
Software Engineering HS’15

Software Evolution

Thomas Fritz & Martin Glinz

Many thanks to H. Gall, K. Kevic, M. Allen, V.
Razmov, M. Lanza, D. Shepherd, M. Felici, G.
Murphy

Learning Goals

By the end of this unit, you will be able to:
n  Explain why evolution is difficult but inherent
n  Describe three categories of reasons why useful software must

evolve and identify what kind of reason motivates a given
software change

n  Reason about and argue whether a given change retains
binary/contract compatibility

n  Describe the role of issue tracking systems in the software
development process

n  Discuss the life cycle of a bug report, criteria for writing a good
one and general steps for working on one

2

Importance of
Maintenance/Evolution

n  Microsoft Windows XP:
q  Released 12/31/2001

q  Service packs ended 8/30/2005

q  Support ended 4/14/2009 (7.5 years)

q  Extended support still possible

n  Red Hat Enterprise Linux 3

q  Released 10/23/2003

q  End of life cycle 10/31/2010

q  End of extended support 01/30/2014

Maintenance Examples

n Producing new (versions of) software under the
constraints of existing software
q Backwards compatibility is often assumed / required
q aka “Brownfield development”
q Legacy Software: “software which is vital to our

organization, but we don’t know what to do with
it” (Bennett and Rajlich)

n Can comprise all phases of the lifecycle, starting
with requirements gathering
q Another turn of the spiral

Similar to development, but HARDER!

Software Maintenance/Evolution

6

Software change

n  Software change is inevitable
q  New requirements emerge when the software is used
q  The business environment changes
q  Errors must be repaired
q  New computers and equipment is added to the system
q  The performance or reliability of the system may have

to be improved
n  A key problem for organisations is implementing and

managing change to their existing software systems.

n  Memory space used to be a problem, so, store 2 digit
years
q  Rollover problem: ascending numbering assumption becomes

invalid

n  Mitigation efforts cost ~$300 billion worldwide

n  Valuable surge in IT modernization

q  major issue for business: enterprise architecture

Y2K Example

Computerworld: http://goo.gl/1ABH2

8

Software Evolution

n  Organizations have huge investments in their software
systems - they are critical business assets.

n  To maintain the value of these assets to the business,
they must be changed and updated.

n  The majority of the software budget in large companies
is devoted to evolving existing software rather than
developing new software.

Lehman’s laws

Observations (~laws) on large systems developed by large
organizations

9

Continuing change
A program that is used in a real-world environment necessarily must change or
become progressively less useful in that environment

Increasing complexity
As an evolving program changes, its structure tends to become more complex.
Extra resources must be devoted to preserving and simplifying structure.

Declining quality
The quality of systems will appear to be declining unless they are adapted to
changes in their operational environment

….

Evolution is hard
n  Systems not robust under change.

n  Lack of traceability (e.g. between requirements and code)

n  Poor documentation of code, of design process and rationale and of
system evolution.

n  “Stupid” code features may not be so stupid.
q  work-arounds of artificial constraints may no longer be documented

(e.g. OS bugs, memory limits, etc.)

n  Poor management attitudes and culture:
q  Maintenance is not high-profile.

q  It is just patching code.

q  Easier/less important than design.

Discussion Question

If we build a game like Halo 5, do we ever need to
change the application’s source code?

When? Why?

12

Corrective
q  correct faults in system behaviour
q  caused by errors in coding, design or requirements

Adaptive
q  due to changes in operating environment
q  e.g., different hardware or operating system

Perfective
q  due to changes in requirements
q  often triggered by organizational, business or user

learning

Reasons for evolutionary changes

What is the reason for this change?

What is the reason for this change?

What is the reason for this change?

Evolution and Compatibility

Applica'on	 A	

Applica'on	 Programming	 Interface	 (API)	

Client	
Applica'on	 1	

Client	
Applica'on	 2	

Client	
Applica'on	 3	

Imagine	 Applica'on	 A	 =	 Microso<	 Outlook	
What	 might	 the	 API	 provide	 access	 to?	
Why?	

API (Java perspective)

e.g., Moyosoft Java Outlook Connector

public class SendMail
{
 public static void main(String[] args)
 {
 try
 {
 // Outlook application
 Outlook outlookApplication = new Outlook();

 // Get the Outbox folder
 OutlookFolder outbox = outlookApplication.getDefaultFolder(
 FolderType.OUTBOX);

 // Create a new mail in the outbox folder
 OutlookMail mail = (OutlookMail) outbox.createItem(ItemType.MAIL);

 // Set the subject, destination and contents of the mail
 mail.setSubject("Hello world !");
 mail.setTo("your_email@test.com");
 mail.setBody("This is a test message.");

 // Send the mail
 mail.send();

Evolving a Java-based API

What kind of changes to the Java API code can we
make to maintain binary compatibility so that
existing (already compiled) applications using the
API do not break?

Add a new (Java) package to the API?

Change name of a public method in a public class?

Change the name of a parameter to a method?

Evolving a Java-based API

What kind of changes to the Java API code can we
make to maintain binary compatibility so that existing
applications using the API do not break?

Add a new (Java) package to the API? (binary compatible)

Change name of a public method in a public class?
(binary incompatible)

Change the name of a parameter to a method?
(binary compatible)

Try these ones…

1.  Re-order methods in a class declaration?
2.  Add an unchecked exception thrown to an API

method?
3.  Change an API method from public access to

protected access?
4.  Add API field?

 See http://wiki.eclipse.org/Evolving_Java-based_APIs_2
(don’t memorize these and just understand the very basic kinds of
changes)

API Contract Compatibility

API changes must not invalidate formerly legal
Client code.

Consider the following API method specification.

/** Returns the list of children of this widget.
 * @return a non-empty list of widgets
 */
Widget[] getChildren();

API Contract Compatibility…

What if that specification was changed in a revised
API to allow an empty list of widgets to be returned?

/** Returns the list of children of this widget.
 * @return a list of widgets
 */
Widget[] getChildren();

Would this change break a client who calls
getChildren()? Why or why not?

API Contract Compatibility…
What if that specification was changed in a revised API to
allow an empty list of widgets to be returned?

/**	 Returns	 the	 list	 of	 children	 of	 this	 	 widget.	
	 	 *	 @return	 a	 list	 of	 widgets	
	 	 */	
Widget[]	 getChildren();	

Would this change break a client who calls
getChildren()? Why or why not?

Consider:	
Widget[]	 children	 =	 widget.getChildren():	
Widget	 firstChild	 =	 children[0];	

API Contract Compatibility…

What about this one?

/** Removes the given widgets from this widget’s
 * list of children.
 * @param widgets a non-empty list of widgets
 */
void remove(Widget[] widgets);

changes to

/** Removes the given widgets from this widget’s
 * list of children.
 * @param widgets a list of widgets
 */
void remove(Widget[] widgets);

API Contract Compatibility..

Method pre-conditions

Strengthen Breaks compatibility for
callers

Weaken Contract compatible for
callers

Method post-conditions

Strengthen Contract compatible for
callers

Weaken Breaks compatibility for
callers

For more, see:
http://wiki.eclipse.org/index.php/Evolving_Java-based_APIs
This is just part of the story of contract compatibility as the
compatibility depends on the role of the client code.

Coping with API evolution

What if you need to upgrade part of an API and it
breaks compatibility?

a)  add new API elements alongside the old

 e.g., search() and search2()
b)  deprecate the old “version” of the API

What if the API is to a web service?

Applica'on	 A	

Applica'on	 Programming	 Interface	 (API)	

Client	
Applica'on	 1	

Client	
Applica'on	 2	

Client	
Applica'on	 3	

A	 tough	 problem.	 Can	 version	 the	 URLs	 (REST	
interface)	 used	 to	 access	 the	 service.	 Basically	 no	
great	 solu'on	 yet	 to	 my	 knowledge.	

Issue Trackers

Are critical to teams for tracking and managing
bugs and feature requests

Some examples
§  Bugzilla
§  Jazz/RTC (work items)
§  Jira
§  …

Issue Tracking Systems
n  Manage development requests (also called bug reports,

work items, change requests, change tasks)
q  Defects, e.g. “Using Ctrl-+ to enlarge display fails to add scroll bars when

content exceeds window size”
q  Enhancements (new features), e.g. “Add an option to render page

immediately without waiting CSS to load”
q  boundary between defects and enhancements can be fuzzy

n  Maintain a list of bugs in the software
q  In a database called the bug repository

n  Assign responsibility for each bug, feature, or task
n  Organize the work to be done

q  Life cycle of a bug report

n  Break up the work into “releases” or other deadlines

Issues / Bug Reports / Work Items

Are often the major piece of information in software
development teams

§  Contain the rationale for changes (provide
documentation)

§  Contain the links to related documents
§  Contain information on the people who are

involved
§  ….

31

Anatomy of a bug report

A bug report has the following fields:

n  Title (also called Summary)
n  Description
n  Status
n  Assignee
n  Priority
n  Target Milestone
n  …
n  Comments

33	

Summary
(Title)

Description

https://bugzilla.mozilla.org/page.cgi?id=fields.html

Filing and triaging a bug report

Who can file a bug report?
q  Open bug repository: Any user (usual case in OSS)
q  Closed bug repository: Developers, Testers, QA (usual case in

proprietary software)

Triaging: go through a newly filed bug report to validate
and assign the bug to a developer.

q  Over the first six months of 2010, 19839 reports were filed for
Eclipse: 110 reports/day; ~5 min per bug report: ~9 person-
hours/day spent on triaging

q  Validate: confirm it is a non-duplicate bug report; of 20K bug
reports for Eclipse, 3.4K (17%) were marked invalid, duplicate,
could not be replicated or won’t fix

Life Cycle of a Bug

Based on: http://www.bugzilla.org/
docs/2.16/html/how.html#lifecycle-
image	

UNCONFIRMED

NEW

ASSIGNED

RESOLVED

VERIFIED REOPENED

CLOSED

Possible resolutions:
 Fixed
 Duplicate
 Won’t Fix
 Works for Me
 Invalid

Developer takes
possession

Development is
finished with bug

Ownership
is changed

QA verifies
solution worked

QA not satisfied
with solution

The bug report
is filed

Role of bug report comments

n  Discussion among reporters and developers

n  Might be the only way of communication for a distributed
development team (different locations, time zones)

n  Even when the developers have a mean of communicating
face-to-face, it provides a way of documenting the
history of the development process and the rationale.
q  e.g. why it was decided to fix a bug in a certain way.

Summary of Bug Report Writing
Guidelines (Mozilla)

n  Be precise

n  Be clear - explain it so others can reproduce the bug

n  One bug per report

n  No bug is too trivial to report - small bugs may hide big
bugs

n  Clearly separate fact from speculation

Based on:	

https://developer.mozilla.org/en/Bug_writing_guidelines	

	

Guidelines cont’d

A good summary (title) should
n  quickly and uniquely identify a bug report
n  explain the problem, not your suggested solution
n  Good: "Cancelling a File Copy dialog crashes File Manager”
n  Bad: "Software crashes”
n  Bad: "Browser should work with my web site“

A good description should include
n  Provide enough context
n  Overview, steps to reproduce, actual results, expected results
n  Survey study found most helpful information to be:Steps to

reproduce, stack traces, test cases

T.Zimmerman et al., “What makes a good bug report”, IEEE Transactions on Software
Engineering, vol. 36, No. 5, Sep./Oct. 2010	

	

One bug

Many bugs

Many issues/bugs

Question:
How do you perform a change task?

42

Summary:
Application crash on clicking the SAVE button while creating a new user.

Description:
Application crash on clicking the SAVE button while creating a new user,
hence unable to create a new user in the application

Steps to reproduce:
1)  Logon into the application
2)  Navigate to the Users Menu > New User
3)  Filled all the user information fields
4)  Clicked on ‘Save’ Button
5)  Seen an error page “ORA1090 Exception: Insert values Error…”
6)  See attached logs for more information and also attached screenshot

http://www.softwaretestinghelp.com/sample-bug-report/

Time spend during change tasks

43

20%

22%

16%

13%

13%

16%

Division of labor while performing a
change task

Editing code

Reading code

Navigating
dependencies
Searching for
names
Testing

Other

Andrew J. Ko, Htet Aung, and Brad A. Myers. Eliciting design requirements for
maintenance-oriented ides: a detailed study of corrective and perfective maintenance
tasks. ICSE ’05.

Working on a change task…

code
search"

search "
terms"

change task"
(Jira/Bugzilla/...)"

Integrated Development
Environment (IDE)"

navigation"

…eventually editing

Working on a change task

Problems/Difficulties:
n  Too much code to understand/read all
n  Language mismatch: bug reports (NL) ≠ source code
n  Crosscutting concerns: code is often tangled and scattered
n  …

To localize and edit relevant code…
n  Identify good search terms
n  Take advantage of tool support, e.g. code search, structural

navigation support, breakpoints (debugging)
n  Take advantage of information provided in bug reports, such as

stack traces, and also on news forums, such as stackoverflow

45

n  Evolution is tough but an inherent and important part of
software development

n  Evolutionary changes can be corrective, adaptive and
perfective

n  API contract compatibility ensures that client code still runs as
expected after API evolves

n  Issue Tracking Systems are an integral part of most software
development and writing good bug reports is important

n  Much time on a change task is spend navigating and searching

Summary

