
Methods, Tools and Environments for
Collaborative Development

Alexander Filitz
07-713-928

Department of Informatics
University of Zürich
Zürich, Switzerland

alexander.filitz@uzh.ch

Abstract. Collaborative development in software engineering challenges
the involved partners in different ways. This work gives a brief overview of
methods, tools and environments that are used in common Global Soft-
ware Development (GSD). Each of the described tools try to enhance
collaboration among distributed developers. First, known classification
schemes for tools in GSD are summarized. Second, one scheme is adopted
and an overview on the tools related to this category is given. And the
last part of this work focuses on tools that support specific processes in
software engineering.

1 Introduction

The focus in this work is on methods, tools and environments, that are used
in Global Software Development (GSD). In GSD, developers can be distributed
all over the world working on the same project. Distribution refers to different
kind of distances such as temporal, geographical and socio-cultural distance be-
tween software engineers. [39] characterise temporal distance as a cause of time
zone differences or time shifting work patterns. With low temporal distance
synchronous communication is much simpler to start, but management options
could be reduced as well. Geographical distance is expressed as the effort that
a person needs to visit another person at their site. Low geographical distance
enables more co-located inter-team working, so different teams can have actual
face-to-face meetings. Socio-cultural distance is measured in a directional way
how one person understands another person’s values and normative practices.
Directional means that a person A could be socio-cultural closer to a person B
than B is to A. Therefore software projects are called GSD, when they show
high distance in all three mentioned ways [39].
In a concrete GSD environment, tools beeing used in every process of develop-
ment must consider these special aspects and deal with them [26]. There are
several benefits, described in [48], which GSD brings up:

1. Product Complexity: The complexity of a product can be distributed through
various organizations.



2

2. Access to more work teams and skills.
3. Acquisition: Organizations can aquire chances wherever they appear.
4. Global presence and visibility of distributed organizations.
5. Reduction of time-to-market and costs.
6. Organization scale.
7. Proximity to market through distributed organizations.

In contrast to these clear benefits are challenges and problems in GSD evolv-
ing from the same distance factors mentioned above. [48] categorize them into
five problem areas, namely:

1. No benefits gained by face-to-face meetings, because they are hardly possible
to held.

2. The difficulty of controlling and coordinating the processes in GSD increases.
3. Through the absence of face-to-face meetings evolving problems related to

trust and collaboration.
4. Different cultures and geographically distributed teams result in loss of team

spirit which is gained through co-located teams.
5. Missunderstandings can result in a bad performance of a team.

Section two is about different classification schemes that can be used to
categorize methods, tools and environments in the context of GSD and collabo-
ration. Section three briefly describes tools related to model-based collaboration
and section four addresses tools for specific processes in the software lifecycle.

2 Classification Schemes for Tools

The search for classification schemes did not produce a clear result. [48] have
chosen the ISO/IEC 122071 for software lifecycle processes. This standard defines
three types of processes: primary, supporting and organizational processes which
can be grouped to software specific process and system context processes. After
collecting a survey about tools being used by multinational companies, they
grouped these tools into following three groups related to the ISO/IEC 12207
standard:

1. Tools supporting project processes.
2. Tools supporting software implementation processes.
3. Tools supporting software support processes.

Project processes basically support the project management activities. The
second group includes processes like requirements analysis, architectural design,
detailed design, construction and integration. Support processes include the doc-
umentation, configuration management and review and quality assurance pro-
cesses.

1 http://www.iso.org/iso/catalogue_detail.htm?csnumber=43447



3

Another approach has its origin in the nature of software engineering collab-
oration itself. ”Software engineering collaboration can thus be understood as
artifact-based, or model-based collaboration, where the focus of activity is on
the production of new models, the creation of shared meaning around the mod-
els, and elimination of error and ambiguity within the models [64]”. According
to this point of view, [64] defined four categories for tools used in GSD:

1. Model-based collaboration tools
2. Process support tools
3. Awareness tools
4. Collaboration infrastructure

The first group enables developers to collaborate in different models or rep-
resentations of the software, for example data models or UML diagrams. Process
support tools could be tools which implement specific work processes like Sub-
clipse [58] or most of the available Software Configuration Management (SCM)
tools. Awareness tools are used to e.g. show developers the current activity of
an artifact and who is working on it preventing possible conflicts. Collaboration
infrastructures try to enhance the compatibility between different collaboration
tools with a focus on data and control integration [64].
A third framework was introduced by [41] which describes these four different
groups:

1. Development tools
2. Integrated development environments
3. Software-as-a-service
4. Consulting & services

Development tools assist a specific phase or task of the software process. For
example a document management system, testing tools, quality assessment, per-
formance monitoring and source code management. Further these tools can be
divided into single task tools and single process tools, where single process tools
enhance a distributed software project and single task tools do not support GSD.
Integrated Development Environments (IDE) can be divided into three types:
Stand-alone IDE’s optimized for a single programmer, enhanced IDE’s offering
team features like bug tracking and collaborative IDE’s which support collabo-
ration among software engineers through special functionalities. The latter are
tradionally implemented as client/server applications. The third group Software-
as-a-Service (SaaS) sees software functionality more as a set of distributed ser-
vices that can be coupled and configured at delivery time. In general this leads
to a centralized development environment for distributed teams. Tools in the
fourth category consulting and services support the ongoing development pro-
cesses that can be done by external service providers and consultancies. But this
approach is not an effective solution for GSD [41].
The next section describes tools related to model-based collaboration reaching
from requirement analysis to testing and inspection. The first group from the
classification scheme developed by [64] is used, because most of the tools, meth-
ods and environments found during research fit in this group.



4

3 Model-based Collaboration

3.1 Requirement Analysis

There exist a lot of tools supporting the requirement analysis. Because this work
focuses on tools related to GSD, it does not include tools whithout support for
collaboration among software engineers. The tool eRequirements [29] is a step-
by-step web application for managing requirements. After finishing all steps, it is
possible to automatically generate a requirement specification as PDF. Another
web application is Gatherspace [30] which supports use case creation as well
automated report generation. Additionally to the other tools test case and bug
tracking management is included and can be linked to defined requirements.
Borland CaliberRM [12] uses a central repository to store the requirements and
supports various clients such as web browser, Eclipse, Microsoft Visual Studio
and Microsoft Windows. It supports traceability of requirements to artifacts and
it is possible to visualize that.
IBM Rational DOORS [25] uses a central repository as well to make the require-
ments accessible to the hole team, inlcuding support of simultaneous editing and
viewing of documents. So-called ”power users” access the repository through a
desktop client software with full editing support and other stakeholders access
trough standard web browsers. By supporting the requirement interchange for-
mat suppliers and other partners can contribute their own requirements and so
are fully integrated in the hole process.
IBM RequisitePro [52] is accessed through a web interface. It uses the Microsoft
Word document to edit and communicate requirements. The document is con-
nected via a plugin to the central database and it is also possible to access the
database without this feature. IBM Requirements Composer [20] is part of the
IBM Jazz platform and uses as well a web interface for the starting point in
collaboration. It supports the creation of use case diagrams and includes a re-
port wizard guide to automatically generate your document in many different
file formats. IBM Requirements Composer integrates well with the DOORS and
the RequisitePro platform. In [22] you can find a nice video that shows how a
requirement can be transfered from one to another platform.
RavenFlow [51] features two clients, the express client as a Microsoft Office add-
in product, or the professional desktop client. Collaboration is supported through
a central server and a checkout/checkin system [64]. As we can see collaboration
is often enabled through a central repository or database in interplay with a web
interface.
Current research is active in the process of Requirements Elicitation (RE), be-
cause RE is crucial for the failure prevention in software projects [33]. In this
phase all stakeholders are involved in the discovery of requirements, which is es-
pecially difficult in a GSD context. There is a lack of RE tools with special sup-
port to traditional RE methods e.g. brainstorming and workshops [57]. Thus [57]
developed a spatial hyptertex wiki (ShyWiki) that supports RE methods based
on the KJ method [36], Nominal Group Technique [24] and EasyWinWin [27].
The process starts with defining the initial stakeholders and requirement cat-



5

egories thereafter one or more brainstorming sessions for each category is nec-
essary. The next step is the grouping phase, where redundant information is
deleted. This phase is followed by a priorization voting with values between 1
and 10 on every requirement. The last step is called refinement and includes the
actual requirements modeling [57].
The field of other wikis related to requirements elicitation includes WikiWin-
Win [65], SOP-wiki [23], SmartWiki [37] and SWORE [53]. But all of them have
no sufficient support of brainstorming. For example WikiWinWin is based on
brainstorming but in fact does not support any collaborative interpretation [57].
ART-SCENE [6] is a use case based RE tool that is able to automatically gener-
ate scenarios for further processing. Ongoing work has developed a PDA plugin
to ellaborate new use cases and requirements on site [64] [6]. EGRET [56] is an
Eclipse plugin developed for requirements analysis which uses separated reposi-
tories for different types of stakeholders.
These mentioned tools should not be seen as a complete list of available tools for
requirements analysis rather as overview on what is actually being used or being
researched. But in the end all of these collaborative tools can only achieve good
results if a culture of collaboration in the project is established [56]. In table 1
you can find a short summary of the described tools above.

Table 1. Tools for requirements analysis

Name Group Availability
eRequirements Web Application Free
Gatherspace Web Application Commercial
Borland CaliberRm Desktop Commercial
RavenFlow Desktop Commercial
IBM Rational DOORS Desktop & Web Interface Commercial
IBM RequisitePro Web Interface Commercial
IBM Requirements Composer Web Interface Commercial
ART-SCENE Web Interface Not public
ShyWiki Wiki Not public
WikiWinWin Wiki Not public
SOP-wiki Wiki Not public
SmartWiki Wiki Not public
EGRET Eclipse Plugin Not public

3.2 Architecture Design

Collaboration in architecture design of a software project includes activities that
are not part in the tools focused on architecture design. There is a lot of nego-
tiating between different models and often political decisions are made. Let’s



6

start with yet another IBM tool, the Rational Software Architect [4]. This tool
is built on the Eclipse software framework and can be used as single instance as
well as an Eclipse plugin. It supports modeling with UML and forward, reverse
transformations from model to code. Collaboration is offered through a config-
uration management system that helps to develop the models in parallel. An
almost similar tool is part of the Borland product family, Borland Together [63].
Together also uses the Eclipse technology.
The award-winning Enterprise Architect [3] supports, among other things, full
traceability from requirements to deployment, a powerful document generator
and collaboration through a scalable, team-based repository. ArchStudio [5] is
an Eclipse plugin developed by the University of California, Irvine that is based
on the xADL 2.02 architecture description language which enables architecture
meta-modeling as well. It supports collaboration by versioning the architecture
description files [64]. The same approach of collaboration uses ACMEStudio [1]
which is implemented as an Eclipse plugin. MolhadoArch [43], developed by the
Iowa State University, uses a much more complex version control system where
it is possible to collaborate on the level of single architectural elements.

Recent research studied the modeling and management of Architecture Knowl-
edge (AK). [60] compared some of the methods, models and tools which have
been proposed in the last few years: Architecture Design Decision Support Sys-
tem (ADDSS) [13] is a web application which supports full traceability through
showing links between requirements and design decisions. It also supports auto-
mated report generation of the architecture and the decisions behind it and is
able to visualize the growth of AK over time [60]. The tool Knowledge Archi-
tect [38] makes use of three different clients, the first is a Microsoft Word plugin
for managing AK, the second for quantitative architectural analysis models as
a Microsoft Excel plugin and the third features as an explorer to visualize and
analyze the AK [60]. The central repository server enables collaboration among
distributed software architects. Another web application is the Process-centric
Architecture Knowledge Management Environment (PAKME) [8] which imple-
mented a data model to describe design decisions, alternatives, rationale and
quality attributes [48] [60]. Table 2 shows the mentioned architectural design
tools.

3.3 Detailed Design

Nowadays, UML is the most accepted and distributed modeling standard. This
leads to the fact that most fine design tools are synonymous with UML editors.
We have seen that collaboration in architectural design tools mostly depend on
an underlying SCM [64]. Realtime distributed modeling and collaboration other
than discussion and SCM though is not well supported in actual software. But
research has been active and proposed some tools related to distributed model-
ing. The research tool called CAMEL [14] supports multiple diagram types as

2 http://www.isr.uci.edu/projects/xarchuci/



7

Table 2. Tools for architectural design

Name Group Availability
IBM Rational Software Architect Eclipse Plugin Commercial
ArchStudio Eclipse Plugin Free
ACMEStudio Eclipse Plugin Free
Borland Together Desktop Commercial
Enterprise Architect Desktop Commercial
MolhadoArch Desktop Not public
Knowledge Architect Desktop Not public
ADDSS Web Application Free
PAKME Web Application Not public

well as drawing sketches. The focus is on managing the design meetings and
capturing all the relevant information in a global accessible repository.
GroupUML [9] was developed as a desktop application and has its origin in
research too. The tool supports distributed modeling with UML and includes
a chat environment for discussion. Sysiphus [10] has a lot in common with
GroupUML. The initial prototype was a desktop rich client and developed for
research. It also provides special traceability and awareness mechanisms. A dif-
ferent approach was researched by [15] and their tool SUMLOW. This supports
same-time, same-place UML diagram creation via a shared electronic white-
board [64].
Gliffy [32] is one of the tools that allows collaboration among detailed design
activities. The primary tool is a web application, but it is also possible to use
it as a JIRA [34] plugin. Team-members must be invited to a session so they
can work together on the diagram. Gliffy supports email notifications and a lot
of diagram types additional to UML including flowcharts, SWOT and venn di-
agrams.
IBM’s Rational product family includes Tau [61] which is based on the UML
2.1 standard. Rational Tau includes a automatic document generation, design
simulations and an automated test management. It integrates well with Rational
System Architect [48].
Again this summary focused on tools which enable collaboration between dis-
tributed software engineers. For example a complete list of available UML tools
can be found here [57]. Table 3 summarizes the tools for detailed design. Some
architectural design tools like Enterprise Architect or Borland Together are not
specificely included in this table, although they support detailed design of soft-
ware artifacts.

3.4 Testing and Inspections

Testing and requirements analysis have several things in common, e.g. it is an
iterative process with a lot of communication involved. This leads to an inten-



8

Table 3. Tools for detailed design

Name Group Availability
CAMEL Desktop Not public
GroupUML Desktop Not public
Sysiphus Desktop Not public
SUMLOW Desktop Not public
Gliffy Web Application & JIRA Plugin Commercial
IBM Rational Tau Desktop Commercial

sive collaboration between stakeholders and software engineers. It is common to
offer beta version testing, where new users report bugs and ambiguities to the
development team. This interface is mainly managed through a bug tracking
system [64]. These systems support the recording of initial error reports, pri-
orization of errors and comments on error reports. They are usually accessible
trough common internet browsers. For example BugZilla [11] is a very popular
bug tracking system that is used e.g. by NASA and facebook. A huge comparison
list of such systems can be found here [45].
Distributed testing is e.g. supported by the web application TestLink [62] and the
Firefox Addon Selenium [54]. TestLink offers a hole test creating and tracking
management environment including requirements traceability and report gener-
ation. Selenium allows you to write and run actual tests on the web browser in
many different languages. There is also a possibility to distribute the execution
of a test case to multiple servers, to run tests on a lot of platforms at the same
time.
In the process of reviewing, code inspections have a long tradition because they
can be viewed as the best-practice to improve software quality [48]. The Internet-
Based Inspection System (IBIS) [59] is a tool for distributed inspection teams.
Its goal is to minimize synchronous activities and coordination problems. IBIS
was implemented as a web application and supports email notification as well as
forum discussions [48].
An older web-based solution is Hypercode [47] that allows asynchronous code
inspections for distributed teams and supports email notifications as well. The
IBM tool Rational Quality Manager [40] supports lifecycle quality management
from requirements to test cases and error handling. Collaboration is enabled
through a web 2.0 interface and scales well in large team structures.
The Eclipse plugin Jupiter [35] is a lightweight and flexible review tool, its goal is
to be more efficient at collecting and analyzing code than handmade approaches.
Table 4 summarizes the tools for testing and inspections.



9

Table 4. Tools for testing and inspections

Name Group Availability
BugZilla Web Application Free
TestLink Web Application Free
Selenium Firefox Addon Free
IBIS Web Application Free
Hypercode Web Application Not public
IBM Rational Quality Manager Desktop & Web Interface Commercial
Jupiter Eclipse Plugin Free

4 Process Support Tools

4.1 Tools Supporting Project Processes

GSD or large software projects in general need to follow a clear structure defin-
ing roles for engineers and a sequence of steps for creating the artifacts. After
getting familiar with an organization specific structure for software projects, en-
gineers are able to reduce coordination activities among team members [64].
In activeCollab [2] project work is organized according to pre defined milestones.
It supports planning of activites and tracking of time as well as email integra-
tion and automated invoicing. The tool is implemented as a web application and
installable on your own web server.
Assembla [7] is another web application which key features are an activity stream
of all projects members and integration of many services such as ticketing, chat,
wiki and time tracking. Collaboration is supported through the use of these web
based services and features [48].
Apache developed a build system called Maven [42] that can be used as an
Eclipse plugin as well. It supports automated build processes and integration
with plugins e.g. to generate automated source documentation or to verify test
cases. Rational Team Concert [21] from IBM offers a collaborative development
environment for agile and traditional methods. The tool includes reporting, work
item management, source & change management and build management and it
is part of the IBM Jazz platform. IBM Rational Method Composer [19] is more
a process management platform with a large process library to support the cre-
ation and implementation of processes in software projects.
Microsoft Sharepoint [55] can be used as well for collaborative project man-
agement. It enables its users to easily create web sites to share information and
manage documents and features different kind of communities for example wikis,
ratings or organization browser. Microsoft Project [50] enables unified project
and portofolio management, includes time and business reporting, visual team
planner and integrates well with the Sharepoint solution. Jira [34] is a powerful
tool that comes from a high level of integration through plugins. It supports bug
tracking, agile project development, custombisable workflows and reporting.



10

Nevertheless still office applications are being used such as Microsoft Office or
OpenOffice despite the lack of collaboration possibilities [49]. A wide list and
comparison of project management tools can be found here [46].

Table 5. Tools supporting project processes

Name Group Availability
activeCollab Web Application Commercial
Assembla Web Application Commercial
Maven Desktop & Eclipse Plugin Free
IBM Rational Team Concert Desktop Commercial
IBM Rational Method Composer Desktop Commercial
Microsoft Sharepoint Desktop & Web Application Commercial
Microsoft Project Desktop Commercial
Jira Desktop Commercial

4.2 Tools Supporting Construction Processes

Normally there is no concrete collaboration in the act of programming new pieces
of code. But agile software development has shown that for example pair pro-
graming can improve the quality of a software project. [48] have collected the
following tools which add new features of collaboration in the construction pro-
cess.
CollabVS [18] adds real-time collaboration features to the Microsoft VisualStu-
dio platform. It can display information about online team members and which
part of the code is actually being edited. For example there is a possibility for
collaborative code reviewing without leaving the IDE. Pair programming is sup-
ported by the research tool COPPER [44]. In this tool one can see which part of
the code is edited or viewed by other team members. It also implements features
of groupware systems like communication tools for example instant messaging.
Cola [17] which is based on the Eclipse Communication Framework(ECF) sup-
ports shared and synchronous editing of source code. Here [28] you can see a nice
video how this works. GForge [31] is a web application written in PHP with a
huge toolset and features collaborative source code management, trackers, task
managers, document managers and forums.
Google Code [16] supports, beside being a central code repository, a lot of tools
such as on the web compilers, debuggers and API’s to help developers creating
their software. This web application is free to use for everybody.

5 Conclusions

A lot of tools and environments offer different kind of collaboration in devel-
opment for software engineers, but in the context of GSD there is still need of



11

Table 6. Tools supporting construction processes

Name Group Availability
CollabVS Desktop Not public
COPPER Desktop Not public
Cola Eclipse Plugin Free
GForge Web Application Commercial
Google Code Web Application Commercial

more improvement and research. For example traditional desktop IDE’s could
be better integrated with web-based solutions and support for multi-project col-
laboration is an upcoming problem in large systems-of-systems [64].
As we have seen the majority of the described tools are offering a web based en-
vironment for collaboration. This is possible by new technologies such as AJAX3

which fulfill the earlier lack of user interface interactivity. Despite the growing
acceptance for web based solutions there are the longstanding desktop IDE’s
which will not disappear or being replaced in the future. There will be more
a mixture between web based and desktop tools. For example code editing is
more intuitive a desktop concern and the collaboration is handled pretty well by
common SCM systems [64].
Tools offering a web interface for collaboration need to have a possibility to
work in an offline mode. So collaboration is secured even if the central web
server is not working. Most of the tools include asynchronous communication
like email notifications and threaded forums, but tools with synchronous activ-
ities lack of synchronous communication e.g. both architectural and fine design
tools could make use of this communication since this is natural in co-located
development [48].
Social-networks and user profile integration, that e.g. can be found in Google-
Code, can be used to reduce the cultural differences and its impact. [48] says
that this could be an open gap for researchers and companies to invent more
socio-cultural features for collaboration in development.
Last but not least the interconnection and integration between tools, support-
ing different phases of the software lifecycle, is really low. Something like the
perfect ”power-tool” supporting all the different processes does not exist and
it is difficult to select appropriate tools for each development phase. The IBM
Rational Jazz4 platform tries to connect and integrate the included tools, but
this leads to proprietary data models which could have an effect on sustainable
collaboration. That is the reason why [48] advises to use solutions like Eclipse
and their plugin system to avoid single vendor-driven tool integration and their
possible bad impact on successfull collaboration [48].

3 http://en.wikipedia.org/wiki/Ajax_(programming)
4 http://www-01.ibm.com/software/rational/jazz/



12

References

1. ACMEStudio. http://www.cs.cmu.edu/~acme/AcmeStudio/index.html.
2. activeCollab. http://www.activecollab.com/.
3. Enterprise Architect. http://www.sparxsystems.com.au/products/ea/index.

html.
4. IBM Rational Software Architect. http://www-142.ibm.com/software/

products/de/de/swarchitect-websphere/.
5. ArchStudio. http://www.isr.uci.edu/projects/archstudio/.
6. ART-SCENE. http://hcid.soi.city.ac.uk/research/Artsceneindex.html.
7. Assembla. http://www.assembla.com/.
8. M.A. Babar, X. Wang, and I. Gorton. Pakme: A tool for capturing and using

architecture design knowledge. In 9th International Multitopic Conference, IEEE
INMIC 2005, pages 1–6, December 2005.

9. N. Boulila. Group support for distributed collaborative concurrent software mod-
eling. In Automated Software Engineering, 2004. Proceedings. 19th International
Conference on, September 2004.

10. Bernd Bruegge, Allen H. Dutoit, and Timo Wolf. Sysiphus: Enabling informal
collaboration in global software development. In Global Software Engineering,
2006. ICGSE ’06. International Conference on, October 2006.

11. BugZilla. http://www.bugzilla.org/.
12. Borland CaliberRM. http://www.borland.com/us/products/caliber/index.

html.
13. Rafael Capilla, Francisco Nava, Sandra Pérez, and Juan C. Due nas. A web-based

tool for managing architectural design decisions. SIGSOFT Softw. Eng. Notes,
31(5), 2006.

14. M. Cataldo, C. Shelton, Yongjoon Choi, Yun-Yin Huang, V. Ramesh, D. Saini,
and Liang-Yun Wang. Camel: A tool for collaborative distributed software design.
In Global Software Engineering, 2009. ICGSE 2009. Fourth IEEE International
Conference on, July 2009.

15. Qi Chen, J. Grundy, and J. Hosking. An e-whiteboard application to support early
design-stage sketching of uml diagrams. In Human Centric Computing Languages
and Environments, 2003. Proceedings. 2003 IEEE Symposium on, October 2003.

16. Google Code. http://code.google.com/.
17. Cola. http://code.google.com/p/cola-rtse/.
18. CollabVs. http://research.microsoft.com/en-us/projects/collabvs/.
19. IBM Rational Method Composer. http://www-01.ibm.com/software/awdtools/

rmc/index.html.
20. IBM Requirements Composer. http://www-01.ibm.com/software/awdtools/

rrc/.
21. IBM Rational Team Concert. http://www-01.ibm.com/software/awdtools/rtc/.
22. Video creating a requirement in Rational Requirements Composer and transfer-

ring it to RequisitePro for management. http://www.ibm.com/developerworks/
offers/lp/demos/summary/r-rrcreqpro.html.

23. B. Decker, E. Ras, J. Rech, P. Jaubert, and M. Rieth. Wiki-based stakeholder
participation in requirements engineering. Software, IEEE, 24(2):28–35, March-
April 2007.

24. A. Delbecq and A. Van de Ven. A group process model for problem identification
and program planning. Journal of Applied Behavioral Science, 18(2):466–492, 1971.

25. IBM Rational DOORS. http://www-01.ibm.com/software/awdtools/doors/.



13

26. Kevin Dullemond and Ben van Gameren. Technological support for distributed
agile development. Master’s thesis, Delf University of Technology, 2009.

27. EasyWinWin. http://csse.usc.edu/csse/research/easy_win_win/.
28. Cola: Real-Time Shared Editing. http://www.vimeo.com/1195398?pg=embed\

&sec=1195398.
29. eRequirements. http://www.erequirements.com/app.
30. Gatherspace. http://www.gatherspace.com/index.html.
31. GForge. http://gforgegroup.com/index.php.
32. Gliffy. http://www.gliffy.com/.
33. H.F. Hofmann and F. Lehner. Requirements engineering as a success factor in

software projects. Software, IEEE, pages 58–66, 2001.
34. JIRA. http://www.atlassian.com/software/jira/.
35. Jupiter. http://code.google.com/p/jupiter-eclipse-plugin/.
36. J. Kawakita. The original kj-method. Technical report, Kawakita Research Insti-

tute, Tokyo, 1982.
37. E. Knauss, O. Brill, I. Kitzmann, and T. Flohr. Smartwiki: Support for high-

quality requirements engineering in a collaborative setting. In Wikis for Software
Engineering, 2009. WIKIS4SE ’09. ICSE Workshop on, 2009.

38. Peng Liang, Anton Jansen, and Paris Avgeriou. Knowledge architect: A tool suite
for managing software architecture knowledge. Technical report, University of
Groningen, Software Engineering and Architecture (SEARCH) Group, 2009.

39. Brian Lings, Bjrn Lundell, Pr J. Agerfalk, and Brian Fitzgerald. A reference
model for successful distributed development of software systems. In International
Conference on Global Software Engineering. IEEE, 2007.

40. IBM Rational Quality Manager. http://sourceforge.net/projects/ibis/.
41. R. Martignoni. Global sourcing of software development - a review of tools and

services. In Global Software Engineering, 2009. ICGSE 2009. Fourth IEEE Inter-
national Conference on, July 2009.

42. Maven. http://maven.apache.org/.
43. MolhadoArch. http://home.eng.iastate.edu/~tien/molhado/molhado_arch.

html.
44. H. Natsu, J. Favela, A.L. Moran, D. Decouchant, and A.M. Martinez-Enriquez.

Distributed pair programming on the web. In Computer Science, 2003. ENC 2003.
Proceedings of the Fourth Mexican International Conference on, September 2003.

45. Comparison of issue-tracking systems. http://en.wikipedia.org/wiki/
Comparison_of_issue_tracking_systems.

46. Comparison of project management software. http://en.wikipedia.org/wiki/
Comparison_of_project_management_software.

47. D.E. Perry, A. Porter, M.W. Wade, L.G. Votta, and J. Perpich. Reducing in-
spection interval in large-scale software development. Software Engineering, IEEE
Transactions on, 28(7):695 – 705, July 2002.

48. Javier Portillo-Rodriguez, Aurora Vizcaino, Christof Ebert, and Mario Piattini.
Tools to support global software development processes: A survey. In International
Conference on Global Software Engineering. IEEE, 2010.

49. C.R. Prause, R. Reiners, and S. Dencheva. Empirical study of tool support in
highly distributed research projects. In Global Software Engineering (ICGSE),
2010 5th IEEE International Conference on, 2010.

50. Microsoft Project. http://www.microsoft.com/project/en/us/default.aspx.
51. RavenFlow. http://www.ravenflow.com/products/.
52. IBM Rational RequisitePro. http://www-01.ibm.com/software/awdtools/

reqpro/.



14

53. T. Riechert and T. Berger. Leveraging semantic data wikis for distributed require-
ments elicitation. In Wikis for Software Engineering, 2009. WIKIS4SE ’09. ICSE
Workshop on, 2009.

54. Selenium. http://seleniumhq.org/.
55. Microsoft Sharepoint. http://sharepoint.microsoft.com/en-us/Pages/

default.aspx.
56. Vibha Sinha, Bikram Sengupta, and Satish Chandra. Enabling collaboration in

distributed requirements management. Software, IEEE, 23(5):52–61, September-
October 2006.

57. Carlos Solis and Nour Ali. Distributed requirements elicitation using a spatial
hypertext wiki. In Global Software Engineering (ICGSE), 2010 5th IEEE Interna-
tional Conference on, pages 237–246, 2010.

58. Subclipse. http://subclipse.tigris.org/.
59. Internet-Based Inspection System. http://sourceforge.net/projects/ibis/.
60. Antony Tang, Paris Avgeriou, Anton Jansen, Rafael Capilla, and Muhammad Ali

Babar. A comparative study of architecture knowledge management tools. Journal
of Systems and Software, 83(3):352 – 370, 2010.

61. IBM Rational Tau. http://www-01.ibm.com/software/awdtools/tau/.
62. TestLink. http://www.teamst.org/.
63. Borland Together. http://www.borland.com/us/products/together/index.

html.
64. Jim Whitehead. Collaboration in software engineering: A roadmap. In Interna-

tional Conference on Software Engineering. IEEE, 2007.
65. Da Yang, Di Wu, S. Koolmanojwong, A. Winsor Brown, and B.W. Boehm. Wiki-

winwin: A wiki based system for collaborative requirements negotiation. In Hawaii
International Conference on System Sciences, Proceedings of the 41st Annual, 2008.


