweenness and degree (green region, which is the
intersection of the blue and yellow regions). (from Guimerà et al., 2005, Fig. 2a),
p. 7796).

The next Figure 9.6 shows a plot of degree vs. betweennes. Interestingly, there
are only few cities that have high degree and at the same time high betweenness
(the green area).

The average degree in Asia and Middle East is 3.5, in the global network only
1 step larger, 4.4. The growth rate is roughly logarithmic. The longest path is
between Mount Pleasant in the Falkland Islands, and Wasu in Papua New Guinea
which requires 15 different ßights.
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Applications and Relevance of these Analyses

What can we learn from these analysis? Questions we would like to be able to ask
are

¥ How robust, how stable is the network agains attacks? (e.g. against terrorist
attacks?) What about security

¥ identify bottlenecks, potential for congestion (e.g. betweenness)

¥ predict the spread of viruses and diseases

9.6 Analysis of threats

The analysis of networks is of practical importance, especially when you want to
Þnd out how brittle your network (e.g. a power network for the SBB) is.

9.6.1 Network resilience to deletion of nodes

To analyse this, randomly chosen nodes are deleted from the network (preferably
in simulation), and the effect on the average path length (avp) is calculated. Previ-
ously, we have identiÞed two kinds of small-world networks, aristocratic and egal-
itarian networks. Simulations have shown that if 5% of the nodes are destroyed,
the avp of aristocratic networks remains unchanged, while it increases by! 12%
in egalitarian networks. If 28% of the nodes are destroyed, egalitarian networks
disintegrate completely, while aristocratic are still mostly connected (this is called
graceful degradation). Note however that if nodes are not destroyed randomly but
instead the hubs are attacked, an aristocratic network is more vulnerable.

9.6.2 Percolation models

Other threats are e.g. the spread of disease or of viruses. For such an analysis it is
crucial to determine whether a node is Òoccupied/not occupiedÓ and which nodes
have the highest degree as these should be the Þrst protected against Òoccupa-
tionÓ (infection). In order to Þnd these nodes, one follows edges at random. The
probability of Þnding a particular node is proportional to the degree of a node.

Similar ideas are used by Google for WWW search: the information contained
both in the vertex and in the edge (the hyperlinks) is used (as well as e.g. the
ÒauthorityÓ of a node).
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9.7 Biological networks

As mentioned earlier, examples can be given indeÞnitely. We brießy look at three
of them. The discipline of bio-informatics capitalizes, among other things, on the
analysis of networks. Here are a few case studies:

¥ genetic regulatory networks (see Human Genome Project); models of GRNs
for modeling ontogenetic development of artiÞcial creatures, such as Josh
BongardÕs block pushers (e.g. Pfeifer and Bongard, 2007).

¥ motifs in brain networks (e.g. Milo et al., 2002; Sporns and K¬otter, 2004,
papers available from the lecture webpage).

¥ ant networks for foraging, pheromone trails; application to load-balancing
in telecommunication networks.

9.8 ÒTipping pointsÓ

A good way to understanding the emergence of fashion trends, the ebb and ßow
of crime waves, the transformation of unknown books into bestseller, the rise of
teenage smoking, is to view them in terms of epidemics. Epidemics have three
essential characteristics:

(i) they are contagious,

(ii) little causes can have big effects, and

(iii) change happens not gradually but at one dramatic moment.

And all epidemics have tipping points. A popular science book that nicely de-
scribes the idea behind Òtipping pointsÓ is Malcolm Caldwells book ÒThe Tipping
PointÓ (2001). Here are a few examples. Because of the highly non-linear na-
ture of the dynamics of large networks, they are hard to analyze analytically, and
simulations are often the preferred means of study.

9.8.1 The Schelling Model of Segregation

As early as 1969, Thomas Schelling was interested in how micro-level preferences
for like-colored neighbors might manifest themselves at the macro-level Schelling
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(1969). Neighborhood relations can be depicted as networks where the nodes
represent individuals (or families) and the links are only short-range indicating
neighborhood (i.e. is neighbor of). In the simulation models that people have
applied, there are typically constraints on the maximum number of neighbors, e.g.
four. He deÞned a Òmovement ruleÓ:

(1) the agent computes the fraction of neighbors who are its own color;

(2) if this number is greater than or equal to its preference, the agent is considered
satisÞed;

(3) if this number is smaller than its preference, it will move to a different neigh-
borhood.

Here is a summary of the results. If agents want at least 25% of their neighbors
to be of the same color there is already a certain degree of segregation. However
if you increase this threshold to 50%, but still allowing half of the neighbors to
be of a different color, there is complete segregation. One of the points this study
illustrates is that what looks like a dramatic issue at the macroscopic level, may
not be reßected in individual preferences.

9.8.2 The Reappearance of ÒHush PuppiesÓ

ÒHush PuppiesÓ are legendary shoes, soft suede slip-ons, that made their debut in
1958. After a number of years they had almost completely gone from the market,
selling a mere 30,000 pairs a year.

Then, to everyones surprise, the company, in a span of two years after its
rebirth in 1994 managed to increase its sales to over 1,000,000 pairs, setting the
fashion trends among young Americans for the second time. The reason might
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have been, as Caldwell suggests, that just a few kids in New York wore them to a
trendy club, in other words, a very minor event that eventually lead to the spread
of the ÒfadÓ over the entire continent.

9.9 Network Motifs: Simple Building Blocks of Com-
plex Networks

As we have seen, many networks in the real world are extremely large and their
dynamics is very complex. Prominent examples of highly complex networks are
genetic regulatory networks, biological brains (in particular the human brain),
food webs, virus-spread networks (e.g. bird ßu, SARS, AIDS), and WWW and
the Internet. As a consequence, their structure and behavior is hard to understand.
Or put differently, what would it mean to understand these networks? Often, it
is difÞcult to try and explain them on the basis of Þrst principles. What has been
tried instead, or in addition, is to look for certain building blocks, the Ònetwork
motifsÓ. Motifs are patterns of interconnections occurring in complex networks at
numbers that are signiÞcantly higher than those in randomized networks.

When we conceptualize a phenomenon in the real world as a network we have
to deÞne the nodes and links. For example, genetic regulatory networks are di-
rected graphs, in which the nodes represent the genes. Edges are directed from a
gene that produces a particular chemical (called the transcription factor) to a gene
that is being regulated by this chemical (as described in Bongards simple model
of genetic regulatory networks that control the growth of the Òblock pushersÓ, e.g.
Bongard). In food webs, the nodes represent groups of species. Edges are di-
rected from a node representing a predator to the node representing its prey. In
neural networks, nodes represent neurons (or neuron classes), and edges represent
synaptic connections between the neurons.

Figure 9.7 shows all 13 types of three-node connected subgraphs.
Figure 9.9 shows a real-world network and several randomized networks. The

networks are balanced in that each node in the randomized network has the same
number of incoming and outgoing edges as does the corresponding node in the
real network. The so-called feed-forward loop motif (number 5 in Figure 9.7) is
detected. Note that its frequency is much higher in the real-world network that in
the randomized ones.

The big question then is to Þgure out what these motifs might mean in terms
of information processing in the network; identifying motif patterns is nice, but it
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Cl concentrations in the Sajama ice core, and to
a number of other pedological and geomorpho-
logical features indicative of long-term dry cli-
mates (8, 11Ð14, 18). This decline in human
activity around the Altiplano paleolakes is seen
in most caves, with early and late occupations
separated by largely sterile mid-Holocene sed-
iments. However, a few sites, including the
caves of Tulan-67 and Tulan-68, show that
people did not completely disappear from the
area. All of the sites of sporadic occupation
are located near wetlands in valleys, near
large springs, or where lakes turned into wet-
lands and subsistence resources were locally
still available despite a generally arid climate
(7, 8, 19, 20).

Archaeological data from surrounding ar-
eas suggest that the Silencio Arqueolo«gico
applies best to the most arid areas of the
central Andes, where aridity thresholds for
early societies were critical. In contrast, a
weaker expression is to be expected in the
more humid highlands of northern Chile
(north of 20¡S, such as Salar Huasco) and
Peru (21). In northwest Argentina, the Silen-
cio Arqueolo«gico is found in four of the six
known caves (22) [see review in (23)]. It is
also found on the coast of Peru in sites that
are associated with ephemeral streams (24 ).
The southern limit in Chile and northwest
Argentina has yet to be explored.
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Network Motifs: Simple Building
Blocks of Complex Networks

R. Milo,1 S. Shen-Orr,1 S. Itzkovitz,1 N. Kashtan,1 D. Chklovskii,2

U. Alon1*

Complex networks are studied across many Þelds of science. To uncover their
structural design principles, we deÞned Ònetwork motifs,Ó patterns of inter-
connections occurring in complex networks at numbers that are signiÞcantly
higher than those in randomized networks. We found such motifs in networks
from biochemistry, neurobiology, ecology, and engineering. The motifs shared
by ecological food webs were distinct from the motifs shared by the genetic
networks ofEscherichia coliandSaccharomyces cerevisiaeor from those found
in the World Wide Web. Similar motifs were found in networks that perform
information processing, even though they describe elements as different as
biomolecules within a cell and synaptic connections between neurons inCae-
norhabditis elegans. Motifs may thus deÞne universal classes of networks. This
approach may uncover the basic building blocks of most networks.

Many of the complex networks that occur in
nature have been shown to share global statis-
tical features (1–10). These include the Òsmall
worldÓ property (1–9) of short paths between
any two nodes and highly clustered connec-
tions. In addition, in many natural networks,
there are a few nodes with many more connec-
tions than the average node has. In these types

of networks, termed Òscale-free networksÓ (4,
6), the fraction of nodes havingk edges,p(k),
decays as a power lawp(k) ! kÐ" (where" is
often between 2 and 3). To go beyond these
global features would require an understanding
of the basic structural elements particular to
each class of networks (9). To do this, we
developed an algorithm for detecting network
motifs: recurring, significant patterns of inter-
connections. A detailed application to a gene
regulation network has been presented (11).
Related methods were used to test hypotheses
on social networks (12, 13). Here we generalize
this approach to virtually any type of connec-
tivity graph and find the striking appearance of
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Molecular Cell Biology, Weizmann Institute of Sci-
ence, Rehovot, Israel 76100.2Cold Spring Harbor Lab-
oratory, Cold Spring Harbor, NY 11724, USA.

*To whom correspondence should be addressed. E-
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Fig. 1. (A) Examples
of interactions repre-
sented by directed
edges between nodes
in some of the net-
works used for the
present study. These
networks go from the
scale of biomolecules
(transcription factor
protein X binds regu-
latory DNA regions
of a gene to regulate
the production rate
of protein Y),
through cells (neuron
X is synaptically con-
nected to neuron Y),
to organisms (X
feeds on Y). (B) All 13 types of three-node connected subgraphs.
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Figure 9.7: All 13 types of three-node connected subgraphs. From Milo et al.
(2002).

motifs in networks representing a broad range
of natural phenomena.

We started with networks where the inter-
actions between nodes are represented by di-
rected edges (Fig. 1A). Each network was
scanned for all possible n-node subgraphs (in
the present study, n ! 3 and 4), and the number
of occurrences of each subgraph was recorded.
Each network contains numerous types of n-
node subgraphs (Fig. 1B). To focus on those
that are likely to be important, we compared the
real network to suitably randomized networks
(12Ð16) and only selected patterns appearing in
the real network at numbers significantly higher
than those in the randomized networks (Fig. 2).
For a stringent comparison, we used random-
ized networks that have the same single-node
characteristics as does the real network: Each
node in the randomized networks has the same

number of incoming and outgoing edges as the
corresponding node has in the real network.
The comparison to this randomized ensemble
accounts for patterns that appear only because
of the single-node characteristics of the network
(e.g., the presence of nodes with a large number
of edges). Furthermore, the randomized net-
works used to calculate the significance of n-
node subgraphs were generated to preserve the
same number of appearances of all (n Ð1)-node
subgraphs as in the real network (17, 18). This
ensures that a high significance was not as-
signed to a pattern only because it has a highly
significant subpattern. The Ònetwork motifsÓ
are those patterns for which the probabilityP of
appearing in a randomized network an equal or
greater number of times than in the real network
is lower than a cutoff value (here P ! 0.01).
Patterns that are functionally important but not

statistically significant could exist, which
would be missed by our approach.

We applied the algorithm to several net-
works from biochemistry (transcriptional gene
regulation), ecology (food webs), neurobiology
(neuron connectivity), and engineering (elec-
tronic circuits, World Wide Web). The network
motifs found are shown in Table 1. Transcrip-
tion networks are biochemical networks re-
sponsible for regulating the expression of genes
in cells (11, 19). These are directed graphs, in
which the nodes represent genes (Fig. 1A).
Edges are directed from a gene that encodes for
a transcription factor protein to a gene transcrip-
tionally regulated by that transcription factor.
We analyzed the two best characterized tran-
scriptional regulation networks, corresponding
to organisms from different kingdoms: a eu-
karyote (the yeast Saccharomyces cerevisiae)
(20) and a bacterium (Escherichia coli) (11,
19). The two transcription networks show the
same motifs: a three-node motif termed Òfeed-
forward loopÓ (11) and a four-node motif
termed Òbi-fan.ÓThese motifs appear numerous
times in each network (Table 1), in nonhomolo-
gous gene systems that perform diverse biolog-
ical functions. The number of times they appear
is more than 10 standard deviations greater than
their mean number of appearances in random-
ized networks. Only these subgraphs, of the 13
possible different three-node subgraphs (Fig.
1B) and 199 different four-node subgraphs, are
significant and are therefore considered net-
work motifs. Many other three- and four-node
subgraphs recur throughout the networks, but at
numbers that are less than the mean plus 2
standard deviations of their appearance in ran-
domized networks.

We next applied the algorithm to ecosystem
food webs (21, 22), in which nodes represent
groups of species. Edges are directed from a
node representing a predator to the node repre-
senting its prey. We analyzed data collected by
different groups at seven distinct ecosystems
(22), including both aquatic and terrestrial hab-
itats. Each of the food webs displayed one or
two three-node network motifs and one to five
four-node network motifs. One can define the
Òconsensus motifsÓ as the motifs shared by
networks of a given type. Five of the seven food
webs shared one three-node motif, and all seven
shared one four-node motif (Table 1). In con-
trast to the three-node motif (termed Òthree
chainÓ), the three-node feedforward loop was
underrepresented in the food webs. This sug-
gests that direct interactions between species at
a separation of two layers [as in the case of
omnivores (23)] are selected against. The bi-
parallel motif indicates that two species that are
prey of the same predator both tend to share the
same prey. Both network motifs may thus rep-
resent general tendencies of food webs (21, 22).

We next studied the neuronal connectivity
network of the nematode Caenorhabditis ele-
gans(24). Nodes represent neurons (or neuron

Fig. 2.Schematic view of network motif detection. Network motifs are patterns that recur much
more frequently (A) in the real network than (B) in an ensemble of randomized networks. Each
node in the randomized networks has the same number of incoming and outgoing edges as does
the corresponding node in the real network. Red dashed lines indicate edges that participate in the
feedforward loop motif, which occurs Þve times in the real network.
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Fig. 3.ConcentrationC of
the feedforward loop motif
in real and randomized
subnetworks of theE. coli
transcription network (11).
Cis the number of appear-
ances of the motif divided
by the total number of ap-
pearances of all connected
three-node subgraphs (Fig.
1B). Subnetworks of sizeS
were generated by choos-
ing a node at random and
adding to it nodes con-
nected by an incoming or
outgoing edge, until S
nodes were obtained, and
then including all of the
edges between theseS
nodes present in the full
network. Each of the sub-
networks was randomized
(17, 18) (shown are mean and SD of 400 subnetworks of each size).
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Figure 9.8: Real-world network and several randomized networks.



9.9. NETWORK MOTIFS: SIMPLE BUILDING BLOCKS OF COMPLEX NETWORKS9-19

would be even nicer if they had a plausible interpretation of their functionality.
Milo et al. (2002) found that genetic regulatory networks, neural networks, and

electronic circuits (forward logic chips) all contained the three-node feedforward
loop motif (which seems to be in agreement with anatomical observations of trian-
gular connectivity in some neural systems), and the four-node bi-fan motif. This
similarity may point to a fundamental similarity in the design constraints of both
types of networks. Both networks carry information from sensory components
(sensory neurons/transcription factors regulated by chemical signals) to effectors
(motor neurons/structural genes being produced under certain conditions).

classes), and edges represent synaptic connec-
tions between the neurons. We found the feed-
forward loop motif in agreement with anatomi-
cal observations of triangular connectivity struc-
tures (24). The four-node motifs include the
bi-fan and the bi-parallel (Table 1). Two of
these motifs (feedforward loop and bi-fan) were

also found in the transcriptional gene regulation
networks. This similarity in motifs may point to
a fundamental similarity in the design con-
straints of the two types of networks. Both net-
works function to carry information from sen-
sory components (sensory neurons/transcription
factors regulated by biochemical signals) to ef-

fectors (motor neurons/structural genes). The
feedforward loop motif common to both types
of networks may play a functional role in infor-
mation processing. One possible function of this
circuit is to activate output only if the input
signal is persistent and to allow a rapid deacti-
vation when the input goes off (11). Indeed,
many of the input nodes in the neural feedfor-
ward loops are sensory neurons, which may
require this type of information processing
to reject transient input fluctuations that are
inherent in a variable or noisy environment.

We also studied several technological net-
works. We analyzed the ISCAS89 benchmark
set of sequential logic electronic circuits (7, 25).
The nodes in these circuits represent logic gates
and flip-flops. These nodes are linked by direct-
ed edges. We found that the motifs separate the
circuits into classes that correspond to the cir-
cuitÕs functional description. In Table 1, we
present two classes, consisting of five forward-
logic chips and three digital fractional multipli-
ers. The digital fractional multipliers share three
motifs, including three- and four-node feedback
loops. The forward logic chips share the feed-
forward loop, bi-fan, and bi-parallel motifs,
which are similar to the motifs found in the
genetic and neuronal information-processing
networks. We found a different set of motifs in
a network of directed hyperlinks between
World Wide Web pages within a single domain
(4). The World Wide Web motifs may reflect a
design aimed at short paths between related
pages. Application of our approach to nondi-
rected networks shows distinct sets of motifs in
networks of protein interactions and Internet
router connections (18).

None of the network motifs shared by the
food webs matched the motifs found in the gene
regulation networks or the World Wide Web.
Only one of the food web consensus motifs also
appeared in the neuronal network. Different
motif sets were found in electronic circuits with
different functions. This suggests that motifs
can define broad classes of networks, each with
specific types of elementary structures. The
motifs reflect the underlying processes that gen-
erated each type of network; for example, food
webs evolve to allow a flow of energy from the
bottom to the top of food chains, whereas gene
regulation and neuron networks evolve to pro-
cess information. Information processing seems
to give rise to significantly different structures
than does energy flow.

We further characterized the statistical sig-
nificance of the motifs as a function of network
size, by considering pieces of various sizes
(subnetworks) of the full network. The concen-
tration of motifs in the subnetworks is about the
same as that in the full network (Fig. 3). In
contrast, the concentration of the corresponding
subgraphs in the randomized versions of the
subnetworks decreases sharply with size. In
analogy with statistical physics, the number of
appearances of each motif in the real networks

Table 1.Network motifs found in biological and technological networks. The numbers of nodes and edges
for each network are shown. For each motif, the numbers of appearances in the real network (Nreal) and
in the randomized networks (Nrand! SD, all values rounded) (17, 18) are shown. ThePvalue of all motifs
is P" 0.01, as determined by comparison to 1000 randomized networks (100 in the case of the World
Wide Web). As a qualitative measure of statistical signiÞcance, theZ score# (Nreal ÐNrand)/SD is shown.
NS, not signiÞcant. Shown are motifs that occur at leastU # 4 times with completely different sets of
nodes. The networks are as follows (18): transcription interactions between regulatory proteins and genes
in the bacteriumE. coli(11) and the yeastS. cerevisiae(20); synaptic connections between neurons in
C. elegans, including neurons connected by at least Þve synapses (24); trophic interactions in ecological
food webs (22), representing pelagic and benthic species (Little Rock Lake), birds, Þshes, invertebrates
(Ythan Estuary), primarily larger Þshes (Chesapeake Bay), lizards (St. Martin Island), primarily inverte-
brates (Skipwith Pond), pelagic lake species (Bridge Brook Lake), and diverse desert taxa (Coachella
Valley); electronic sequential logic circuits parsed from the ISCAS89 benchmark set (7, 25), where nodes
represent logic gates and ßip-ßops (presented are all Þve partial scans of forward-logic chips and three
digital fractional multipliers in the benchmark set); and World Wide Web hyperlinks between Web pages
in a single domain (4) (only three-node motifs are shown). e, multiplied by the power of 10 (e.g., 1.46e6
# 1.46$ 106).

*Has additional four-node motif: (X3 Z, W; Y3 Z, W; Z3 W),Nreal# 150,Nrand# 85 ! 15,Z# 4.   Has additional
four-node motif: (X3 Y, Z; Y3 Z; Z3 W),Nreal# 204,Nrand# 80 ! 20,Z # 6. The three-node pattern (X3 Y, Z; Y3 Z;
Z3 Y) also occurs signiÞcantly more than at random. It is not a motif by the present deÞnition because it does not
appear with completely distinct sets of nodes more thanU # 4 times. àHas additional four-node motif: (X3 Y;
Y3 Z, W; Z3 X; W3 X),Nreal # 914,Nrand # 500 ! 70, Z # 6. ¤Has two additional three-node motifs: (X3 Y, Z;
Y3 Z; Z3 Y),Nreal # 3e5,Nrand # 1.4e3! 6e1,Z # 6000, and (X3 Y, Z; Y3 Z), Nreal # 5e5,Nrand # 9e4 ! 1.5e3,
Z # 250.

Network Nodes Edges Nreal Nrand ± SD Z score Nreal Nrand ± SD Z score Nreal Nrand ± SD Z score

Gene regulation

(transcription)

            X

            Y

            Z

Feed-

forward

loop

    X           Y

     Z         W

Bi-fan

E. coli   424    519 40   7 ± 3 10   203   47 ± 1213
S. cerevisiae* 685 1,052 70 11 ± 4 14 1812 300 ± 4041
Neurons              X

             Y

             Z

Feed-

forward

loop

    X           Y

     Z          W

Bi-fan           X

  Y              Z

          W

Bi-

parallel

 C. elegans  252 509 125 90 ± 10 3.7 127 55 ± 13 5.3 227 35 ± 1020
Food webs             X

            Y

             Z

Three

chain

          X

  Y              Z

         W

Bi-

parallel

Little Rock 92 984 3219 3120 ± 50 2.1 7295 2220 ± 21025
Ythan 83 391 1182 1020 ± 20 7.2 1357 230 ± 50 23
St. Martin 42 205   469   450 ± 10 NS   382 130 ± 20 12
Chesapeake 31   67     80     82 ± 4       NS     26     5 ± 2     8
Coachella 29 243   279   235 ± 12 3.6   181   80 ± 20  5
Skipwith 25 189   184   150 ± 7 5.5   397   80 ± 25 13

 B. Brook 25 104   181   130 ± 7 7.4   267   30 ± 7    32
Electronic circuits

(forward logic chips)

             X

             Y

             Z

Feed-

forward

loop

Bi-fan           X

  Y              Z

          W

Bi-

parallel

s15850 10,383 14,240 424   2 ± 2 285 1040 1 ± 1 1200 480 2 ± 1335
s38584 20,717 34,204 413 10 ± 3 120 1739 6 ± 2   800 711 9 ± 2320
s38417 23,843 33,661 612   3 ± 2 400 2404 1 ± 1 2550 531 2 ± 2340
s9234   5,844   8,197 211   2 ± 1 140   754 1 ± 1 1050 209 1 ± 1200
s13207   8,651 11,831 403   2 ± 1 225 4445 1 ± 1 4950 264 2 ± 1200
Electronic circuits

(digital fractional multipliers)

         X

Y                Z

Three-

node

feedback

loop

Bi-fan      X            Y

     Z             W

Four-

node

feedback

loop

s208 122 189 10 1 ± 1   9   4 1 ± 1   3.8   5 1 ± 1   5
s420 252 399 20 1 ± 1 18 10 1 ± 1 10 11 1 ± 1 11
s838à 512 819 40 1 ± 1 38 22 1 ± 1 20 23 1 ± 1 25

World Wide Web              X

             Y

             Z

Feedback

with two

mutual

dyads

         X

Y                Z

Fully

connected

triad

        X

Y                Z

Uplinked

mutual

dyad

nd.edu¤ 325,729 1.46e6 1.1e5 2e3 ± 1e2 800 6.8e6 5e4±4e2 15,000 1.2e6 1e4 ± 2e25000

    X           Y

     Z         W

    X           Y

     Z         W
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Figure 9.9: Feedforward loop (3 nodes) motif, and bi-fan (4 nodes) motif.

One of the important reasons why networks in the real world have a more
pronounced motif structure than random network is that they are constrained by
particular types of growth rules which in turn depend on the speciÞc nature of the
network.

9.9.1 Motifs in Brain Networks

When analyzing brain networks, often a distinction between structural and func-
tional motifs is made (e.g. Sporns and K¬otter, 2004). Structural motifs represent
anatomical building blocks, whereas functional motifs represent elementary pro-
cessing modes of a network. Functional motifs refer to speciÞc combinations of
nodes and connections (contained within structural motifs) that may be selectively
activated in the course of neural information processing.

It has been found that the repertoire of functional interactions (i.e. functional
motifs) is large and highly diverse, while their physical architecture is constructed
from structural motifs that are less numerous and less diverse. This makes sense
because a large functional repertoire facilitates ßexible and dynamic processing,
while a small structural repertoire promotes efÞcient encoding and assembly.

As can be seen from these considerations, it will be extremely important to
have efÞcient network-processing algorithms.
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