
Decomposing Contracts
A Formalism for Arbitrage Argumentations

Steffen Schuldenzucker
Born 1988-09-23 in Bonn, Germany

2014-09-05

Master’s Thesis Mathematics

Advisor: Prof. Dr. Stefan Geschke

Hausdorff Center for Mathematics

Mathematisch-Naturwissenschaftliche Fakultät der

Rheinischen Friedrich-Wilhelms-Universität Bonn

CONTENTS 1

Contents

Contents 1

1 Introduction 3
1.1 Example arbitrage argument: Put-call parity 5
1.2 Introduction to the formal framework used 7

2 Observables – Formalizing market data 11
2.1 Higher lifts . 14
2.2 Boolean observables as market conditions 18
2.3 Quantifying over time . 21
2.4 Defining time . 24

2.4.1 Earlier and first occurrences of an event 25

3 Contracts 27
3.1 The present value relation . 31

3.1.1 Logical axioms . 32
3.1.2 zero, and, give . 33
3.1.3 one . 34
3.1.4 scale . 35
3.1.5 or . 37
3.1.6 when′ . 38
3.1.7 anytime . 41
3.1.8 read′ . 44

3.2 Interim summary . 47
3.3 More about the structure of contracts 47

3.3.1 Pricing lemma . 48
3.4 Recursive equations for when′ and anytime 49

4 Applications 53
4.1 Prices . 53
4.2 Interest . 54
4.3 Exchange Rates . 59
4.4 Forwards . 60
4.5 European options, put-call parity 61
4.6 American options, Merton’s theorem 62
4.7 A definition for dividend-free shares 67

5 A probabilistic model for LPT 69
5.1 The primitive types as measurable spaces 69
5.2 Observables as stochastic processes 70

5.2.1 A few notes on atomic measurable spaces 71
5.2.2 The monad of random variables 73
5.2.3 From random variables to stochastic processes 77
5.2.4 More about maps on RV X 79
5.2.5 Expectation . 81

5.3 Modeling contracts by their present value 85
5.3.1 The time-local primitives 86

2 CONTENTS

5.3.2 when′ and anytime . 87

6 Conclusion and outlook 91
6.1 Future work . 91

A Lambda notation and Haskell for many-sorted first-order logic 95
A.1 MSL and lambda notation . 96

A.1.1 MSL . 96
A.1.2 Modification Operations 101
A.1.3 Closure Emulation . 101
A.1.4 Lifted relations . 103

A.2 Translating Haskell programs to MSL 104
A.2.1 Types . 105
A.2.2 Algebraic Data Types . 107
A.2.3 Functions . 111
A.2.4 Adding higher-order functions 114
A.2.5 Type Classes . 114
A.2.6 Effects of functions on models 115

A.3 Common data types and functions 116
A.3.1 Well-known ADTs and functions 116
A.3.2 Numeric types . 117
A.3.3 Time . 119

B Some proofs of monadic lifting properties 121

C Some proofs about atomic measurable spaces 125

D Building measurable spaces for ADTs via species 127
D.1 Modeling algebraic data types . 134
D.2 More on species andM . 135

D.2.1 Lifting measurable functions 136

References 137

1 Introduction 3

1 Introduction
Arbitrage arguments are statements about the prices of derivatives in perfect
financial markets which are based purely on the assumption that no market
participant can make profit without exposing herself to risk.1 Hence, arbitrage
arguments can be made without any stochastic assumptions. Examples for
arbitrage arguments are forward prices of dividend-free shares, the put-call-
parity and Merton’s theorem about American options.2

A “perfect” financial market is here defined by the following properties:

• All market participants have equal access to the market.

• All market participants have equal access to information.

• No market participant has transaction costs.

• All assets are perfectly liquid, i.e. can be acquired in arbitrary amounts
at any time.

• Prices are driven purely by the principles of supply and demand.

• No time is required for communication.

An important consequence, and an assumption in the following, is that there is
no BID-ASK spread: Any contract3 which is traded can be bought and sold for
the same price, making the concept of “the” price reasonable in the first place.
A special case are interest rates: If an interest rate is viewed as the price of
future money, it follows that the rate for borrowing and the rate for investing
money are equal and the same for everyone.

A traditionally central concept is the “present value” of a contract. The
idea is that there exists a certain “fair price” which incorporates any possible
future payments with their probabilities. It is the price a risk-neutral trader
“should” be willing to pay. It is then assumed that this price is in fact attained
by the market. Computing present values is a difficult task and usually done
using heavy distributional assumptions in a stochastic model. For example, the
binomial model assumes that the price of a share can only increase or decrease
by a certain factor in each time step while the Black-Scholes-Merton model
assumes that a share price behaves basically like a Brownian motion.4

What is common to all these models is that they should not allow arbitrage
in order to be elementary well-formed: If one can show that a contract y is
“preferable” to a contract x “in arbitrage”, i.e. that one can arrive at a risk-free
position from buying x and selling y, then the assigned present value of x should
be less or equal to that of y.

1Such an operation is called arbitrage and consequently the lack of arbitrage is called no-
arbitrage condition. I use the term “arbitrage” only for deterministic arbitrage, as opposed
to statistical arbitrage where a profit might be only made in expectation.

2Knowledge of finance is not required to understand this thesis. All concepts will be intro-
duced as required, however for some, I only give formal definitions. All arbitrage statements
in this thesis are taken from [1], the first pages of which can also serve as an introduction to
financial derivatives.

3I use the terms “financial derivative”, “asset” and “contract” interchangeably, so a con-
tract can really be anything finance is concerned with.

4The two models can be found in [1] and [2].

4 1 Introduction

My approach is to define not another way to compute present values, but
rather the “preferable in arbitrage” relation, axiomatically: While a present
value states that the price of a financial asset should be equal to that present
value, the present value relation (“preferable in arbitrage”, a partial ordering
of contracts) only states that prices should reflect the relation. So the latter
notion is weaker and hence allows more statements to be made and/or use
weaker assumptions. At the same time, it is a true generalization: Whenever
it can be shown by means of arbitrage arguments that a contract has a present
value, this can be expressed by saying that the contract is both preferable to
the contract that just pays the present value (a certain amount of money) and
vice versa. However, contracts for which no present value is known in general or
for which it might be even known that there cannot be a present value can still
be compared. Relatedly, I will show inside the framework that if two contracts
that have a price5 are related by a present value relation (one is preferable to
the other), then prices must reflect this (one must be greater or equal to the
other).

My thesis establishes the following:

1. A framework in many-sorted (or “typed”) first-order logic (MSL) to define
financial contracts as well as market data and market conditions formally,
by introducing fundamental “building blocks” or “combinators” (sections
2 and 3).
The approach is then always holistic in that not only certain classes of
derivatives such as options or swaps are supported, but a general mecha-
nism is provided describing the behavior of the building blocks.

2. A relation “⪯·” where x ⪯b y should mean that “y is preferable to x in
arbitrage under conditions b” and axioms which relate the different combi-
nators (section 3.1). These axioms will reflect the fundamental arguments
in arbitrage reasoning. I call the theory resulting from this and the previ-
ous point LPT , the Logic Portfolio Theory of arbitrage-free markets.
LPT is split into three layers: Primitive data types and operations
(LPTPrim, discussed in this section and appendix A.3), observables as
a means to express market data (LPTObs, section 2) and the theory of
contracts itself (section 3).

3. Evidence that the framework does indeed capture the informal notion of
arbitrage arguments by proving some well-known statements inside the
theory (section 4).

4. The proof that stochastic market models are indeed models of the theory
as long as certain restrictions are made (section 5). – A generalized version
of the binomial model[2, p. 249] is supported while a Wiener process in
continuous time[2, p. 271] is not yet.

My work is based on two papers by Simon Peyton Jones and Jean-Marc Eber
[3, 4] in which they develop the formal system of observables and contracts as a
programming library in the Haskell [5] language. Such a library is essentially a

5I use the terms “present value” and “price” interchangeably here. That is because a
present value of a traded asset that can be computed by arbitrage arguments only must be
equal to the price. – Otherwise, there is an arbitrage opportunity.

1.1 Example arbitrage argument: Put-call parity 5

formal language and I was able to re-use the approach from [3] with some small
modifications.6

The aim of the two papers is computing present values while I aim for the
relations between contracts. Peyton Jones’ and Eber’s work does not provide
any axioms describing the behavior of the primitives introduced. Peyton Jones
and Eber do mention that one can derive rules from their provided stochastic
interpretation, but as such rules must be based on a certain class of market
models, they should not be called pure “arbitrage arguments”.

Haskell is a functional language and hence, following Haskell’s style, my
formalism heavily relies on functions. I introduce some syntactic modifications
to MSL which I call lambda notation to denote functional constructions easily
while staying first-order. I give a short overview of my MSL variant in section 1.2
below and the full definition can be found in appendix A.1.1.

As a by-product, I provide a way to translate a Haskell program into MSL
(section A.2) as long as certain restrictions are made as well as a way to model
Haskell’s algebraic data types (ADTs) in a probabilistic setting (appendix D).

This thesis should be viewed primarily as an exercise in design: I show
how a collection of common sense concepts and arguments can be be condensed
into a solid and abstract mathematical framework without imposing a particular
mathematical interpretation on what – in this case – a financial contract “really”
is.
Remark 1.1 (A note on style). In the parts of the sections 2 and 3, where the
LPT theory is constructed, I first introduce new primitives and/or axioms, then
prove some lemmas about them. That is, axioms are introduced together with
their motivation and consequences instead of all in one place.

Axioms are marked by an asterisk, e.g.

return ◦ f = fmap f ◦ return (*Mo1)
⊤ ̸= ⊥ (*2.1)

I will now continue by giving an example of an arbitrage argument, then an
introduction to the formal framework used in this thesis.

1.1 Example arbitrage argument: Put-call parity
To give an impression of what, and why, we want to formalize, consider the
put-call-parity [1, sec. 10.4] as a non-trivial example of an arbitrage argument.

We first need to define what a “put” and a “call” are:

Definition 1.2 (European Options, informal). Let S be a dividend-free share7

and let K ∈ R+. Let T be a point in time. Assume that all amounts are paid
in a certain currency, say USD.

A European call option is the derivative contract that grants the holder the
right, but not the obligation, to buy S for price K at time T (which is assumed

6Knowledge of Haskell is not required for being able to read this thesis, except for the
Haskell-centered sections A.2 and D, of course. However, those familiar with Haskell will rec-
ognize well-known design patterns, most prominently that of a monad. A very brief overview
of the core ideas of the language can be found at the beginning of section A.2.

7which is – of course – a company share which is known to not pay a dividend in the
relevant time period.

6 1.1 Example arbitrage argument: Put-call parity

to lie in the future). A European put option is the contract that grants the
holder the right to sell S for K instead.

It is clear that European options must have non-negative value because it is
not possible to make a loss from them. It is further easy to see that the payout
of a European call option at time T is

[PT (S)−K]
+

where PT (S) is the share price of S at time T and where [x]
+

= max (0, x).
Likewise, the payout of the respective put option at time T is

[K − PT (S)]
+
.

Theorem 1.3 (Put-call parity, informal). Let S, K and T be as above and fix
a point in time t ≤ T . Let r be the risk-free interest rate.8 Let C and P be the
prices of the European call- and put option, respectively, and let Pt(S) be the
price of S at time t. Then the following equality holds at time t:

C + (1 + r)
−(T−t) ·K = P + Pt(S)

Proof. I give two proofs here. Both are essentially taken from [1, sec. 10.4].
For the first, note that the LHS is the cost of receiving at time T

[PT (S)−K]
+
+K = max (PT (S),K)

by the payout of the call as discussed above and the fact that (1 + r)
−(T−t) ·K

invested at rate r over a time of T − t yields (1 + r)
T−t · (1 + r)

−(T−t) ·K = K.
Likewise, the RHS is the cost of receiving at time T

[K − PT (S)]
+
+ PT (S) = max (K,PT (S)).

As the two payouts are equal, the prices must be equal as well.
As a second proof, I give an explicit construction of an arbitrage portfolio

for the “<” case. The “>” case is symmetric. So assume that we have “<” in
the above formula, i.e.

C + (1 + r)
−(T−t) ·K − P − Pt(S) < 0.

Then the portfolio from figure 1 leads to immediate profit (“free lunch”). As
the balance at time T is 0, it does not expose the trader to risk. Hence, this is
arbitrage.

There are now a few questions that should be asked about the preceding
proof:

1. What is a “dividend-free share“, after all? What are the properties which
are used implicitly in this proof?
In the arbitrage portfolio, it is assumed that the trader executing the
strategy owns S or, alternatively, that shares can be “borrowed”, so it is

8I.e. the rate at which money can both be invested and borrowed while being sure to get
the money back. Existence of such a rate is an assumption (cf. above).

1.2 Introduction to the formal framework used 7

Figure 1 Arbitrage portfolio for theorem 1.3
Action at t Balance at t Balance at T
Buy the call −C [PT (S)−K]

+

Invest (1 + r)
−(T−t) ·K −(1 + r)

−(T−t) ·K K

Sell the put P [K − PT (S)]
+

Sell the share, buy back at T Pt(S)− S S − PT (S)

Total > 0 dollars −S +S

always possible to short sell. The trader would then get back the share,
and there is no dividend she could miss.
However, it needs to be known that it is in fact desirable to get S back.
For example, if it is known at time t that S will reach a strong peak
between t and T , then turn worthless at time T , figure 1 is not an arbitrage
portfolio. Of course, in this case the price of S would already adjust at
time t to reflect the future price change. Relatedly, the portfolio only lists
the balances at time t and T , but does not mention the opportunity to
sell in between which the trader lets go in order to execute the strategy.
The point is that S cannot be replaced by any other contract here. At the
same time, it is clear that the put-call parity works for other underlyings
as well, such as foreign currencies if one equates for the foreign interest
rate. One can also essentially replace S by an interest rate to receive the
cap-floor parity [1, sec. 28.2].

2. Is the fixed risk-free interest rate r actually required?
This is actually three related points: First, there is not in general a single
“natural” risk-free rate that should be used for r [1, sec. 4.1]. Second, r
does not depend on T − t here, which is not realistic.9 Third, r cannot
change over time here, which is not realistic either.

3. What is then the core of the argument after all? Are there any other
assumptions made implicitly?

I will show the put-call parity formally in section 4.5. This will lead to a
characterization of dividend-free shares (section 4.7) and we will see that all
questions from the second point can be answered “not required”. I will discuss
interest rates formally in section 4.2. For the third point, the axiomatic approach
guarantees that all assumptions are mentioned explicitly.

Note that none these are novel! Each of the above three points can be
resolved by careful inspection of the above proof. My approach however makes
it easy keep the statement and the proof as general as possible.

1.2 Introduction to the formal framework used
The following section is a summary of appendix A, which should be consulted
for details.

As mentioned above, I use many-sorted first-order logic (MSL) as the formal
framework in which all argumentation happens. MSL is essentially the same as

9Cf. “Term structure of interest rates” in [1].

8 1.2 Introduction to the formal framework used

regular first-order logic where every object or symbol has an associated type and
types must match when symbols are combined. In order to support a functional
style, I define a custom way to denote functions which I call lambda notation.
Formulas, proofs and models then find an exact analog to first-order logic.

Notation 1.4.

1. A type is either a primitive type (or sort) like Z or Obs Bool (constants
and variables), a functional type like Z → Z → Z (functional symbols,
lambda terms), or a relational type like R (Z,Z) (relational symbols).

2. In the previous point, Obs is a type constructor, i.e. for any sort a, there
is a sort Obs a. This is just an ordinary sort name, defined by string
concatenation, without any special meaning. However, a certain set of
functions will be defined on all sorts of form Obs a.

3. Z, R etc. are just names of sorts here. Their subset relations are modeled
explicitly (cf. section A.3.2), but are treated intuitively.

4. I write t :: α to state that t has type α. The framework assumes that
everything has a type attached, but in practice, I usually leave the types
out.

5. Application is denoted by juxtaposition, i.e. I write f x y instead of f(x, y).

6. Application is done one argument after the other: f x y in fact means
(f x) y: Applying less arguments than the function takes yields a new
function in one argument less.

7. I write λx :: s. t for the function in one argument x of type s that is defined
by the term t (which may contain x). Functions in several arguments can
be defined by λx1. λ x2. . . . λ xn. t or short by λx1 . . . xn. t.

When defining functions I also write

f x y := . . .

instead of f := λx y.

8. Application of a lambda term to a term is done by replacing the parameter
by the argument, i.e. (λx. t) t′ := t[x/t′].

9. A function an argument of which is itself of functional type is called
higher-order. This is not actually allowed, but one can emulate the be-
havior of higher-order functions by a technique I call closure emulation
(section A.1.3).
Higher-order functions are different from regular first-order functions be-
cause MSL is a first-order logic: Functions are not objects, so functions
cannot actually appear as parameters. One is merely able to talk about
lambda terms, which is what the closure emulation schema does in a sys-
tematic way.

1.2 Introduction to the formal framework used 9

Example 1.5. Now the following is meaningful:10

Given sorts Z and R and symbols (−)Z :: Z → Z → Z, (−)R :: R → R → R,
floor :: R→ Z and asReal :: Z→ R, the following are functional terms (partly
using my short notation):

• t1 := λx y. (−)Z (x :: Z) (y :: Z)

• t2 := λ (y :: R) (x :: R). (−)R x y

• t3 := λx. (−)R (asReal (floor x)) x

• t4 := λx. (+)R (t3 x) x

The types are t1 :: Z→ Z→ Z, t2 :: R→ R→ R, t3 :: R→ R and t4 :: R→ R.
From the names of the functions, one would expect that floor and asReal

come with axioms such that t4 x = x for any x. – Or short t4 = id.

Notation 1.6 (Polymorphism). One often wants to define the same function
for many different types. For example, the function

square := λx. x · x

makes sense for x :: Z, x :: R etc. This can be solved by implicitly thinking “(·)”
to stand for many different function symbols (·)Z :: Z → Z → Z, (·)R :: R →
R→ R etc. and receiving many functions squareZ, squareR etc. – which are all
called just square of course. In particular, the above functions (−)Z etc. would
just be written (−).

If the types are arbitrary, I use lower-case type variables as in

return :: a→ Obs a

from section 2: For any a, there is (a sort Obs a and) a function returna, but
they are all called just return.

Example 1.7 (Higher-order function application). Consider the higher-order
function

fmap :: (a→ b)→ Obs a→ Obs b

from section 2. For the moment, it is only important that fmap accepts a
function in one argument for any combination of argument- and result types.

Then, whenever a is a numeric type, the following is well-defined:

λ (i :: a) (io :: Obs a). fmap (λ j. i+ j) io

Note how here, (+) :: a → a → a and hence (λ j. i+ j) :: a → a. So the
expression fits the type of fmap with b = a.
Remark 1.8 (Closures). The defining term of a lambda expression which is
passed as an argument to a higher-order function may contain variables which
are not arguments of that lambda expression, but only in scope outside. The
lambda is then called a closure storing the variables in question as closure con-
text. For example, in the above example, the variable i would be closure context:
It occurs in (λ j. i+ j), but is only in scope outside: i is used to construct the
function passed to fmap.

10This example is the same as A.10.

10 1.2 Introduction to the formal framework used

As indicated by the name, care is taken to have the closure emulation schema
support closures. Closures are also a core feature of functional programming
languages like Haskell.

In the following, I assume that the basic data types and functions such as
R, Z, N, Bool, (+) etc. as well as Time and TimeDiff types are given. These
common data types and functions constitute the first part LPTPrim of my theory.
Details can be found in appendix A.3.

2 Observables – Formalizing market data 11

2 Observables – Formalizing market data
This section defines the theory LPTObs, the theory of observables.

Objects of type Obs a, i.e. observables are “sources of market data” or “things
that can change over time” of type a in the broadest sense. Conceptually, ob-
servables must be visible to everyone in the market and at each point in time,
all market participants must agree on the value of an observable. – Hence the
name. For example, insider information would not be observable.

Observables will be the only way the framework is going to be able to talk
about things that can change, depend on conditions of the market etc. The
other main component of the framework, contracts, do not change over time
(but can access observables to read these pieces of data from the market).

The language of observables is crafted such they support any computation
on market data as well as accessing its history, but not looking into the future.

• Most obviously, observables will model the prices of assets. These observ-
ables will have type Obs R or Obs R+.

• Any other piece of information, except for constants, that may occur in a
contract must be given by an observable. For example, if one would want
to formally analyze an insurance against drought in Peru, there should be
a metric for that as an observable.

• A condition that may be true or false at any given point in time is of type
Obs Bool.

• A special observable, now :: Obs Time, contains the current time.

• One can define a contract that “reads” an observable at acquisition and
uses the resulting value by the read′ and “;” operations defined section 3
below, thus making contracts “dynamic”. Whenever payments depend on
market data, e.g. variable interest yields, or sales of shares for their current
price, these must be given by an observable.

The concept of an observable is taken from [3], the underlying concept of
a monad came originally from category theory and has become a well known
design pattern in functional programming.11 In comparison to [3], I added the
ever and always primitives from section 2.3 as well as all axioms, of course.

An observable of type Obs a is to be seen as an abstract description of a
time-varying value. A concrete representation can be, for example:

• The set of functions Time→ a.

• The stochastic processes on a with respect to a certain filtration and a
certain sample space. This should be the canonical model to keep in mind
when discussing observables. One receives the trajectory model as a special
case where the sample space is trivial, i.e. everything is deterministic.
Peyton Jones and Eber use this interpretation in their paper.

11For example, Haskell’s I/O system [5, sec. 7] is implemented as a monad which is con-
sequently called IO. A classic paper on monads in functional programming is [6]. For a
category-theoretic viewpoint, cf. remark 2.1. I define below what a monad is.

12 2 Observables – Formalizing market data

Figure 2 Primitives for observables
return :: a→ Obs a

return x has the value x at any point in time. Peyton Jones and Eber[3]
write konst for return, but return is the standard name.

fmap :: (a→ b)→ Obs a→ Obs b
fmap f o is the observable o with the function f applied to each value, at
any point in time.

join :: Obs (Obs a)→ Obs a
join o reads, at any point in time, the observable o to receive a new
observable of type Obs a, then reads that as well to receive a value of
type a. join is listed here for its theoretical elegance and brevity. Most
expressions use its equivalent cousin “≫=” (bind, defined below) instead.

now :: Obs Time
The current time.

• Sometimes it helps to imagine an observable as a group of small intercon-
nected computers (or components of a piece of software) that receive any
relevant market data over a network line. A component can store data in
a limited way and perform calculations on it as well as pass its result on
to superordinate components.

• Finally, the underlying concept of a monad can be thought as a form
of computation. In the case of observables, a “command” would then
mean accessing a certain piece of market data or its history or perform a
calculation on the fetched values.

Fig. 2 lists primitive operations on observables I assume to exist with their
desired meaning. This works in many-sorted first-order logic by adding for any
sort a a new sort Obs a and function symbols returna and joina of the cor-
responding types. For fmap, being higher order, one needs to add as many
symbols as it it permits first arguments, i.e. one needs to execute the corre-
sponding closure emulation schema (cf. section A.1.3). For now, one only needs
to add a single constant symbol. Section A.1.2 provides a systematic approach
to such modification operations.

In the following, I will introduce axioms by which the primitives should be
connected.

fmap should “just” apply a function inside an observable. Hence, one expects
the following functor laws to hold for any sorts a, b, c and g :: a → b and
f :: b→ c:

fmap id = id :: Obs a→ Obs a (*Fu1)
fmap (f ◦ g) = fmap f ◦ fmap g :: Obs a→ Obs c (*Fu2)

Here, id = λx. x. Define further

(≫=) :: Obs a→ (a→ Obs b)→ Obs b
o≫= f := join (fmap f o).

2 Observables – Formalizing market data 13

The intuitive meaning of “≫=” is as follows: o≫= f reads, at any point in time,
the observable o to receive a value x :: a. The function f is applied to x to
receive a new observable f x and that observable is read again to receive the
result. Examples for how “≫=” is used can be found in the following sections.

The following rules (which are not axioms here) are easily justified from the
intuition of observables: For o :: Obs a, x :: a, f :: a→ Obs b and g :: b→ Obs c
one expects the following:

o≫= return = o :: Obs a (Mo1’)
return x≫= f = f x :: Obs b (Mo2’)
(o≫= f)≫= g = o≫= (λx. f x≫= g) :: Obs c (Mo3’)

join can be expressed in terms of “≫=”: If p :: Obs (Obs a), consider p≫=
idObs a. We have p≫= id = join (fmap id p) = join (id p) = join p via
(*Fu1). It is not hard to show that the laws (Mo1’)–(Mo3’) are equivalent
to the following monad laws which I chose as axioms due to their theoretical
simplicity. For any sorts a and b and f :: a→ b, the following should hold:

return ◦ f = fmap f ◦ return :: a→ Obs b (*Mo1)
join ◦ fmap (fmap f) = fmap f ◦ join (*Mo2)

:: (Obs (Obs a))→ Obs b
join ◦ fmap join = join ◦ join (*Mo3)

:: Obs (Obs (Obs a))→ Obs a
join ◦ return = id :: Obs a→ Obs a (*Mo4)

join ◦ fmap return = id :: Obs a→ Obs a (*Mo5)

Remark 2.1 (Connection to category theory). As the names suggest, axioms
(*Fu1) and (*Fu2) state that (Obs, fmap) should form a functor and (*Mo1)–
(*Mo5) state that (Obs, fmap, return, join) should form a monad.12

To be precise, if A is a model of the here-described theory LPTObs, then
one can consider the category C1A formed by the interpretations of sorts (as
objects) and functional terms in a single parameter13 (as morphisms) and where
composition is given by chaining of lambda terms. This is a subcategory of CA
from remark A.14.

Now consider the assignment ObsA that maps any object aA to (Obs a)A

and any morphism (f :: a→ b)
A to (fmap f)A . The axioms (*Fu1) and (*Fu2)

state that ObsA should be a functor from C1A to itself. Traditionally, one would
write here ObsA f instead of fmap f .

For the second set of axioms, note how returnaA : aA → ObsA aA and
joinaA : ObsA (ObsA aA)→ ObsA aA are collections of morphisms in C1A , one
per object. Axioms (*Mo1) and (*Mo2) state that these collections should form
two natural transformations return : I → ObsA , where I is the identity functor
mapping any object and morphism to itself, and join : (Obs ◦ Obs)→ Obs.

12For the category-theoretic concepts mentioned here, cf. [7]: Chapter I for functors and
natural transformations and chapter VI for monads.
Their knowledge might prove helpful in the following, but is by no means required.
13Note that this is not really a restriction because there are tuples.

14 2.1 Higher lifts

Figure 3 Haskell code in do notation and equivalent function definition

f :: Obs Int -> Obs Int f :: Obs Z→ Obs Z
-> Obs Int → Obs Z

f o p = do x <- o f o p := o≫= λx.

y <- p p≫= λ y.

return (x + y) return (x+ y)

Axioms (*Mo3), (*Mo4) and (*Mo5) now state that ObsA should form a
monoid where the domain set is replaced by the functor ObsA , the cartesian
product is is replaced by composition of functors, return is the neutral element
and join is multiplication: (*Mo3) is associativity and (*Mo4) and (*Mo5) are
left and right identity, respectively. Traditionally, return would be called η and
join would be called µ.

In section 5, I will define a LPTObs-model where C1A is a subcategory of the
categoryM of measurable spaces and functions and ObsA is in fact a (restriction
of a) monad onM.

A point to keep in mind is that the formalism allows the argument of fmap
to be partially applied as in λx o. fmap (+x) o: Here, the function (+) expects
two arguments, but is only applied one to yield a new function in one argument
which is then passed to fmap. The closure emulation schema makes sure that
this notation is meaningful in MSL and I will show that the model from section 5
supports it.

A common pattern when working with monads are “chains” of “≫=” calls.
These are so common even that Haskell offers its own syntax for them, namely
do-notation (figure 3). Note how do-notation visually expresses the idea that
monads describe an “abstract computation” as addressed above.

2.1 Higher lifts
From “≫=” and return, one can define generalize fmap, which lifts a function
in a single parameter to observables, to any number n of arguments:

liftn :: (a1 → . . .→ an → b)

→ Obs a1 → . . .→ Obs an → Obs b
lift0 x = return x

liftn+1 f o1 . . . on+1 = o1≫= λx1. liftn (f x1) o2 . . . on+1

= o1≫= λx1. o2≫= λx2. . . . on+1≫= λxn+1.

return (f x1 . . . xn+1)

where f x1 = λx2 . . . xn+1. f x1 x2 . . . xn+1. Note that lift1 = fmap and
lift0 = return.

Now the function from figure 3 could be written

lift2 (+).

2.1 Higher lifts 15

The following lemmas are called “lift collapsing lemmas”. They can all be
shown by relatively simple, but lengthy calculations, which are given in ap-
pendix B.

One first notes that any sequence of “≫=” where the bound variable is not
used to construct the next observable is actually a lift. Note how any expression
on observables looks like this at the moment or is equal to such an expression
because there only are return and “≫=”. This will change in section 2.3.

Lemma 2.2. Let f :: a1 → . . .→ an → Obs a and oi :: Obs ai for i = 1, . . . , n.
Then

o1≫= λx1. o2≫= λx2. . . . on≫= λxn. f x1 . . . xn

= join (liftn f o1 . . . on)

Lemma 2.3 ((*Fu2) for higher arities / collapsing lifts). Let n ≥ 0, m ≥ 1,
g :: a1 → . . .→ an → a, f :: a→ b1 → . . .→ bm → b and define

f ◦n g :: a1 → . . .→ an → b1 → . . .→ bm → b

f ◦n g := λx1 . . . xn y1 . . . ym. f (g x1 . . . xn) y1 . . . ym

= λx1 . . . xn. f (g x1 . . . xn).

Then
liftm+1 f ◦n liftn g = liftm+n (f ◦n g).

The type of this function is

Obs a1 → . . .→ Obs an → Obs b1 → . . .→ Obs bm → Obs b.

Lemma 2.4 ((*Mo1) for higher arities). Let n ≥ 0 and f :: a1 → . . .→ an → a.
Define

liftn f ◦n return :: a1 → . . .→ an → Obs a
liftn f ◦n return := λx1 . . . xn. liftn f (return x1) . . . (return xn) .

Then
return ◦n f = liftn f ◦n return.

Remark 2.5. One receives more general versions of lemma 2.3 and lemma 2.4
where the inner lift can occur at any position, not only as the first argument of
the outer lift, by unrolling the recursive definition of liftn.

By applying the lemma several times, it is clear that a chain of several levels
of lifts, possibly at several positions, can always be collapsed into a single one
and that a argument of form return x can always be removed.

For general monads, the ordering of lift arguments matters: For example,
Haskell’s IO monad encapsulates actions such as reading and writing files and
sending data over a network. The result of such an action could be the number
of bytes written or the trivial result () (unit, the unique element of the type
(), also called unit, or 0-ary tuple). And clearly the ordering in which network
packets are sent matters even if all one does is applying a lift to the result. So
in general monads, lift arguments cannot be reordered or removed if results are
not used in the lifted function.

16 2.1 Higher lifts

Observables however should not “do” anything:14 They just “read” market
data and the ordering of reads does not matter, neither matters whether data
is read once or twice or not at all if a piece of data is not used.15 The following
three additional axioms express this property:

lift2 f o1 o2 = lift2 (λx y. f y x) o2 o1 (*Ob1)
lift2 f o o = fmap (λx. f x x) o (*Ob2)

fmap (const x) o = return x (*Ob3)

The first axiom says that the order of evaluation does not matter for observables.
The second says that observables yield the same value each time they are read
(at the same point in time). Finally, the third axiom says that observables the
values of which are not used can be omitted.

Note that (*Ob2) is equivalent to lift2 (,) o o = fmap (λx. (x, x)) o where
(,) = λx y. (x, y) as is easily seen.

The axiom (*Ob3) can be equivalently stated in terms of “≫=” as

o≫= const p = p (Ob3’)

as is easily seen from the definition of “≫=”, or even using lift2 as

lift2 const = const. (Ob3”)

One receives generalizations to arbitrary arities for lifts:

Lemma 2.6 ((*Ob1)–(*Ob3) for any arity).

1. Let f :: a1 → . . . → an → a and oi :: ai for i = 1, . . . , n. Let π :
{1, . . . , n} → {1, . . . , n} be a permutation defined in the meta language.
Define fπ = λx1 . . . xn. f xπ(1) . . . xπ(n). Then

liftn f o1 . . . on = liftn fπ oπ−1(1) . . . oπ−1(n).

In other words:
liftn f = (liftn fπ)π−1

2. If n ≥ 1, f :: a→ . . .→ a→ b and o :: Obs a, then

liftn f o . . . o = fmap (λx. f x . . . x) o

where n repetitions are meant by “. . .”.

3. For n ≥ 0 define

constn :: a→ a1 → . . .→ an → a

constn := λx x1 . . . xn. x.

Then
liftn (constn x) = constn (return x).

14Or, “they have no side effects”.
15The equality is meant semantically. If observables are seen as components of a software,

reading twice vs. caching the result of a computation might give a considerable difference in
performance and the compiler is free to use these laws to optimize for performance.

2.1 Higher lifts 17

From (*Ob1)–(*Ob3) one also receives a generalization of (*Mo2):

Lemma 2.7 ((*Mo2) for higher arities).

1. If n ≥ 1, g :: a1 → . . . → an → Obs a and oi :: Obs ai for i = 1, . . . , n,
then

join (liftn g o1 . . . on)

= join (liftn−1 (λx2 . . . xn. o1≫= λx1. g x1 . . . xn) o2 . . . on).

2. If n ≥ 0 and f :: a1 → . . .→ an → a, then

liftn f ◦n join = join ◦n (liftn (liftn f)).

3. If fi :: bi → Obs ai and oi :: Obs bi for i = 1, . . . , n and f is as in part 2,
then

liftn f (o1≫= f1) . . . (on≫= fn) = join (liftn g o1 . . . on)

where g := λx1 . . . xn. liftn f (f1 x1) . . . (fn xn).

Remark 2.8. Lemma 2.7 is wrong for general monads without (*Ob1)–(*Ob3):
Using lemma 2.2, it is easy to see that e.g. the LHS in 2.7.3 builds a chain of
“≫=” where the oi appear first in a row and then the values of the fi while the
RHS yields a chain where they are interleaved. For these to be the same, the
ordering in “≫=” chains must not matter, which is achieved through (*Ob1).

Corollary 2.9. By combining the lemmas 2.2 and 2.7 one receives for f, fi, oi
as in 2.7.3:

liftn f (o1≫= f1) . . . (on≫= fn)

= o1≫= λx1. . . . on≫= λxn. liftn f (f1 x1) . . . (fn xn)

Note how this corollary can be applied several times to collapse multiple
levels of lifts and “≫=” chains. One can also set some of the fi to return if
there is no further “≫=”.
Remark 2.10. As in remark 2.5, by unrolling the definition of liftn, one receives
that one can always

• reduce away multiple occurrences of an observable as arguments to a lift
to a single occurrence and

• if the lifted function is constant in a parameter, eliminate that parameter
and the associated observable.

Via lemma 2.2, one can apply any lift-collapse rules also for lift-like chains
of “≫=”. For example:

o1≫= λx1. o2≫= λx2. f x1 x2

= join (lift2 f o1 o2)
= join

(
lift2f(1 2)o2o1

)
= o2≫= λx2. o1≫= λx1. f x1 x2

18 2.2 Boolean observables as market conditions

The essential idea is that as far as only lifts are concerned, one may freely
reorder lift arguments and instances of “≫=” as long as the dependencies be-
tween the variables are not violated, i.e. as long as the expression stays only
syntactically valid. This will change in section 2.3 when the new combinators
ever and always are introduced.

Notation 2.11. For functional operator symbols, I leave out the “lift2” from
now on. For example, I just write o1 + o2 to mean lift2 (+) o1 o2 when it is
clear from the context that o1 and o2 are observables of numeric type. Also for
the unary operator “¬”, I write ¬b for fmap (¬) b.

I write non-Obs values in a Obs expression to mean their return. For ex-
ample, if x :: R and o :: Obs R, I write x + o for (return x) + o for lift2 (+)
(return x) o.

2.2 Boolean observables as market conditions
Obs Bool has the special role of describing time periods or probabilistic sets of
points in time (or just time ranges), identifying b :: Obs Bool with the set of mo-
ments where it is true, but in a notion much more restricted than set theory. For
example, if S :: Obs R+ describes a share price, then lift2 (≤) S (return 200)
– for which I write short “S ≤ 200” – describes the market condition that S is
below or equal to 200 at a given point in time.

I first introduce the reasonable short notation for boolean operations:

Notation 2.12. If R :: R (a1 × . . .× an) is a relational symbol and R̂:: a1 →
. . . → an → Bool is its functional lift, write just R for R̂. In particular, write
liftn R for liftn R̂. Cf. section A.1.4 for details about functional lifts. Recap
that any relational symbol has a functional lift except for equality on Obs a and
Con and “⪯·” from section 3.

As in notation 2.11, I leave out the “lift2” for binary operators if it is clear
which objects are observables and which are not. For example, if o1, o2 :: Obs R,
I will write o1 ≤ o2 for lift2 (≤) o1 o2 for lift2 (≤̂) o1 o2. And if b1, b2 ::
Obs Bool, I write b1 → b2 for lift2 (→) b1 b2.

Also as in notation 2.11, if x :: R and o :: Obs R, I just write e.g. x ≤ o to
mean lift2 (≤) (return x) o.

Theorem 2.14 will show that the notation o1 = o2 is not misleading.
Obs Bool defines a non-standard logic if one introduces the following nota-

tion:

Notation 2.13. For the sake of brevity, I write OB for Obs Bool. Define ⊤ =
return True and ⊥ = return False.

For b, c :: OB write
b⇒ c

iff (b→ c) = ⊤.

The following theorems will witness that one receives the expected laws for
these and that hence arguing at the level of observables can be naturally done.

It makes sense to require that the lattice of boolean observables be nontrivial:

⊤ ̸= ⊥ (*2.1)

2.2 Boolean observables as market conditions 19

The assumption of this axiom will be used without further reference as a tech-
nical simplification. – One could do without it.

Theorem 2.14. Let o, p :: Obs a such that equality is lifted for a. Then

lift2 (=) o p = ⊤ ⇔ o = p.

Proof. “⇐”: By (*Ob2) and (*Ob3), lift2 (=) o o = fmap (λx. (=) x x) o =
fmap (const True) o = return True = ⊤.

“⇒”: I show that both o and p are equal to

q := lift3 if′ (lift2 (=) o p) o p

where if′ :: Bool→ a→ a→ a is the choice function. For o = q, note that, by
lift2 (=) o p = return True,

q = lift3 if′ (return True) o p
= lift2 (λx y. if′ True x y) o p
= lift1 id o = fmap id o = o

where the second equality follows from lemma 2.4 and remark 2.5 and the third
follows from lemma 2.6.3 as λx y. if′ True x y = λx y. x = λx. const x.

For p = q, apply lemma 2.3 to the definition of q to receive

q = lift4 (λx1 y1 x2 y2. if′ (x1 = y1) x2 y2) o p o p.

By lemma 2.6.2 applied twice, this is equal to

lift2 (λx y. if′ (x = y) x y) o p.

The lifted expression is constant in x and reduces to λ y. y = id, hence, by
lemma 2.6.3, q = lift1 id p = fmap id p = p.

Note how for b, c :: OB we have b⇔ c iff b = c now: “↔” is just equality on
Bool.
Remark 2.15. The previous theorem did not use axiom (*2.1). It is easy to see
the following dichotomy:

• Using axiom (*2.1), it follows that return :: a→ Obs a is injective for any
type a for which equality is lifted.

• If axiom (*2.1) was false, i.e. ⊤ = ⊥, then there would be only a single
value of type Obs a for any type a for which equality is lifted.

Lemma 2.16 (Modus ponens and chain rule for Obs Bool). Let b, c, d :: OB.

1. If b⇒ c and b = ⊤, then c = ⊤.

2. If b⇒ c and c⇒ d, then b⇒ d.

Proof. First show 1. We have, by assumption and lemma 2.4/remark 2.5

⊤ = lift2 (→) b c

= lift2 (→) (return True) c
= fmap (λx. True→ x) c

= fmap id c = c

20 2.2 Boolean observables as market conditions

where the last line follows because (λx. True→ x) = id.
For 2, consider the observable

q = (b→ c)→ ((c→ d)→ (b→ c))

By the lift-collapsing lemma 2.3, q = lift3 f b c d where

f = λx y z. (x→ y)→ ((y → z)→ (x→ z))

= const3 True

By lemma 2.6.3, q = ⊤. Now, by 1, (c→ d) → (b→ c) = ⊤. And by applying
it again, one receives the desired result b→ c = ⊤.

The following lemma will provide some notion of quantification to the OB
framework:

Lemma 2.17. Let a be a type such that equality is lifted for a. Let o :: Obs a.

1. Let b be another type with lifted equality, p :: Obs a and f :: a → Obs b.
Then (o = p)⇒ ((o≫= f) = (p≫= f))

2. If ϕ :: a→ OB, then (o≫= ϕ) = ⊤ iff ∀x :: a : (o = x)⇒ ϕ x.

3. If ϕ, ψ :: a → OB, then (o≫= ϕ) ⇒ (o≫= ψ) iff ∀x :: a : (o = x) ⇒
(ϕ x→ ϕ x).

Proof. 1: One needs to show that

((lift2 (=) o p)→ (lift2 (=) (o≫= f) (p≫= f))) = ⊤.

Use corollary 2.9 to see that the conclusion is equal to

o≫= λx2. p≫= λ y2. lift2 (=) (f x2) (fy2).

The premise is by definition

o≫= λx1. p≫= λ y1. return (x1 = y1).

By applying corollary 2.9 twice, the whole statement is equal to

o≫= λx1. p≫= λ y1. o≫= λx2. p≫= λ y2. (x1 = y1)→ (f x2 = f y2).

By bind-reordering/collapse (remark 2.10), this is equal to

o≫= λx. p≫= λ y. (x = y)→ (f x = f y).

The inner lambda term is const2 ⊤: For any x and y, if x ̸= y, the premise
is trivially ⊥, and for x = y, the conclusion is trivially ⊤. Hence, the whole
expression is ⊤.

2: If (o≫= ϕ) = ⊤, let x :: a and apply part 1 to p = return x and f = ϕ
to receive

⊤ = (o = return x)→ ((o≫= ϕ) = (return x≫= ϕ))

= (o = x)→ ((o≫= ϕ) = (ϕ x))

= (o = x)→ (⊤ = (ϕ x))

= (o = x)→ ϕ x

2.3 Quantifying over time 21

where the second step is by assumption and the last step is because (⊤ = ϕ x)
= lift2 (=) (return True) (ϕ x) = fmap (λ z. (True = z)) (ϕ x) = fmap id (ϕ x)
= ϕ x.

For the other direction, assume that ∀x :: a : o = x⇒ ϕ x. Then

(o≫= λx. o = x→ ϕ x) = ⊤

because the inner lambda is const ⊤. The LHS here in turn is equal to

o≫= λx. o≫= λ y. (y = x)→ ϕ x

= o≫= λx. (x = x)→ ϕ x

= o≫= λx. ϕ x

= o≫= ϕ

3: Apply part 2 to ϕ′ := λx. ϕ x→ ψ x and note that

(o≫= (λx. ϕ x→ ψ x)) = (o≫= ϕ)→ (o≫= ψ)

by a lift collapsing technique similar to above.

Remark 2.18. If equality is not lifted for a, one still receives weaker forms for
the parts 2.17.2 and 2.17.3, but without connection to the observable o:

If ϕ x = ⊤ for all x, then o≫= ϕ = ⊤ (a direct consequence of (Ob3’)). If
ϕ x⇒ ψ x for all x, then (o≫= ϕ)⇒ (o≫= ψ).

2.3 Quantifying over time
With the combinators introduced so far, observables can only be combined at
the same points in time: In an expression consisting only of the Obs-combinators
“≫=” and return and ordinary functions, a variable bound by “≫=” can only be
applied to another function and then, ultimately, to return. Hence, any such
expression can be reduced to a lift.

Observables should be able to look at previous points in time16 as well, e.g.
to detect whether a barrier on the price of a share has been passed. Such a
feature is added by the two new combinators in figure 4 together with requiring
that the following boolean observables should be equal to ⊤ for any b, c :: OB:

a (b→ c)→ (a b→ a c) (*K)
e b↔ ¬a ¬b (*Dual)

a ⊤ (*Gen)
e (e b)→ e b (*4)

b→ e b (*T)
e b ∧ e c→ (e (b ∧ e c) ∨ e (e b ∧ c)) (*.3)

A strong connection to modal logic17 can be seen here: If one replaces a with
2 and e with 3, then (*K), (*Dual) and (*Gen) are exactly the axioms for a
normal modal logic, i.e. one that is realized through Kripke frames, and axioms
(*4), (*T), and (*.3) axiomatize transitivity, reflexivity and linearity into the

16and not at the future, of course.
17All definitions and results mentioned in this paragraphs can be found in [8, p. 189 ff.].

22 2.3 Quantifying over time

Figure 4 Primitives for quantification over time
ever :: OB→ OB

ever b is True in situations where b has ever been true before (including
when it is true right now). I also write e for ever.

always :: OB→ OB
always b is True if b has always been true until the current point in time.
In particular, then b is true right now. I also write a for always.

Figure 5 Some laws for e/a
1. e (e b) = e b.

a (a b) = a b.

2. a b⇒ b⇒ e b.

3. If b⇒ e c, then e b⇒ e c.
If a c⇒ b, then a c⇒ a b.

4. If b ⇒ c, then e b ⇒ e c and
a b⇒ a c.

5. e ⊥ = a ⊥ = ⊥.
e ⊤ = a ⊤ = ⊤.

6. e b ∧ a c⇒ e (b ∧ c)

7. e (b ∨ c) = e b ∨ e c.
a (b ∧ c) = a b ∧ a c.

8. e (b ∧ c)⇒ e b ∧ e c.
a (b ∨ c)⇐ a b ∨ a c.

9. a (b→ e c)⇒ a (e b→ e c).

past18 of the visibility relation “past states of the world”, respectively. The
resulting modal logic is called S4.3

The semantic consequences are easy to see for (*4) and (*T). For the intu-
itive understanding of (*.3), consider a point in time such that there are two
previous points in time where b was true at one and c was true at the other.
Then one of them has to be later and, hence, see the other as a past point in
time again.19

It is easy to see that any statement provable from S4.3 also holds in LPTObs
in the following sense: Let ϕ be a statement in the propositional modal language
with countably many propositional letters and let p1, . . . , pn be the propositional
variables in ϕ. Let ϕ′ be the term in the language of observables with n free
variables b1, . . . , bn arising from ϕ by replacing pi with bi, 2 with a and 3 with
e. If ϕ is a theorem of S4.3, then ∀b1 . . . ∀bn : ϕ′ is a theorem of LPTObs.

The following lemma provides a handy collection of such theorems.

Lemma 2.19. Whenever b, c :: OB, the statements from figure 5 hold.

Proof. I only show one of the versions for e or a for each point. The respective
other versions can be received by applying (*Dual).

1: The e variant follows directly from (*4) and (*T).
18(*.3) does not state that the visibility relation be linear: Any two past points in time

must be related, but two future states may be unrelated. The canonical model where one
holds, but the other does not is where the states of the world are the nodes of a tree.

19In [8], the RHS of (*.3) contains the additional case e (b ∧ c) (translating 3 back to e)
for the case where the two points in time are equal. It is clear that this can be left out when
(*T) is assumed.

2.3 Quantifying over time 23

2 is just (*T) and its converse by negation.
3: If a b ⇒ c, then by (*K) and modus ponens, a (a b) ⇒ a c and by 1,

a (a b) = a b.
4 is just (*K) (and modus ponens).
5: I show the first line. a ⊥ ⇒ ⊥ by 2, so a ⊥ = ⊥. e ⊥ = ⊥ is the converse

by negation of (*Gen).
6: Apply (*K) to b and ¬c in place of c to receive that the following is equal

to ⊤:
a (b→ ¬c)→ (a b→ a ¬c)

The converse of this is

¬(a b→ a ¬c)→ ¬(a (b→ ¬c))

or, in other words,
(a b ∧ e c)→ e (b ∧ c)

the RHS of which implies e c because b ∧ c⇒ c.
7: “⇐”: b ⇒ b ∨ c, so by 4 e b ⇒ e (b ∨ c). Analogously, e c ⇒ e (b ∨ c).

Hence, e b ∨ e c⇒ e (b ∨ c).
“⇒”: Consider the negation:

e (b ∨ c) ∧ ¬(e b ∨ e c)

⇔ e (b ∨ c) ∧ a (¬b) ∧ a (¬c)

By 6 applied twice, this implies

e ((b ∨ c) ∧ ¬b ∧ ¬c) = e ⊥ = ⊥

where the last equality is due to 5.
8 follows just like the ”⇐” case of 7.
9: By 3, it suffices to show:

a (b→ e c)⇒ (e b→ e c)

By the previous parts, we have

a (b→ e c) ∧ e b

⇒ e ((b→ e c) ∧ b)
⇒ e (e c) = e c.

Note that the proof of the previous lemma did not use axiom (*.3), so it
would also be valid in the weaker normal logic S4 which misses that axiom. The
following requires axiom (*.3):

Lemma 2.20.
e a b⇒ a e b (G)

Proof. The negation of e a b→ a e b is

e a b ∧ ¬a e b

⇔ e a b ∧ e a ¬b.

24 2.4 Defining time

Application of axiom (*.3) yields

e (a b ∧ e a ¬b) ∨ e (e a b ∧ a ¬b).

By the laws from lemma 2.19,

a b ∧ e a ¬b
⇒ a b ∧ e ¬b
⇒ e (b ∧ ¬b) = e ⊥ = ⊥.

Similarly, one receives e a b ∧ a ¬b = ⊥. Then the whole expression above is
⊥.

Example 2.21. Note how one does not in general receive any “lift collapsing”
lemmas for e/a. For example, if o :: Obs R+ is e.g. a share price, then

o≫= λx. e (o≫= λ y. (y > x))

̸= o≫= λx. o≫= λ y. e (y > x).

The first expression states that o is at a (not in general unique) maximum of
o since the beginning of time. The second is simply ⊥ because it can be (lift-)
reduced to

o≫= λx. e (x > x)

and for any x, x > x = ⊥, so e (x > x) = ⊥ by lemma 2.19.5.

2.4 Defining time
Notation 2.22. For the sake of brevity, define:

n := now

The following axioms state that the now observable basically reflects the
Time type. They are easily verified by intuition. Let t :: Time and b :: OB. Then

e (n = t) = n ≥ t (*2.2)
e (n = t ∧ b)⇒ a (n = t→ b) (*2.3)

(n≫= λ t. a (n ≤ t)) = ⊤. (*2.4)

The “⇒” direction of axiom (*2.2) states that now is monotonically increasing.
To see that intuitively, let t be some previous value of now. Then e (now = t) is
true, hence the current value of now is ≥ t. The other direction states that any
previous point in time as of the Time type did actually exist.

Axiom (*2.3) basically states that now is strictly increasing in time: Any
value of now fixes all possible conditions of type OB: Nothing may change while
the value of now stays the same. Another point of view is that if time is discrete,
then now must have the highest granularity.

(*2.4) is essentially a monadic variant of (*2.2). It has to be stated here
explicitly due to formal restrictions.
Remark 2.23. The “⇐” direction of axiom (*2.2) is not actually used in the
following, but simplifies some arguments. One can always restrict the Time
type accordingly. The timeOffset function is flexible enough so that this does
not cause any problems.

Intuitively, (*2.4) should follow from (*2.2). However, the framework is not
yet able to support the required pattern of argumentation (cf. section 6.1).

2.4 Defining time 25

2.4.1 Earlier and first occurrences of an event

Define the following functions:

earlier :: OB→ OB
earlier b = n≫= λ t. e (n < t ∧ b)

first :: OB→ OB
first b = b ∧ ¬earlier b

Also write ē for earlier and f for first.
Example 2.24. Let o :: Obs R. Then the following boolean observable is True
when and only when o is at a strict all-time high:

o≫= λx. ¬ē (o ≥ x)

ē b is True iff b has happened strictly before the current point in time, i.e.
if e b is true, but it is not true for the first time. Indeed, it is easily seen that
ē b = e b ∧ ¬f b using the following lemma.

Lemma 2.25.
e (b ∧ c) ∧ ¬c ⇒ ē b

Proof. I show that
¬ē b ∧ e (b ∧ c)⇒ c.

To see this, first note that using axiom (*2.4), lift reduction and the properties
of e/a:

¬ē b = ¬ē b ∧ (n≫= λ t. a (n ≤ t))
= n≫= λ t. ¬e (n < t ∧ b) ∧ a (n ≤ t)
= n≫= λ t. a (n ≥ t ∨ ¬b) ∧ a (n ≤ t)
= n≫= λ t. a ((n ≥ t ∨ ¬b) ∧ n ≤ t)
= n≫= λ t. a ((b→ n ≥ t) ∧ n ≤ t)
⇒ n≫= λ t. a (b→ n = t).

Now, applying lemma 2.19.6:

e (b ∧ c) ∧ ¬ē b
⇒ n≫= λ t. e (b ∧ c) ∧ a (b→ n = t)

⇒ n≫= λ t. e (n = t ∧ c)

By axiom (*2.3), e (n = t ∧ c)⇒ a (n = t→ c)⇒ (n = t→ c) for any t. So the
above implies

n≫= λ t. n = t→ c

⇒ n≫= λ t. (n = t) ∧ (n = t→ c)

⇒ n≫= (const c)
= c.

This concludes the definition of the theory LPTObs. The following section
will define the remaining sorts, symbols and axioms for the theory LPT.

26 2.4 Defining time

3 Contracts 27

3 Contracts
This section will introduce the basic building blocks of contracts. A contract
will be the only way to talk about any kind of financial “asset”. The only thing
a market participant will be able to do with a contract is acquiring it. For
example, in the framework, there is no notion of “buying” a “troy ounce of
gold”. Instead, any market participant will be able to acquire at any time the
contract that

• obliges her to immediately pay the current value of the gold price (a certain
observable of type R+) in (say) USD and

• grants her the right to receive, at any future point in time, the value of
the gold price in USD.

We will later be able to state that since anyone can freely acquire it, nobody
should be able to make risk-free profit from this contract, i.e. it must be ⪯ 0.

Introduce first a new type Con (short for “contract”) together with primitive
operations and their intended meanings as in figure 6. Note that while Obs
was a type constructor – there is a different type Obs a for any type a – Con
is a single type. Also introduce a type Currency the values of which are to be
interpreted as the different currencies available.

In comparison to my approach, [3] lacks a read′ primitive. This was partly
compensated for by introducing cond from figure 7 below as a primitive and
giving another “until” parameter to anytime. My approach is more general as
the examples for “;” below will show.

While contracts are usually made between two parties, the language of con-
tracts presented here only models a single side, namely the “holder” of the
contract. This can also be viewed in such a way that the counterparty is a big,
anonymous and forgetful entity called “the” stock exchange. The give combina-
tor would then just “flip the contract over” to have the holder take the position
of the stock exchange.
Remark 3.1.

1. give x does not only change signs: If x allows the holder to make a choice,
the holder of give x must be willing to accept any choice a counterparty
would make.

2. For when′, there is also a more natural combinator when of the same type
that will wait for the next time b becomes true. when′ was chosen here for
its comparatively simple algebraic properties.

3. Also for when′, the “first time b becomes true” may not exist. For example,
assume that time is continuous and consider b = (n > t). However, the
following axioms are generally not affected by this issue and in some cases
when′ (n > t) x can in fact be given a sensible meaning. Cf. section 3.4
below.

Note how read′ :: Obs Con→ Con is similar to join :: Obs (Obs a)→ Obs a.
Indeed, its semantics are related and we will require similar axioms for it. And

28 3 Contracts

Figure 6 Primitives for contracts
zero :: Con

The empty contract, stating no rights or obligations.

one :: Currency→ Con
The contract one k immediately pays a single unit of the currency k to
the holder of the contract.
Often, the k argument does not matter as long as it is always the same.
In these cases, I will omit it.

and :: Con→ Con→ Con
Acquiring and x y is equivalent to acquiring both x and y. and can be
seen as a portfolio construction operator.

give :: Con→ Con
Acquiring give x means acquiring the counterparty’s side in the contract
x. This means that all permissions become obligations and vice versa and
all payments change signs.

scale :: R+ → Con→ Con
scale α x scales all payments within x by a factor of α.

or :: Con→ Con→ Con
A market participant acquiring or x y must acquire immediately exactly
one of x or y (but not both or none).

when′ :: OB→ Con→ Con
when′ b x obliges the holder to acquire x as soon as e b becomes true. I.e.
if b has ever been true before acquisition time, x is acquired immediately
and otherwise, x is acquired the first time b becomes true.

anytime :: Con→ Con
anytime x grants the right (but not the obligation) to acquire x at any
time in the future.

read′ :: Obs Con→ Con
At the moment a market participant acquires read′ p, the observable p
is read and the holder is obliged to immediately acquire the resulting
contract.

3 Contracts 29

similarly to join, where one defined “≫=”, one can define the following helper
function:

(;) :: Obs a→ (a→ Con)→ Con
o; f = read′ (fmap f o)

o;f reads, on acquisition, the observable o, applies f to the result and acquires
the resulting contract.
Example 3.2. The gold-buying contract above can now be written as follows,
given a gold price g :: Obs R+:

x := and (give (money g)) (anytime (money g))
where money g := g; λα. scale α one

money g means reading, on acquisition, the gold price g, then receiving as many
dollars as that value was. Then x means at the same time paying (the “reverse”
of receiving) g and receiving the option to get back g at any future point in
time.

It is expected that x is of non-negative value because the holder could choose
to exercise the anytime-option immediately, receiving 0 in total. Indeed, it will
be a simple consequence of the below axioms for give, and and anytime that
x ⪰ zero.

If g is in fact a well-defined “gold price”, one would expect that x can be
acquired at the marked without any further payments: x is “available at the
market” or x “has price 0” – or anytime (money g) has “price” g. In fact, I
will use as the definition of a “price” for anytime (money g) that x ≈ zero
(definition 4.1).

We will later be able to show that from this fact, it follows that money g is
preferable to when′ b (money g) in present value: It is always better to receive
gold early, a property shared with one if non-negative interest rates are assumed
(both intuitively and formally). This is a non-trivial property: For example, if g
was known to increase sufficiently quickly over time, waiting would be preferable.

Note here that gold also has the special property that it is not possible to
do anything with it than selling it later for its market price, a property shared
with the concept of a “dividend-free share” introduced below.

As the above examples show, writing contracts using only the primitives
is tedious and it is natural to introduce some tools (figure 7): cond b x y
acquires x if b is true on acquisition of the compound contract and y otherwise.
The scale∗ functions, money and moneyG are obviously variants of scale for
different argument types. when is the abovementioned more natural variant of
when′ that will always wait for the next time b becomes true. at and after can
be used to delay a contract to a specified point in time or for a specified time
period. As in general not every TimeDiff is valid for every point in time, for
example if time is finite, one needs to handle the Nothing case of timeOffset
(cf. section A.3.3).

I use the short notation from figure 8. The axioms and lemmas below will
justify this notation.

One can now write the contract x from example 3.2 as

(A g)− g.

30 3 Contracts

Figure 7 Tools for building contracts

cond :: OB→ Con→ Con→ Con
cond b x y = b; λβ. if′ β x y

scaleG :: R→ Con→ Con
scaleG α x = if′ (α ≥ 0) (scale α x) (give (scale (−α))x)

scaleO :: Obs R+ → Con→ Con
scaleO o x = o; λα. scale α x

scaleGO :: Obs R→ Con→ Con
scaleGO o x = o; λα. scaleG α x

money :: Obs R+ → Con
money o = scaleO o one

moneyG :: Obs R→ Con
moneyG o = scaleGO o one

when :: OB→ Con→ Con
when b x = now; λ t. when′ (b ∧ now ≥ t) x

at :: Time→ Con→ Con
at t x = when (now = t) x

atMaybe :: Maybe Time→ Con→ Con
atMaybe (Just t) x = at t x
atMaybe Nothing x = zero

after :: TimeDiff→ Con→ Con
after ∆t x = now; (λ t. atMaybe (timeOffset t ∆t) x)

3.1 The present value relation 31

Figure 8 Short notation for contracts
Let x, y :: Con, α :: R, o :: Obs R and b :: OB.

For this also write this
zero 0

one 1

give x −x
and x y x+ y

and x (give y) x− y
or x y x ∨ y

scaleG α x α · x
scaleG α one α

scaleGO o x o · x
moneyG o o

when′ b x W′ b x

when b x W b x

anytime x A x

Note that if α ≥ 0, then α · x can be viewed as short notation for scale α x.
Analogous for o.

Example 3.3 (A strange contract). As a somewhat more complex example, the
following contract z gives the holder the right to receive at any later time the
difference between a – say – share price o :: Obs R+ at exertion and at acquisi-
tion:

z := o; λx0. A (o; λx1. x1 − x0)

z is also called an “American option at the money” (without restrictions on the
exertion time here). Cf. section 4.6 and [1, p. 201].

3.1 The present value relation
In order to model the partial order that one contract is “better than another in
present value”, introduce a single new relational symbol(

⪯·

)
:: R (OB, Con, Con) ,

i.e. “⪯·” is a ternary relation the first argument of which has to be of type OB
and the other two of type Con. If b :: OB and x, y :: Con, I write x ⪯b y to
state that “x is less or equal to y in present value under conditions b”. Note
how the OB type is used both to define contracts as in when′ and to describe
market conditions here. The following subsections introduce axioms to make
this definition sensible.

Notation 3.4. I follow the usual notational conventions, listed in figure 9.
Define further for b :: OB:

x ≺b y :⇔ x ⪯b y ∧ ∀c :: OB, c⇒ b, c ̸= ⊥ : x ̸⪰c y

32 3.1 The present value relation

Figure 9 Notation for present value relations
Write this For this

x ⪰b y y ⪯b x

x ≈b y x ⪯b y and y ⪯b x

x ⪯ y x ⪯⊤ y

… …

x ≺b y means that b guarantees that x will never be preferable to y. This
means that not only x ̸⪰b y, but no matter how one makes the condition b
stronger, i.e. more specific, one can never reach a situation where x ⪰ y.

Note that these do not lift functionally and hence cannot be used to construct
observables through lifts: Otherwise, one would be able to define a contract that
acquires – say – a contract x as soon as it becomes preferable to a contract y in
present value and it is not clear what this is supposed to mean.

The remainder of this section will, based on the intuition from section 1,
introduce axioms that should hold for “⪯·“.

3.1.1 Logical axioms

The following axioms allow us to argue about “⪯·” in a natural way:
First of all, “⪯b” for fixed b should be a preorder20 , i.e. the following should

hold for all x, y, z :: Con and b :: OB:

x ⪯b x (*3.1)
x ⪯b y and y ⪯b z ⇒ x ⪯b z (*3.2)

Next, “x ⪯· y” for fixed x and y should be compatible with logical deduction
on OB, expressing the “under conditions” part. The following should hold for
b, c :: OB and x, y :: Con:

(b⇒ c) and x ⪯c y ⇒ x ⪯b y (*3.3)
x ⪯b y and x ⪯c y ⇒ x ⪯b∨c y (*3.4)

x ⪯⊥ y (*3.5)

In other words, for any fixed x and y, the formula x ⪯b y should define an ideal
in the boolean algebra OB.

It is easy to see that now, “≺·” is transitive and irreflexive and the three
latter rules still hold if one replaces “⪯” by “≺”. This would not be true for the
naive definition of “x ≺b y” as x ̸⪰b y.

Lemma 3.5. Let f :: Con→ Con be such that for all b :: OB and x, y :: Con:

x ⪯b y ⇔ f x ⪯b f y

Then also
x ≺b y ⇔ f x ≺b f y

for all x, y and b.
20i.e. a partial order where x ≈b y does not imply x = y. In fact, this is usually wrong for

all b ̸= ⊤ and some x and y (but might be true for b = ⊤).

3.1 The present value relation 33

Proof. Define b⇒ to be the class of c :: OB such that c ̸= ⊥ and c⇒ b.

x ≺b y ⇔ x ⪯b y ∧ ∀c ∈ b⇒ : ¬(y ⪯c x)

⇔ f x ⪯b f y ∧ ∀c ∈ b⇒ : ¬(f y ⪯c f x)

⇔ f x ≺b f y

Remark 3.6 (Forcing). A certain degree of similarity to the technique of forcing21

in set theory can be seen here:
If one considers the partial order (OB,⇒) without ⊥ and writes, by heavy

abuse of notation, b ⊩ x ⪯ y instead of x ⪯b y, then (*3.3) would hold by
strengthening of forcing conditions and (*3.4) follows by a simple density argu-
ment. If one reads “≺” on the RHS of “⊩” as »“⪯” and not “⪰”«, then one
receives

b ⊩ x ≺ y ⇔ b ⊩ (x ⪯ y ∧ x ̸⪰ y)

⇔ (b ⊩ x ⪯ y) ∧ (∀c⇒ b : b ̸⊩ x ⪰ y)

where the last equivalence uses a density argument again. Translating back into
“⪯b” notation, the last line is exactly the definition of x ≺b y.

However, most density arguments to not work in LPT. For example, when-
ever forcing a condition is dense in a partial order, already the weakest condition
⊤ forces it. In observables, that would mean that whenever we have that

∀b :: OB, b ̸= ⊥ : ∃c :: OB, c ̸= ⊥, c⇒ b : x ⪯c y,

then x ⪯ y. It is not clear why this should be.
I will continue to introduce axioms in the order of the primitives as given

above, which is supposed to loosely resemble the “complexity” introduced by
the combinators.

3.1.2 zero, and, give

The portfolio construction operator and should be monotonic and

(Con, zero, and, give)

should form an abelian group up to “≈b” for any b :: OB. In detail, I require the
following axioms:

and should be monotonic for any relation “⪯b”:

x1 ⪯b y1 and x2 ⪯b y2 ⇒ and x1 x2 ⪯b and y1 y2 (*3.6)

Axiom (*3.6) is justified by executing the two arbitrage strategies for x1 and
y1 and x2 and y2, respectively, in parallel.

Next, one requires the abelian group laws from algebra where equality is
replaced by “≈”:

and x y ≈ and y x (*3.7)
and (and x y) z ≈ and x (and y z) (*3.8)

and x zero ≈ x (*3.9)
and x (give x) ≈ zero (*3.10)

21Cf. e.g. [9, chap. 14].

34 3.1 The present value relation

These rules justify writing (+), (−) and 0 for and, give and zero, respec-
tively.

Axioms (*3.7)–(*3.9) are clearly justified from the intuition of and and zero.
Axiom (*3.10) also follows from the intuition of give: Acquiring both sides
of the same contract must be valued with 0. Note that the contract x − x =
and x (give x) is not automatically risk-free, but only can be made risk-free.
For example, if x = anytime y and a trader acquires x− x, then exercises first,
she is left with y − anytime y which is not in general risk-free.

It is easy to see that give is reversely monotonic, i.e. if x ⪯b y, then
give x ⪰b give y.

Note how “≈b” can “factor through” the above rules. For example, if it is
known that y ≈b give x, then by monotonicity (axiom (*3.6)) also and x y ≈b

and x (give x) ≈ zero, so altogether and x y ≈b zero.
Now the usual group-theoretic proofs carry to the “≈b” pseudo groups and

one receives for example
give (give x) ≈ x

as expected.
In a model, one receives abelian groups by forming the equivalence classes

with respect to “≈b”. For b = ⊥, this is the trivial (point) group and if b ⇒ c,
then one receives a projection from the group with respect to “≈c” to the group
with respect to “≈b”.

give and and are also strictly monotonic in the following sense:
Lemma 3.7. Let x1 ⪯b y1 and x2 ≺b y2. Then

1. give x2 ≻b give y2.

2. x1 + x2 ≺b y1 + y2.
Proof. 1: give is a self-inverse reversely monotonic map. The statement now
follows similarly to lemma 3.5.

2: The map λx. x1 + x is an automorphism of any partial order “⪯c” with
inverse λx. (−x1)+x and hence by lemma 3.5 we have x1+x2 ≺b x1+y2. And
x1 + y2 ⪯b y1 + y2 by monotonicity.

3.1.3 one

The only thing one knows about one is that it’s always of strictly positive value
in the sense of notation 3.4:

zero ≺ one (*3.11)

Intuitively, this means that no currency should be worthless. This assump-
tion is required and reasonable: If a currency ever has literally zero value, it
is not clear what prices denoted in this currency are supposed to mean. Vice
versa, a core result will be that “≤” on prices behaves like “⪯” on contracts
(lemma 3.12 for the static and lemma 3.42 for the observable case).
Remark 3.8. This is the only axiom that introduces a negative constraint:
zero ̸≈ one, in particular zero ̸= one. Hence, a single point cannot be a
model of LPT unless it chooses Currency empty. One receives easily that the
expressions one + . . . + one, where k ∈ N repetitions are meant, are pairwise
different. Hence, any model of LPT is infinite.

3.1 The present value relation 35

3.1.4 scale

One expects scale to commute with any primitive. For the primitives consid-
ered so far, it suffices to require the following axiom to achieve this:

scale α (x+ y) ≈ scale α x+ scale α y (*3.12)

scale should further represent multiplication:

scale α (scale β x) ≈ scale (α · β) x (*3.13)
scale 0 x ≈ zero (*3.14)
scale 1 x ≈ x (*3.15)

And scale should further be monotonic:

x ⪯b y ⇒ scale α x ⪯b scale α y (*3.16)

These axioms are justified intuitively by the fact that scale should just
multiply all payments by a non-negative constant.

For one, note that scale α one just means “α dollars”. Hence, one expects
the simple fact that if a contract pays α dollars and β dollars, it pays a total of
α+ β dollars:

(scale α one) + (scale β one) ≈ scale (α+ β) one (*3.17)

Remark 3.9. Note that this form of distributivity in the α argument does not
hold in general:

(scale α x) + (scale β x) ̸≈ scale (α+ β) x

To see this, set α = β = 1 and x = y ∨ (−y). – The LHS allows the contract
y−y ≈ 0 while the RHS only allows ±(2 · y) which might both expose the holder
to risk.22 It is easy to construct an explicit counterexample in a probabilistic
model like in section 5.

Hence, scale cannot be used to turn Con into a R vector space.

Lemma 3.10.

1. scale α zero ≈ zero

2. scale α (give x) ≈ give (scale α x)

Proof. For α = 0, both statements are trivial via axiom (*3.14). For α > 0,
scale α is an invertible map commuting with the group operation and. Hence,
it is already an automorphism and the statement follows.

Remark 3.11. For α > 0, now scale α is an automorphism, both of any group
structure (Con, zero, and, give) up to “≈b” as well as any partial order “⪯b”,
with inverse scale 1

α .
By lemma 3.5 then scale α is also automorphism of the relations “≺b”.

22The two sides are equal in present value if y ⪰ 0 or y ⪯ 0.

36 3.1 The present value relation

The laws above justify writing “·” for scale. Keep in mind however that
distributivity of sums on the R+ side is not given.

One receives that one, scale and “⪯” work together in a sane way which is
the first step towards compatibility of general prices with “⪯”:
Lemma 3.12. Let α, β :: R+. The following sets of statements are equivalent,
respectively:

1. α · one ≺b⪯b
β · one for some b ̸= ⊥.

2. α · one ≺⪯ β · one.

3. α <
≤ β.

Proof. (2 ⇒ 1) is trivial.
(3⇒ 2): There is nothing to show for α = β, so assume α < β, i.e. β−α > 0.

As scale (β − α) preserves “≺” and one ≻ 0 by axiom (*3.11), (β − α) · one ≻
(β − α) · 0 ≈ 0. Now

α · one ≈ α · one+ 0

≺ α · one+ (β − α) · one
≈ (α+ β − α) · one
= β · one

where the second relation is because and (α · one) is an isomorphism and 0 ≺
(β − α) · one and the third relation is due to axiom (*3.17).

(1 ⇒ 3): If α ̸≤ β, i.e. β < α, then by (3 ⇒ 2), β · one ≺ α · one. In
particular, by definition of “≺”, α · one ̸⪯b β · one.

If α ̸< β, i.e. β ≤ α, then again by (3 ⇒ 2), β · one ⪯ α · one. In particular,
β · one ⪯b α · one, so α · one ̸≺b β · one.

Corollary 3.13. Lemma 3.12 still holds if one allows α, β :: R instead of only
R+.
Proof. I only show the “⪯” variant and only (2 ⇔ 3). The other parts are
similar.

For general α and β, “·” means scaleG instead of scale. There are four
cases:

1. α, β ≥ 0. Then the statement follows by lemma 3.12.

2. α, β < 0.
scaleG α one ⪯ scaleG β one

⇔ −((−α) · one) ⪯ −((−β) · one)
⇔ (−α) · one ⪰ (−β) · one
⇔ −α ≥ −β
⇔ α ≤ β

where the third equivalence is by lemma 3.12.

3. α < 0 ≤ β. Then obviously α < β and
scaleG α one = −((−α) · one) ≺ 0 ⪯ β · one = scaleG β one.

4. β < 0 ≤ α. Just like the previous case.

3.1 The present value relation 37

3.1.5 or

or x y = x ∨ y should be the join of x and y with respect to all the partial
orders “⪯b”, i.e.

x ⪯ x ∨ y and y ⪯ x ∨ y (*3.18)
x ⪯b z and y ⪯b z ⇒ x ∨ y ⪯b z. (*3.19)

This can be justified as follows: (*3.18) follows from the fact that x ∨ y
can model both x and y by making the according choice. For (*3.19), assume
that z is as in the axiom and in some scenario b holds and the price of x ∨ y is
strictly greater than the price of z. Then an arbitrageur would sell x ∨ y and
buy z, thus making the price difference as a profit. The counterparty can choose
between x and y, and both cases can be made risk-free without additional cost
by assumption.

Two subtle assumptions are made here: An arbitrageur can rely on the fact
that the counterparty chooses “first” if z contains choice as well and no time is
required to communicate this choice.

As usual, joins are unique (up to “≈”), so there is only one possible value
for x ∨ y up to present value.

Lemma 3.14. Let f :: Con → Con be an automorphism of a preorder “⪯b”.
Then

f (x ∨ y) ≈b (f x) ∨ (f y).

If x :: Con, then (or x) is a homomorphism of any preorder “⪯b”.

Proof. These standard theorems follow directly from the universal property of
the join.

Lemma 3.15.

1. x+ (y ∨ z) ≈ (x+ y) ∨ (x+ z)

2. α · (x ∨ y) ≈ α · x ∨ α · y.

Proof. Both statements follow from lemma 3.14 for b = ⊤:
As seen above, both and x and scale α for α > 0 are automorphisms of “⪯”.

For α = 0, the second statement is trivial.

Remark 3.16. In lemma 3.15.1, the symbols “+” and “∨” cannot be interchanged.
In general, there is no simple relation between

x ∨ (y + z) vs. (x ∨ y) + (x ∨ z).

To see this, consider the following multiples of one for (x, y, z):

• (1,−1,−1). Then the LHS reduces to 1∨−2 ≈ 1 and the RHS reduces to
1 + 1 ≈ 2, hence the RHS is strictly greater (via lemma 3.12).

• (−1,−1,−1). Then the LHS reduces to −1 ∨ −2 ≈ −1 and the RHS
reduces to −1 +−1 ≈ −2, hence the LHS is strictly greater.

One receives an equation similar to axiom (*3.17) directly from the universal
property of the join:

38 3.1 The present value relation

Lemma 3.17.

(scale α one) ∨ (scale β one) ≈ scale (max (α, β)) one

Here, max (α, β) is short for if′ (α ≤ β) α β, of course.

Proof. Assume wlog. that α ≤ β (otherwise, swap α and β). Then scale α one
⪯ scale β one by lemma 3.12 and hence the LHS is in present value equal to
scale β one, which is the RHS.

The dual notion to the join x∨ y is the meet x∧ y, i.e. the greatest common
lower bound. The following lemma shows that it is attained by the contract
where the counterparty chooses which of x or y the holder of x ∧ y should
acquire.

Lemma 3.18. For x, y :: Con, let x∧ y = −(−x ∨ −y). Then x∧ y is the meet
of x and y in any partial order “⪯b”, i.e. the following hold:

1. x ⪰ x ∧ y and y ⪰ x ∧ y

2. x ⪰b z and y ⪰b z ⇒ x ∧ y ⪰b z for any b :: OB.

Proof. The proof is similar to the one of lemma 3.14, just give is a bijective
map that flips the ordering instead of preserving it:
−x ⪯ −x ∨ −y, hence x ≈ −− x ⪰ −(−x ∨ −y) = x ∧ y. Analogous for y.
Let z ⪯ x, y. Then −z ⪰ −x, −y, hence −z ⪰ −x ∨ −y, hence z ⪯

−(−x ∨ −y) = x ∧ y.

3.1.6 when′

The following two combinators when′ and anytime will introduce time delays on
contracts. These are the more interesting cases which would result in stochastic
integrals and the such when computing present values.23 The axioms introduced
need to be more sophisticated as well to account for “history”: If x ⪯b y, then
one does not receive when′ c x ⪯b when′ c y. One does receive this in case
x ⪯c y, but that would be too weak. Instead, the monotonicity rules for when′
are defined in terms of e and a.

First of all, the above primitives which do not introduce choice should com-
mute with when′:

when′ b 0 ≈ 0 (*3.20)
when′ b (x+ y) ≈ when′ b x+ when′ b y (*3.21)
when′ b (α · x) ≈ α · (when′ b x) (*3.22)

These are justified easily. For (*3.21) one needs to take into consideration that
when′ b itself does not introduce choice.

Recap that I also write W′ for when′ and that W′ b x acquires x immediately
if b has ever before been true. The following axioms define the actual behavior
of when′:

W′ b x ≈e b x (*3.23)
x ⪯
e d∧b

W′ c y and W′ b x ⪯
e d∧c

y ⇒ W′ b x ⪯
e d∧¬e b∧¬e c

W′ c y (*3.24)

23Cf. section 5.2 for a simple case.

3.1 The present value relation 39

The first one is clear: In situations where e b is true, x is immediately acquired,
hence W′ b x is the same as x.

To see that the second one must hold, assume that the premise is true and
consider a situation where e d holds and b and c have both never been true (such
that none of W′ b x or W′ c y is triggered immediately). Assume that in some
scenario, the price, i.e. the total cost of acquisition, of W′ b x is strictly higher
than that of W′ c y. Consider a trader buying W′ c y and selling W′ b x, thus
making the price difference as a profit.

The resulting position can be made risk-free, thus result in arbitrage, by the
following strategy:

1. Do nothing until the first of b or c becomes true. This might be never.
Wlog. assume that b becomes true first.

2. The resulting position is now equivalent to holding−x andW′ c y: y hasn’t
been acquired before as e c hadn’t been true and x has been acquired just
at this moment.24 Also, e d is still true because it was true at acquisition
time already and b is true by assumption.

3. By assumption, x ⪯e d∧b W′ c y, so by buying x and selling W′ c y, one
can arrive at a risk-free position without cost.

Remark 3.19. Via case distinction (axiom (*3.4)), one receives the following
variants of axiom (*3.24):

x ⪯
e d∧e b

W′ c y and W′ b x ⪯
e d∧e c

y ⇔ W′ b x ⪯
e d

W′ c y (3.25)

x ⪯
e d∧b

W′ c y and W′ b x ⪯
e d∧c

y ⇒ W′ b x ⪯
e d∧¬ē b∧¬ē c

W′ c y (3.26)

x ⪯
e d∧b

W′ c y and W′ b x ⪯
e d∧c

y ⇒ W′ b x ⪯
e d∧(¬e b∨b)∧(¬e c∨c)

W′ c y (3.27)

x ⪯
d∧b

W′ c y and W′ b x ⪯
d∧c

y ⇔ W′ b x ⪯
d∧(b∨c)

W′ c y (3.28)

For the second one, use ¬e b⇒ ¬ē b⇒ ¬e b ∨ b. The last statement is trivial.
The converse of (*3.24) is not true: Consider b = c = d = ⊤. Then ¬e b =

¬e c = ⊥ and so the RHS is trivially true, but the LHS is equivalent to x ⪯ y.
The same argument works for (3.26) and (3.27).

Lemma 3.20.

1. W′ b (−x) ≈ −W′ b x

2. W′ ⊥ x ≈ 0

3. If e d⇒ (e b↔ e c), then W′ b x ≈e d W′ c x.
If e d⇒ ¬e b, then W′ b x ≈e d 0.

4. W′ b x ≈ W′ (e b) x

Proof. 1: By the axioms (*3.20) and (*3.21), W′ b is a group homomorphism of
(Con, zero, and, give). Then the statement follows from the uniqueness of the
inverse (up to present value).

24The special case where both e b and e c become true at the exact same time is covered
here: Then W′ c y is y.

40 3.1 The present value relation

2: Apply (3.25) to b = c = ⊥, d = ⊤, and y = 0. We have x ⪯⊥ W′ ⊥ 0
and W′ ⊥ x ⪯⊥ 0 because “⪯⊥” is trivial. Hence, W′ ⊥ x ⪯ W′ ⊥ 0 and
W′ ⊥ 0 ≈ 0 by axiom (*3.20). The “⪰” direction is analogous.

3: For the first statement, note how the premise implies that e d∧ e b⇒ e c
and x ≈e c W

′ c x by axiom (*3.23), hence x ≈e d∧e b W
′ c x. Analogously, one

receives W′ b x ≈e d∧e c x. The conclusion then follows by (3.25).
For the second statement of part 3, apply the first one to c = ⊥ and use

part 2.
4: Apply part 3 to d = ⊤ and c = e b: We have e c = e (e b) = e b.

Note how in part 3 of the previous lemma, we do not in general receive
equality in present value under conditions e b↔ e c (consider ¬e b ∧ ¬e c), but
only for conditions of “e” form.

Lemma 3.21 (W′ monotonicity).

1. If x ⪯e d∧e b y, then W′ b x ⪯e d W′ b y.

2. If x ⪯e d∧b y, then W′ b x ⪯e d∧¬ē b W
′ b y.

Proof. 1: We have x ⪯e d∧e b y ≈e b W′ b y. Analogously, W′ b x ⪯e d∧e b y.
Then by (3.25), the conclusion follows.

2: Apply the same consideration to (3.26) with b in place of e b.

Lemma 3.22. W′ b (W′ c x) ≈ W′ (e b ∧ e c) x.

Proof. Let f = e b ∧ e c. It is easy to see that f = e f . By (3.25), one needs to
show the following:

1. W′ b (W′ c x) ≈f x

2. W′ c x ≈e b W
′ f x

For the first statement, as f implies both e b and e c, we have by ax-
iom (*3.23):

W′ b (W′ c x) ≈f W′ c x ≈f x.

For the second statement, via lemma 3.20.3, one notes that

e b⇒ (e c↔ e f)

because (e c↔ e f) = (e c↔ f) = (e c↔ (e b ∧ e c)).

Remark 3.23. when′ b does not commute with or: For example, let o :: Obs R
be some observable and b :: OB and consider

W′ b (o ∨ 0) vs. W′ b o ∨W′ b 0 ≈ W′ b 0 ∨ 0.

On the RHS, the holder must make a choice at acquisition time. If she chooses
W′ b o, the value of o might be negative at time b, exposing her to risk. On the
LHS, she could in this case simply choose 0. An explicit counterexample is easily
constructed in a model such as in section 5. – Unless the fully deterministic
special case is considered, which is a LPT model, so LPT does not prove the
existence of a counterexample.

3.1 The present value relation 41

One direction of the above comparison always holds, namely that choosing
later, i.e. with more information available, is always better:

Lemma 3.24.
W′ b (x ∨ y) ⪰ W′ b x ∨W′ b y

Proof. x ∨ y ⪰ x, so by monotonicity W′ b (x ∨ y) ⪰ W′ b x. Likewise for y.
Then the claim follows by the universal property of the join.

3.1.7 anytime

Imagine a market participant acquiring A x: She can either exercise the option,
thus acquiring x, decide never to exercise the option, which would be equivalent
to exchanging it for the zero contract, or postpone the decision. Postponing
means waiting for a certain event b :: OB to occur,25 i.e. exchanging A x for
W′ b (A x).

Following this discussion, A x should be valued higher than x and than
W′ b (A x) for any b because it can reduce to these contracts and be minimal
with this property because it cannot do anything else:

A x ⪰ x (*3.29)
∀b :: OB : A x ⪰ W′ b (A x) (*3.30)

(z ⪰e d x and ∀b :: OB : z ⪰e d W′ b z)⇒ z ⪰e d A x (*3.31)

The argument for minimality is weaker here than for the other primitives: In
order to construct an portfolio, an arbitrageur would have to know the strategy
the counterparty is following, i.e. the event b they wait for. However, the results,
especially Merton’s theorem 4.34, suggest that the axiom is chosen correctly.

As for when′, e d here acts as a side condition which stays true if it was true
at acquisition.
Remark 3.25.

1. Uniqueness of A x up to present value follows again because it is given by
a universal property.

2. By setting b = ⊥ in (*3.30), we also receive

A x ⪰ 0. (3.32)

One first of all receives the expected monotonicity result similar to when′:

Lemma 3.26. If x ⪯e d y, then A x ⪯e d A y.

Proof. Use (*3.31) with respect to A x and z = A y:

• A y ⪰ y ⪰e d x by assumption.
25Of course, it is a design decision to model it like this. Note that in discrete time, there is

really only one relevant b per time step, namely waiting for the next point in time, a statement
which will be made precise in section 3.4. In continuous time, it might be argued that a human
trader could choose to exercise “arbitrarily” instead of waiting for a certain event, which could
mean e.g. that the holder waits for an event which is however not observable, like an internal
condition of her private company.

42 3.1 The present value relation

• W′ b (A y) ⪯ A y by (*3.30).

For the commutativity results, I first show a technical lemma:

Lemma 3.27. Let f :: Con → Con be a homomorphism of some partial order
“⪯e d” such that f (W′ b x) ≈e d W′ b (f x) for any x :: Con and b :: OB.

Then A (f x) ⪯e d f (A x).
If f even an automorphism up to “≈e d”, then A (f x) ≈e d f (A x).

Proof. For the first part, it suffices to show that f (A x) has the properties for
z from axiom (*3.31):

1. A x ⪰ x, so by monotonicity f (A x) ⪰e d f x.

2. For b :: OB we have by assumptionW′ b (f (A x)) ⪯e d f (W′ b (A x)) ⪯e d

f (A x).

For the second part, note that f−1 fulfills the assumption for this lemma as
well and hence we have

A x ≈e d A
(
f−1 (f x)

)
⪯e d f

−1 (A (f x)).

By applying f on both sides, the claim follows.

Now it is easily seen that anytime commutes with zero and scale α:

Lemma 3.28.

1. A 0 ≈ 0.

2. A (α · x) ≈ α · (A x).

Proof. 1: A 0 ⪰ 0 by (3.32). For “⪯”, apply lemma 3.27 to the homomorphism
λx. 0 and d = ⊤.

2: For α = 0, the statement is trivial. For α > 0, apply lemma 3.27 to the
automorphism λx. α · x.

Remark 3.29. One might expect anytime to commute with and, but that is not
the case. Comparing the contracts A (x+ y) and A x + A y, a holder of the
latter can choose when to acquire x and y independently, while for the former,
they must be acquired at the same time.

A counterexample can be constructed using variants of the read′ primitive
as follows. The functions used can be found in figure 7. Their semantics require
axioms from the following section 3.1.8.

Let t1 ̸= t2 :: Time, xi = cond (now = ti) one zero for i = 1, 2. Let
d = (now = min (t1, t2)). Then

A x1 + A x2 ⪰ at t1 x1 + at t2 x2
≈d one+ at t2 one

On the other hand, since x1+x2 ⪯ one by t1 ̸= t2 we have A (x1 + x2) ⪯ A one.
If interest rates exist and are non-negative (definition 4.4), then A one ≈ one

and one+ at t2 one ≻ one, so the two contracts are not equal in present value.
One receives that making choices separately is always better and that making

choices at exertion is always better than at acquisition:

3.1 The present value relation 43

Lemma 3.30.

A (x+ y) ⪯ A x+ A y

A (x ∨ y) ⪰ A x ∨ A y

Proof. First part: I show that A x + A y satisfies the preconditions of ax-
iom (*3.31) for A (x+ y):

• A x ⪰ x and A y ⪰ y, so A x+ A y ⪰ x+ y.

• W′ b (A x+ A y) ≈ W′ b (A x) +W′ b (A y) ⪯ A x+ A y.

Second part: Since x∨ y ⪰ x, one has by monotonicity also A (x ∨ y) ⪰ A x.
Analogous for y. Hence, by the universal property of “∨”, A (x ∨ y) ⪰ A x ∨
A y.

anytime commutes with when′ c:

Lemma 3.31.
A (W′ c x) ≈ W′ c (A x)

The intuition behind this statement is that if the anytime option at the
LHS is exercised early, one would have to wait for e c anyway, so there is no
point in doing that, and if it is exercised when e c is true, then x is acquired
immediately. So the LHS should be equivalent to first waiting for e c, then
receiving the option, which is what the RHS does.

Proof. “⪯”: Apply lemma 3.27 to λx. W′ c x. This is monotonic with respect
to “⪯” and for any b :: OB we have by lemma 3.22

W′ b (W′ c x) ≈ W′ (e b ∧ e d) x ≈ W′ c (W′ b x),

so the preconditions are fulfilled.
“⪰”: By axiom (*3.23) and monotonicity of W′ c and A (lemmas 3.21 and

3.26) we receive

W′ c x ≈e c x

⇒ A (W′ c x) ≈e c A x

⇒ W′ c (A (W′ c x)) ≈ W′ c (A x)

and W′ c (A (W′ c x)) ⪯ A (W′ c x) by axiom (*3.30).

Finally, A is idempotent. This is intuitively clear: An option which does
nothing but acquire another option can be collapsed.

Lemma 3.32.
A (A x) ≈ A x

Proof. “⪰” is axiom (*3.29). For “⪯”, apply minimality (axiom (*3.31)): We
have A x ⪰ A x trivially and A x ⪰ W′ b (A x) for all b by axiom (*3.30).

44 3.1 The present value relation

Remark 3.33. Define E x := −A (−x). E could also be written “sometime” in
contrast to anytime: The counterparty decides when the holder will acquire x.

It is easy to see that as in lemma 3.18, E will have all the properties of A
with “⪯” and “⪰” interchanged. I.e. the following holds:

E x ⪯ x (3.33)
∀b :: OB : E x ⪯ W′ b (E x) (3.34)

(z ⪯e d x and ∀b :: OB : z ⪯e d W′ b z)⇒ z ⪯e d E x (3.35)

For the intuition here, x should be thought of as being negative, i.e. the
holder of E x would want to avoid acquiring x. One can show by methods
above that if x ⪰ 0, then E x ≈ 0.

3.1.8 read′

read′ presents an interface between contracts and observables. To find axioms
for read′, one first notes how read′ is similar to join:

join :: Obs (Obs a)→ Obs a : join o defines an observable that, when read,
reads o at that same time and then reads the resulting observable.

read′ :: Obs Con→ Con : read′ p defines a contract that, when acquired, reads
p at that same time and then acquires the resulting contract.

One now expects laws similar to those of join to hold for read′ as well. The
axioms (*Mo3) and (*Mo4) can be made well-typed with read′ in place of join
as follows:

read′ ◦ join ≈ read′ ◦ fmap read′ (*3.36)
read′ ◦ return ≈ id (*3.37)

The following axiom guarantees compatibility with fmap: For i = 1, 2 let ai
be a type such that equality on ai is lifted to functions.26 Let fi :: ai → Con,
oi :: Obs ai and d :: OB. Then the following should hold:(

∀x1 :: a1, x2 :: a2 : f1 x1 ⪯
d∧o1=x1∧o2=x2

f2 x2

)
⇒ o1 ; f1 ⪯d o2 ; f2 (*3.38)

Recap that o; f = read′ (fmap f o), so this is indeed a rule for read′ and
fmap.

The axioms should be intuitively clear from the intended meaning of read′
and “;”. The condition (o1 = x1) ∧ (o2 = x2) in (*3.38) is used to transport
dependencies between the observables o1 and o2. If, to use the simplest case as
an example, o1 = o2, then the above condition is (o1 = x1) ∧ (o1 = x2), which
is ⊥ – and hence the premise is trivially true – unless x1 = x2. One can see
this by a standard lift reduction technique as in section 2.1. Hence, it suffices
to consider the case x1 = x2.

The following lemmas show that the above axioms indeed make read′ and
join compatible in an intuitive sense. Many of the following lemmas have a
counterpart in observables where “≫=” has been replaced by “;” and “b⇒ . . .”
has been replaced by “≈b”.

26For details of functional lifts of relations cf. appendix A.1.4. In short, ai must not be of
form Obs a or Con.

3.1 The present value relation 45

Lemma 3.34. Let f :: a → Con, g :: a → Obs Con and h :: b → Obs a. Let
o :: Obs a and p :: Obs b. Then

1. (return x); f ≈ f x for all x :: a

2. read′ (o≫= g) ≈ o; (read′ ◦ g)

3. (p≫= h); f ≈ p; (λx. (h x); f)

Proof. 1: By definition of “;”, the LHS is equal to read′ (fmap f (return x))
= read′ (return (f x)) by axiom (*Mo1) for observables, which is equal in
present value to f x by axiom (*3.37).

2:

λ o. o; (read′ ◦ g) = read′ ◦ fmap (read′ ◦ g)
= read′ ◦ fmap read′ ◦ fmap g
≈ read′ ◦ join ◦ fmap g
= λ o. read′ (o≫= g)

where the equalities all follow by definition or from the monad and functor laws
and the middle equality in present value holds by axiom (*3.36).

3:

(p≫= h); f = read′ (fmap f (p≫= h))

= read′ (p≫= (fmap f ◦ h))
≈ p; (read′ ◦ fmap f ◦ h)
= p; (λx. (h x); f)

where the middle equality in present value follows from 2.

Lemma 3.35. Let f :: a → Con and o :: Obs a such that equality is lifted for
the type a.

1. If ∀x :: a : f x ⪯d∧o=x g x, then o; f ⪯d o; g.

2. o; f ≈o=x f x for all x :: a.

3. If z :: Con and for all x :: a we have f x ⪯d∧o=x z, then o; f ⪯d z. The
analogous statement holds for “⪰”.

4. If for some x :: a we have f ≈ (const x), then o; f ≈ x.

Proof. 1: By axiom (*3.38), one needs to show:

∀x1, x2 :: a : f x1 ⪯
d∧o=x1∧o=x2

g x2

If x1 ̸= x2, it is seen by lift reduction that

(o = x1 ∧ o = x2) = fmap (λx. x = x1 ∧ x = x2) o

= fmap (const False) o = ⊥,

so in this case, the above condition is trivially true. If x1 = x2, the condition
true by assumption.

46 3.1 The present value relation

2: By 3.34.1, the RHS is equal (in present value) to (return x); f . So by
axiom (*3.38), it suffices to show that

∀y, z :: a : f y ≈b(y,z) f z

where b(y, z) := (o = x ∧ o = y ∧ (return x) = z). If y = z, the above state-
ment is always true. If y ̸= z, one shows by lift reduction that then b(y, z) = ⊥,
hence the statement is trivial: We have:

b(y, z)

= lift3 (λα β γ. α = x ∧ β = y ∧ γ = z) o o (return x)
= fmap (λα. α = x ∧ α = y ∧ x = z) o

The inner lambda term is const False unless x = y = z.
3: By 3.34.1, we have

z = (const z)() = (return ()); (const z)

where the value () is the unique element of the unit type (). Now by ax-
iom (*3.38), it suffices to show that

∀x :: a, ζ :: () : f x ⪯
d∧o=x∧(return ())=ζ

(const z) ζ

Of course, there is only one possible value for ζ, namely (), so (return () = ζ) =
⊤ and the statement above is equivalent to

∀x :: a : f x ⪯d∧o=x z

which is assumed to be true.
4: f ≈ (const x) means that for all y :: a, f y ≈ x. Then apply 3.

Remark 3.36. The converse of axiom (*3.38) now follows easily by lemma 3.35.2.
One receives the following “quantification theorem”, which is not directly

related to read′:
Corollary 3.37. Let x, y :: Con, d :: OB and o :: Obs a such that equality is lifted
for a.

If x ⪯d∧o=α y for all α :: a, then x ⪯d y.
Note how this is essentially a case distinction over the usually infinitely many

possible value of o while using the “normal” case distinction rule (*3.4), one can
only consider finitely many cases.

Proof. We have x ≈ o; (const x) and y ≈ o; (const y) by lemma 3.35.4.
Now apply lemma 3.35.1.

“;” commutes with the primitives which are time-local, i.e. all but when′
and anytime, in the following sense:
Lemma 3.38. Let a be a type such that equality is lifted for a, o :: Obs a and
f, g :: a→ Con. Let α :: R+. Then the following hold:

(o; f) + (o; g) ≈ o; λx. f x+ g x

−(o; f) ≈ o; λx. − (f x)

α · (o; f) ≈ o; λx. α · f x
(o; f) ∨ (o; g) ≈ o; λx. f x ∨ g x

3.2 Interim summary 47

Proof. I only show the statement for and. The others follow in a similar way
because they have similar monotonicity properties.

By lemma 3.35.3, it suffices to show that for all x :: a

(o; f) + (o; g) ≈o=x f x+ g x.

By lemma 3.35.2, o; f ≈o=x f x and the same holds for g, so by monotonicity
of and (axiom (*3.6)), this is true.

Remark 3.39. The above proof does not work for when′ and anytime: The time
when the observable is read matters and one needs to differentiate between
acquisition time and the time where the condition becomes true (when′) / when
the option is exercised (anytime).

Formally, the difference becomes visible by when′ and anytime putting an
additional condition into the premises of their monotonicity properties. E.g. for
showing

W′ b (o; f) ≈ o; λx.W′ b (f x),

one would have to show that for all x :: a

W′ b (o; f) ≈o=x W′ b (f x).

In contrast to the above combinators, this is not implied by o; f ≈o=x f x as
(o = x) is in general not in “e” form (cf. lemma 3.21).

This concludes the definition of the theory LPT.

3.2 Interim summary
Let’s recap the structural properties of the primitives from the previous section:

• All primitives are monotonic (give is reversely monotonic) with respect
to the relations “⪯e b”. In particular, all primitives are compatible with
“≈”.

• The primitives and, give, scale α and read′ are even (reversely) mono-
tonic with respect to all the relations “⪯b”. I call these primitives time-
local.

• All primitives commute with zero. The primitives and, give, scale α,
when′ and read′ commute with and: They are group homomorphisms. I
call these primitives choice-free.

• Anything commutes with scale α.

• or and anytime are uniquely defined by universal properties while and,
give, scale and read′ just expose certain known properties.

3.3 More about the structure of contracts
Remember how we defined

when :: OB→ Con→ Con
when b x = n; λ t.W′ (b ∧ n ≥ t) x.

48 3.3 More about the structure of contracts

when b x =: W b x acquires x the next time b becomes true. Peyton Jones and
Eber [3] introduced when instead of when′ as a primitive while I chose when′ for
its simpler formal properties such as the collapse rule 3.22 and defined when in
terms of when′.

One can also define when′ in terms of when as the following lemma shows:

Lemma 3.40.
W′ b x ≈ W (e b) x

In particular, if b = e b, then W′ b x = W b x.

Proof. One has to show:

W′ b x ≈ n; λ t.W′ (e b ∧ n ≥ t) x

Applying lemma 3.35.3 to the RHS, it suffices to show for all t :: Time that

W′ b x ≈n=t W′ (e b ∧ n ≥ t) x.

By lemma 3.20.3, it is enough to show that

e (n = t) ⇒ (e b↔ e (e b ∧ n ≥ t)).

“←”: Even without the e (n = t) precondition, e b⇐ (e b ∧ n ≥ t), and so also
e b = e e b⇐ e (e b ∧ n ≥ t). (when in doubt, cf. lemma 2.19.4)

“→”: As by axiom (*2.2), e (n = t) = n ≥ t, it suffices to show that n ≥ t⇒
This is equivalent to

(n ≥ t ∧ e b)⇒ e (e b ∧ n ≥ t),

which is clearly true.

Remark 3.41. The above lemma is not limited to the n observable: Let m :: Obs a
and define

f :: OB→ Con→ Con
f b x := m; λu.W′ (b ∧ e (m = u)) x.

Then by the same proof as above one receives that

W′ b x ≈ f (e b) x.

3.3.1 Pricing lemma

By combining scale and “;”, we receive the money function from figure 7:

money :: Obs R+ → Con
money o = o; λα. scale α one

Here, o is called the price of the contract money o (cf. section 4).
The following lemma is a generalization of lemma 3.12. It shows that prices

must behave accordingly to the present value relations:

3.4 Recursive equations for when′ and anytime 49

Lemma 3.42. Let o, p :: Obs R+. Then the following conditions are equivalent,
respectively, for any b :: OB:

1. money o ≺b⪯b
money p.

2. b⇒ (o <
≤ p)

Proof. First consider the “≤” variant:
By axiom (*3.38) and lemma 3.35.2, 1 is equivalent to

∀α, β : α · one ⪯b∧o=α∧p=β β · one.
⇔ ∀α, β : ((b ∧ o = α ∧ p = β) = ⊥) ∨ α ≤ β
⇔ ∀α, β : (b ∧ o = α ∧ p = β)⇒ (α ≤ β)
⇔ ∀α, β : ((o, p) = (α, β))⇒ (b→ α ≤ β)

where the first equivalence is due to lemma 3.12 and the others are easily seen.
Now apply lemma 2.17.2 to see that this is equivalent to

⊤ = ((o, p)≫= λ (α, β). b→ α ≤ β)
= b→ o ≤ p.

Now show the “<” variant:
(1 ⇒ 2): Assume that b ̸⇒ o < p, i.e. d := (b ∧ o ≥ p) ̸= ⊥. As d ⇒ o ≥ p,

by the “≤” part, money o ⪰d money p. Also, d ⇒ b, so by definition of “≺b”,
money o ̸≺b money p.

(2 ⇒ 1): Assume that money o ̸≺b money p. Then there is d ⇒ b, d ̸= ⊥,
money o ⪰d money p. By the “≤” part, then d⇒ o ≥ p. So b ̸⇒ o < p.

Corollary 3.43. Lemma 3.42 still holds if one allows o, p :: Obs R and replaces
money by moneyG.

Proof. Just replace lemma 3.12 by corollary 3.13 in the above proof.

3.4 Recursive equations for when′ and anytime
when′ and anytime can be characterized by certain recursive equations. Define

next :: Con→ Con
next x := n; λ t.W′ (n > t) x.

Of course, next x only matches its intuitive meaning when time is discrete:
Then next x acquires x at the next point in time after its own acquisition time.
If the assumption of discrete time is not made, next x can be thought of ignoring
all effects of x at acquisition time. For example, if x is a anytime option, then
next x is like x except for that the holder is not allowed to exercise immediately
on acquisition.

Theorem 3.44. Let x :: Con and b :: OB. Then

W′ b x ≈ cond (e b) x (next (W′ b x)) (3.39)
A x ≈ x ∨ next (A x) (3.40)

50 3.4 Recursive equations for when′ and anytime

Using the intuition for next from above, one receives the natural interpreta-
tions for (3.39) and (3.40):

• W′ b x is either x if e b is true and otherwise nothing happens and the
same check must be made again (strictly) later.

• A x can be either exercised to receive x or otherwise nothing happens and
one has the same choice again (strictly) later.

Proof. W′ part:
The statement is clear under conditions e b. So consider conditions ¬e b. We

have

cond (e b) x (next (W′ b x)) ≈¬e b next (W′ b x)

= n; λ t.W′ (n > t) (W′ b x)

≈ n; λ t.W′ (e (n > t) ∧ e b) x.

So it suffices to show that for any t

W′ b x ≈¬e b∧n=t W′ (e (n > t) ∧ e b) x.

I show that it holds even under conditions e (¬e b ∧ n = t). Via lemma 3.20.3 it
suffices to show that

e (¬e b ∧ n = t)⇒ (e b↔ e (e (n > t) ∧ e b)),

i.e. that
e (¬e b ∧ n = t) ∧ e b⇒ n > t.

This follows directly from lemma 2.25 with b := n = t and c := ¬e b: We receive
that the LHS implies ē (n = t) = n > t.

A part:
”⪰”: We have A x ⪰ x and A x ⪰ next (A x) because for any t :: Time we

have A x ⪰ W′ (n > t) (A x) by definition of A.
“⪯”: I show that x∨next (A x) fulfills the preconditions for the minimality

axiom (*3.31): We have x ∨ next (A x) ⪰ x trivially.
Let b :: OB. I show that

W′ b (x ∨ next (A x)) ⪯ x ∨ next (A x).

Under conditions e b, this is clear, so consider conditions ¬e b. We have for all
t :: Time

next (A x) ≈n=t W′ (n > t) (A x)

⪰ W′ (n > t) (W′ b (A x))

≈ W′ (e (n > t) ∧ e b) (A x)

⪰ W′ (e (n > t) ∧ e b) (x ∨ next (A x))

≈¬e b∧n=t W
′ b (x ∨ next (A x))

where the last relation was seen in the first part of this proof and the others
are applications of monotonicity of W′ and simple transformations.

3.4 Recursive equations for when′ and anytime 51

The converse of the previous theorem would be the statement that any con-
tract a for which e.g. (3.40) holds (where A x is replaced by a) is equal to
anytime. But this is not clear in general:

For example, consider a model A where TimeA is the ordinal number ω+ω
and assume that this is known to the theory by – say – some constant symbols
c0 in the “lower part” and c1 in the “upper part”. If a ≈ x ∨ next a is acquired
at time c0, then a models waiting any finite number of time steps by successively
choosing the next a alternative, but it is not clear how one would model waiting
for time c1.

One can require that this situation does not occur as far as the theory is
concerned by the following axiom:

Definition 3.45. Reverse inductive time is the following schema:
For any formula with parameters ϕ(t :: Time, ȳ :: ā) we have the following:

∀ȳ : (∀t : (∀t′ > t : ϕ(t′, ȳ))→ ϕ(t, ȳ))→ (∀t : ϕ(t, ȳ))

It is easy to see that under reverse inductive time the Time type is either
empty or it has a maximum. Examples include any model where Time is finite
and the ordering ←−ω of the natural numbers with their ordering reversed.

Under the assumption of reverse inductive time, we will see that the equa-
tions from theorem 3.44 are sufficient to characterize W′ b x and A x, respec-
tively.

I first show a very helpful technical lemma which states that reverse induction
can also be done via next:

Lemma 3.46. Assume reverse inductive time. Let x, y :: Con and d :: OB be
such that for all c :: OB we have

next x ⪯c∧e d next y ⇒ x ⪯c∧e d y.

Then x ⪯e d y.

Proof. Wlog. assume that d = e d. Via corollary 3.37 it suffices to show that
x ⪯n=t∧d y for any t :: Time. By assumption it now suffices to show by reverse
induction that

next x ⪯n=t∧d next y

for any t.
So fix a t :: Time and assume that the statement holds for any t′ > t. We

have

next x ≈n=t W
′ (n > t) x

next y ≈n=t W
′ (n > t) y

and by monotonicity of W′ (n > t) it is enough to show that x ⪯n>t∧d y. (Here,
the condition n > t ∧ d is of the right form for lemma 3.21 because n > t =
e (n > t) and d = e d and so n > t ∧ d = e (n > t ∧ d).)

It remains to see that this follows from the inductive assumption: By another
application of corollary 3.37, the above statement is equivalent to having for all
t′ :: Time

x ⪯d∧n>t∧n=t′ y

52 3.4 Recursive equations for when′ and anytime

which is trivially true for t′ ≤ t and for t′ > t it is equivalent to

x ⪯d∧n=t′ y

which is given by the inductive assumption.

Theorem 3.47. Assume reverse inductive time. Let x :: Con and b :: OB.

1. If w :: Con is such that

w ≈ cond (e b) x (next w),

then w ≈ W′ b x.

2. If a :: Con is such that
a ≈ x ∨ (next a),

then a fulfills the universal property of A x. In particular, a ≈ A x.

Proof. 1: From (3.39) and the assumption on w it is clear that whenever
next w ≈c next (W′ b x), then w ≈c (W′ b x). Hence, by lemma 3.46 for
d = ⊤, the claim follows.

2: By the same argument as in the first part, it is clear that a ≈ A x. I show
directly that a must have the universal property, without using the existence of
A x.

I show the axioms of A x, where A x is replaced with a:

a ⪰ x (*3.29/a)
∀b :: OB : a ⪰ W′ b a (*3.30/a)

(z ⪰e d x and ∀b :: OB : z ⪰e d W′ b z)⇒ z ⪰e d a (*3.31/a)

(*3.29/a) is clear.
(*3.30/a) can be shown using lemma 3.46: Assume that next a ⪰c

next (W′ b a). Now:

a ≈ a ∨ next a ⪰c a ∨ next (W′ b a)

⪰ cond (e b) a (next (W′ b a))

≈ W′ b a.

Here, the middle equation is just because a∨next (W′ b a) is greater than each
of the two branches of the cond and the last one is (3.39).

(*3.31/a) follows again using lemma 3.46: Assume that z is as in (*3.31/a)
and assume that next a ⪯e d∧c next z for some c :: OB.

We have next z ⪯e d z (as W′ (n > t) z ⪯e d z for all t) and x ⪯e d z. So

z ⪰e d x ∨ next z ⪰e d∧c x ∨ next a ≈ a.

Remark 3.48. The proof of the A x part of the previous lemma did not use the
existence of A x. Hence, when constructing a model, it is enough to show that
the model for A x has the property 3.47.2 in order to see that the axioms for
A x are satisfied. This fact will be exploited in section 5.3.

For when′, no such variant can be given: The definition of next already uses
when′.

4 Applications 53

4 Applications
In this section, I present formalizations in LPT of the fundamental concepts
from finance such as prices and interest and I give formal proofs of the best
known theorems from arbitrage theory.

Informal proofs of all statements can be found in [1]. Hull describes arbitrage
statements for dividend-free shares such as the famous put-call parity and the
rule for forward prices. One of the core questions this section is going to answer
is what a dividend-free share is actually supposed to be.

4.1 Prices
The notion of a price is typically treated by common sense, but it is easy to
define formally in LPT:

Definition 4.1. If o :: Obs R, x :: Con and b :: OB, then o is called a price for x
(under conditions b) if x ≈ moneyG o (x ≈b moneyG o).

Note that prices are unique by corollary 3.43 if they exist. Whether or not
prices exist is not clear: In the discrete-time model from section 5.3 they always
exist, but example 4.14 describes a contract which cannot have a price if dense
time is assumed.
Remark 4.2. As usual, I left out currencies. It is clear that a price is always
coupled with the currency it is denoted in. Different currencies will be considered
in section 4.3.

One receives that prices for the time-local combinators can easily be com-
puted, so the difficult points are really only when′ and anytime:

Theorem 4.3. Let x, y :: Con and let o, p :: Obs R be prices for x and y,
respectively.

1. return 0 is a price for zero.

2. −o is a price for give x.

3. o+ p is a price for and x y.

4. max (o, p) is a price for or x y.

5. If q :: Obs a, f :: a→ Con and g :: a→ Obs R are such that for any x :: a,
g x is a price for f x under conditions (o = x), then q≫= g is a price for
q; f .

These statements extend to prices under conditions as well.

Proof. Part 5: We have

q; f ≈ q; λx. moneyG (g x)

= q; λx. g x; λα. scaleG α one
≈ (q≫= g); λα. scaleG α one
= moneyG (q≫= g)

where the first relation follows from the assumption and the third is lemma 3.34.3.

54 4.2 Interest

Other parts: As all the combinators are compatible with “≈”, it suffices to
show the following:

moneyG (return 0) ≈ zero
moneyG (−o) ≈ give (moneyG o)
moneyG (o+ p) ≈ and (moneyG o) (moneyG p)
moneyG (max (o, p)) ≈ or (moneyG o) (moneyG p)

It is easy to see using the properties of “;” from section 3.1.8 that it now
suffices to show the following block:

scaleG 0 one ≈ zero
scaleG (−α) one ≈ give (scaleG α one)
scaleG (α+ β) one ≈ and (scaleG α one) (scaleG β one)
scaleG (max (α, β)) one ≈ or (scaleG α one) (scaleG β one)

To see this, note how the four combinators are time-local and hence are com-
patible with relations such as “≈o=α”. This would already fail for when′ b and
anytime!

Now the equations for zero and give are clear by definition of scaleG. For
and and or, the relations were were seen in axiom (*3.17) and lemma 3.17,
respectively, if one replaces scaleG with scale. The scaleG variants are then
seen using a simple case distinction.

All arguments extend to prices under conditions because all time-local com-
binators are compatible with all the “≈b” relations.

4.2 Interest
A essential concept related to prices are (risk-free) interest rates which describe
the “price of future money”.

Definition 4.4. Define R+
= R+∪{∞} where∞ should have the usual informal

semantics like 1
∞ = 0 etc. R+ could be modeled by Maybe R+ where Nothing

represents ∞ and many case distinctions.
The (risk-free) zero-coupon bond (ZCB) forK :: R+ and b :: OB is the contract

Kb that pays K dollars as soon as b becomes true. I.e.:

Kb := when′ b (K · one)

If 1b has a price o :: Obs R, then o ≥ 0 because 1b ⪰ 0. Then define the (risk-free)
b-interest factor Rb :: Obs R+ as Rb :=

1
o . Note that Rb > 0 if it exists.

If ∆t :: TimeDiff, ∆t ≥ 0, also write

K∆t := after ∆t (K · one).

If 1∆t has a price o :: Obs R, then one receives analogously to above the ∆t-
interest factor R∆t. In addition, one may define the ∆t-interest rate27

r∆t := n; λ t. R
1

ι (t+∆t)−ι t

∆t − 1.

27An alternative form would be (ln (ι (t+∆t)− ι t))/r∆t, so R∆t = n ;

λ t. exp (r∆t · (ι (t+∆t)− ι t)), the traditional form of continuous compound interest [1,
sec. 4.2].

4.2 Interest 55

The function ι :: Time → R is from section A.3.3. In this section, it is also
explained why there is not in general an embedding TimeDiff→ R.

Clearly, interest factors and rates are unique if they exist. It is further clear
that interest factors are the same if the face value 1 of the ZCB is replaced by
anything else.

Note how we have

R∆t = n; λ t. (1 + r∆t)
ι (t+∆t)−ι t

as expected. This could be written R∆t = (1 + r∆t)
∆t as well.

The above definition allows infinite interest rates and factors to model events
that might not occur: An extreme example is R⊥, a less extreme one is R∆t

in a finite-time model in a situation where one is closer than ∆t to the end of
time: In both cases, a ZCB would never be paid, hence its price is 0. Thus,
the respective interest factor and rate must be ∞. One could also argue that
since the ZCB is never paid, writers can promise arbitrarily high – and hence
“in price” infinite – interest rates.

Note that the idea of “interest” is generalized here: Typically, only the
∆t-variants would be called actual “interest” constructions. The b-variants gen-
eralize the concept to uncertain events.
Remark 4.5. r∆t is well-defined:

• Recap that t+∆t is actually timeOffset t∆t :: Maybe Time. The Nothing
case is not considered above, but one can set r∆t to∞ in situations where
n+∆t = Nothing. This is reasonable by the following argument:
Assume that t + ∆t = Nothing. Then after ∆t (1 · one) ≈n=t 0, hence
(n = t)⇒ (R∆t =∞), and ∞α =∞ for any α > 0. Also, ∆t > 0 because
t+ 0 = Just t.

• If ι (t+∆t)− ι t = 0, then ∆t = 0 as both timeOffset and ι are strictly
monotonic. It is easy to see that then R0 = 1 and 1∞ = 1. So one has
R0 = 1.

It is usually assumed that the interest rates r∆t or interest factors R∆t always
exist, but I shall not need this in general.

It is also often assumed that R∆t is a constant of form R∆t = return r,
r ∈ R+, or that r∆t does not depend on ∆t. The first assumption would mean
that interest rates can’t change over time. The second would mean that the yield
curve is perfectly flat.28 Both assumptions turn out to be wrong in practice and
are not required here.

Another common assumption is the following.

Definition 4.6. Non-negative interest rates is the assumption that

one ≈ A one.

Lemma 4.7. The following are equivalent:

1. Non-negative interest rates hold.
28Cf. “Term structure of interest rates” in [1]

56 4.2 Interest

2. one ⪰ when′ b one for any b :: OB.

3. one ⪰ 1b for any b :: OB.

Assume that all b-interest factors exist. Then the following is also equivalent to
the previous group of statements.

4. Rb ≥ 1 for any b :: OB.

Given that all ∆t-interest factors exist, the previous group implies the following,
which are also equivalent:

5. one ⪰ when′ (n = t) one for any t :: Time.

6. R∆t ≥ 1 for any ∆t :: TimeDiff.

7. r∆t ≥ 0 for any ∆t :: TimeDiff.

Part 7 is what is typically meant when the term “non-negative interest rates”
is used in an informal context.

Proof. All statements follow directly from the definitions. The transition from
“⪯” to comparing prices is done via corollary 3.43.

One receives that the notion of an “interest rate” matches the intuition as
follows:

Theorem 4.8. Assume that b :: OB, ∆t ≥ 0 and their interest factors exist.
Then

Rb ; λα.W′ b α ≈Rb<∞ one
R∆t ; λα. after ∆t α ≈R∆t<∞ one.

Here, α =∞ may stand for any contract and α <∞ stands for α · one.

Proof. We have by definition 1
Rb
≈ W′ b one. This implies that

one ≈Rb<∞ Rb ·W′ b one
= Rb ; λα. α ·W′ b one
≈ Rb ; λα.W′ b α

where the last relation is by axiom (*3.22).
The statement for ∆t is shown analogously.

Corollary 4.9. Let b and ∆t be as in theorem 4.8. Then

Rb ; λα.W′ b α ≈ cond (Rb <∞) one zero
R∆t ; λα. after ∆t α ≈ cond (R∆t <∞) one zero

Here, α =∞ can stand for any contract of form β · one, β ∈ R+.

Proof. The (Rb <∞) branch follows from theorem 4.8. For the other branch,
we have that W′ b one ≈Rb=∞ zero because 1

Rb
is a price for W′ b one and

then also W′ b β ≈Rb=∞ zero for any β ∈ R+.

4.2 Interest 57

A very simple consequence is that fixed future payments can be converted
into payments at acquisition time by dividing by the respective interest factor:

Corollary 4.10 (Discounting future payments). If α :: R, b :: OB and Rb exists,
then

W′ b α ≈ 1

Rb
· α

Proof. Clear by the above. Note how the ∞ case works as well.

Remark 4.11. The natural generalization of corollary 4.10 to Obs R is

o; λα.W′ b α ≈ 1

Rb
· o.

The LHS cannot be replaced by

W′ b o.

The difference here is the point in time when the observable o is read: The
former contract reads it at acquisition time while the latter reads it at time b.
It is clear that this is not the same, for example for o = if′ (e b) 0 1.

The equations from theorem 4.8 – with the special interpretation for ∞ –
uniquely define Rb:

Lemma 4.12. Let b :: OB and let o :: Obs R+ be such that

W′ b β ≈o=∞ zero for all β ∈ R+

o; λα.W′ b α ≈o<∞ one.

Then 1
o is a price for W′ b one, i.e. o = Rb.

The respective statement for ∆t holds as well.

Proof. First consider conditions o = ∞, which implies 1
o = 0. So one needs to

show that W′ b one ≈o=∞ zero, which is true by the first condition for β = 1.
Now consider conditions o <∞. Then the statement follows by multiplying

by 1
o like in the proof of theorem 4.8.

Remark 4.13 (Negative interest rates). At first sight, the assumption that

one ⪰ W′ b one

seems reasonable: A trader having a dollar, i.e. one, in cash can commit to not
use the money before b, therewith transforming it into W′ b one. The dollar is
stored until time b.

However, it was seen in lemma 4.7 that this statement is equivalent to non-
negative interest rates (also from an intuitive point of view, it is also clear that
an interest rate of 0 can always be realized by storing money in cash) and we
know that negative interest rates, though rare, have happened in the past.

It follows that the intuition of one as “cash” must be wrong and there can
be a cost associated to “storing” money.

58 4.2 Interest

Example 4.14 (A priceless contract). Assume that time is dense in the following
sense:

∀t :: Time, ε :: R+, ε > 0 ∃∆t :: TimeDiff, t′ :: Time :

t+∆t = Just t′ ∧ 0 < ι t′ − ι t < ε

Assume further that all ∆t-interest rates exist and that there is an observable
o :: Obs R+ such that r∆t ≤ o for any ∆t. Define for t :: Time the following
observables:

a t := n; λ t′. (1 + o)
t′−t

b t := n; λ t′. if′ (t = t′) 0

(
1

t′ − t

)
Here, t′ − t is short for ι t′ − ι t. Then the following contract has no price:

x := n; λ t. A (a t · b t)

The idea is that the b part of x pays arbitrarily high amounts if the holder only
exercises quickly enough strictly after acquisition. The factor a is used to equate
for the time difference between acquisition and exertion time. It is only needed
in the pathological situation where the r∆t values behave similarly.

As it can’t have a reasonable price, the contract x would not be traded
at a stock exchange. It is however possible that a “priceless” derivative is ex-
changed for another one in a direct (or “over-the-counter”) agreement between
two traders.

Proof. I show that x ⪰ α for any α :: R. Then also x ⪰ α + 1 ≻ α for any α
and so x ≻ o for any o :: Obs R, hence there is no price.

So let α > 0. Let t :: Time and choose ∆t and t′ as in the assumption for
ε = 1

α .
We have

α = α · one
≈n=t (1 + r∆t)

t′−t · after ∆t α

⪯ ot
′−t · after ∆t α

≈n=t after ∆t (a t · α).

The last relation is easily seen from the facts that after∆t y ≈n=t W
′ (n = t′) y

and (n = t′)⇒ a t = ot
′−t.

We further have (n = t′)⇒ b t = 1
t′−t ≥ α. So in total we get

α ⪯n=t after ∆t (a t · b t)
⪯ A (a t · b t) = x.

As t was arbitrary, the claim follows (using corollary 3.37).

Remark 4.15. In the previous proof, it would have been sufficient to assume
that r∆t ≤ o for sufficiently small ∆t. This assumption is reasonable as r∆t is
typically decreasing as ∆t decreases, at least for small ∆t.

4.3 Exchange Rates 59

4.3 Exchange Rates
Again related to prices is the “price of another currency”, i.e. the exchange rate.

Definition 4.16. Let k, s :: Currency. The k/s-exchange rate W k/s :: Obs R+

– if it exists – is the price of one s in currency k, i.e.

one s ≈ W k/s · one k.

The definition extends to include market conditions of type OB as usual. By
uniqueness of prices, exchange rates are unique if they exist.

Theorem 4.17 (Currency conversion / cross rates). Let k, s :: Currency and
assume that W k/s exists.

1. W k/k always exists and W k/k = return 1

2. W k/s > 0

3. W s/k exists as well and W s/k = 1
Wk/s

4. If x :: Con and o :: Obs R is a price for x in currency s, then o ·W k/s is a
price for x in currency k.

5. If t :: Currency is such that W s/t exists, then W k/t exists as well and

W k/t = W k/s ·W s/t. (4.1)

The statements all extend to prices under conditions.

Equation (4.1) is typically called cross rates equation.

Proof. 1: Clearly, return 1 is a price for k in currency k.
2: We have

0 · one k ≈ zero ≺ one s ≈ W k/s · one k.

Then by lemma 3.42 the claim follows.
3:

1

W k/s
· one s ≈ 1

W k/s
·
(
W k/s · one k

)
≈

(
1

W k/s
·W k/s

)
· one k ≈ 1 · one k

≈ one k

The “associativity” of “·” used in the middle relation is a straightforward gen-
eralization of axiom (*3.13) to Obs R.

4:

x ≈ o · (one s)
≈ o ·

(
W k/s · one k

)
≈

(
o ·W k/s

)
· one k

5: Apply part 4 to x = one t and o =W s/t. Then W k/s ·W s/t is a price for
one t in currency k as wanted.

60 4.4 Forwards

Remark 4.18.

1. It is usually assumed that all exchange rates exist. If this assumption
is dropped, one receives the classes of the equivalence relation “have an
exchange rate” as separate commodities which are not directly related.

2. Foreign exchange is one of the places where one typically hits the BID-
ASK spread in reality: The rate at which one can buy, say, USD for EUR
(ASK) is typically lower than the rate for which one can sell USD for EUR
(BID), so going from EUR to USD and back again results in a loss. Cf.
section 6.1.

4.4 Forwards
After the many different flavors of prices, one can consider the first example of a
“real” derivative, namely a forward. Forward contracts fix a price for a certain
asset in advance:

Definition 4.19. A forward contract allows and obliges the holder to buy a
certain asset at a certain point in the future for a fixed price K. The position
described here is called long forward, the counterparty position is called short
forward.

Formally:

forward :: OB→ R→ Con→ Con
forward b K x := W′ b (x−K)

Also write Fb,K,x for forward b K x. For o :: Obs R+ also write Fb,o,x and
forward b o x for

o; λK. Fb,K,x.

Recap that this is completely different from W′ b (x− o): The price K is fixed
at acquisition time, not at time b.

o :: Obs R is called a forward price for x and b (under conditions c) if
Fb,o,x ≈ 0 (Fb,o,x ≈c 0).

Usually in the above definition, b = (n = T) for some T :: Time, but I shall
not be so strict for the general case.

Theorem 4.20 (Forward Prices). Let x :: Con and b :: OB. Let o :: Obs R
be a price for x and assume that the interest factor Rb exists. The following
statements are equivalent:

1. Rb · o is a forward price for x and b under conditions Rb <∞.

2. W′ b x ≈Rb<∞ x.

Here, the ∞ value of Rb can be assigned any contract, as usual.

Proof.

Fb,(Rb·o),x = (Rb · o); λK.W′ b (x−K)

≈ W′ b x− (Rb · o); λK.W′ b K

≈Rb<∞ W′ b x− o
≈ W′ b x− x

4.5 European options, put-call parity 61

The last relation is because x ≈ o by assumption and the previous one is by
corollary 4.10.

The above equivalence gives a first indication for how to define a dividend-
free share: Hull[1, sec. 5.4] states that statement 1 should hold whenever b =
(n = T).

Corollary 4.21 (Forward Exchange Rate). Let k, s :: Currency, b :: OB and
assume that W k/s, Rb,k and Rb,s exist (interest factors for the two currencies).
Then

W k/s · Rb,k

Rb,s

is a forward price in currency k for b and one s under conditions Rb,k <
∞∧Rb,s <∞.

This observable is also called k/s-forward exchange rate for b.

Proof. Let x = 1
Rb,s
· one s. We have that e b ⇒ Rb,s = 1 and hence x ≈

W′ b (one s) ≈ W′ b x, both by definition of Rb,s.
1

Rb,s
is trivially a price for x in currency s and hence by lemma 4.17.4,

o :=W k/s · 1
Rb,s

is a price for x in currency k.
Now apply the previous theorem 4.20 in currency k to x and o to receive

that Rb,k · o = W k/s · Rb,k

Rb,s
is a forward price for x in currency k. Finally, note

again that x ≈e b one s, so by definition of forward, any forward price for x is
also a forward price for one s.

4.5 European options, put-call parity
If one removes from forwards the obligation of the holder to buy even if it is un-
profitable for her, one arrives at European options. There will be no equivalent
of the forward price for options.

Definition 4.22. A European call option is a contract that grants the holder
the right, but not the obligation, to buy a certain asset at a certain point in the
future for a fixed price K. A European put option grants the holder to sell the
asset for a fixed price.

In general terms, define

europeanCall :: OB→ R+ → Con→ Con
europeanCall b K x = W′ b ((x−K) ∨ 0)

europeanPut :: OB→ R+ → Con→ Con
europeanPut b K x = W′ b ((K − x) ∨ 0)

Also write Cb,K,x for europeanCall b K x and Pb,K,x for europeanPut b K x.

As for forwards, one often uses b = (n = T) for some T :: Time.
One can now continue to show the put-call parity from section 1.1 formally:

Definition 4.23. Recap the definition of Kb from section 4.2.
A triple (x :: Con, b :: OB,K :: R+) satisfies the put-call parity (PCP) if

Pb,K,x + x ≈ Cb,K,x +Kb (PCP)

62 4.6 American options, Merton’s theorem

Theorem 4.24. Let x :: Con and b :: OB. The following are equivalent:

1. (x, b,K) satisfies the PCP for some K :: R+.

2. (x, b,K) satisfies the PCP for all K :: R+.

3. W′ b x ≈ x.

Proof. (2 ⇒ 1) is trivial.
(1⇒ 3⇒ 2): I show that for all K, (x, b,K) satisfies the PCP iff W′ b x ≈ x.

(PCP) is equivalent to

x ≈ Cb,K,x +−Pb,K,x +Kb

= W′ b ((x−K) ∨ 0)−W′ b ((K − x) ∨ 0) +W′ b K

≈ W′ b (((x−K) ∨ 0)− ((K − x) ∨ 0) +K).

So it suffices to show that the inner contract on the RHS is equal in present
value to x.

To see that, note that

(x−K) ∨ 0 ≈ (x ∨K)−K
(K − x) ∨ 0 ≈ (K ∨ x)− x

by lemma 3.15.1. So

(((x−K) ∨ 0)− ((K − x) ∨ 0) +K

≈ ((x ∨K)−K)− ((K ∨ x)− x) +K

≈ (x ∨K)−K − (K ∨ x) + x+K

≈ x.

Hull[1, sec. 10.4] shows the put-call parity for dividend-free shares and b =
(n = T), but without explicitly stating the preconditions or that the statement
actually forms an equivalence.
Remark 4.25. For ∆t :: TimeDiff one receives a time-offset variant as

C∆t,K,x := n; λ t. C(n=t+∆t),K,x

P∆t,K,x := n; λ t. P(n=t+∆t),K,x

and if after ∆t x ≈ x, then one receives

P∆t,K,x + x ≈ C∆t,K,x +Kb.

This is easy to see by showing it under conditions (n = t) for all t :: Time using
the previous theorem and then applying the quantification corollary 3.37.

4.6 American options, Merton’s theorem
The options in the previous section being called “European” suggests that there
is another type of options, namely American options which grant the holder the
additional right to exercise before maturity:

4.6 American options, Merton’s theorem 63

Definition 4.26. A American call option is a contract that grants the holder
the right, but not the obligation, to buy a certain asset until and including a
certain point in the future for a fixed price K. A American put option grants
the holder to sell the asset for a fixed price.

Define the following helper function (general American option):

american :: OB→ Con→ Con
american b y = A yb

where yb = cond (ē b) 0 y

Now define:

americanCall :: OB→ R+ → Con→ Con
americanCall b K x = american b ((x−K) ∨ 0)

americanPut :: OB→ R+ → Con→ Con
americanPut b K x = american b ((K − x) ∨ 0)

Also write Cb,K,x for americanCall b K x and Pb,K,x for americanPut b K x.
Due to the nature of anytime options, we could have left out the “∨0” parts

here, but they will prove useful for conformity with European options.
So american b y gives the holder the option to acquire y up to and including

the first occurrence of b. As usual, in the literature, b = (n = T) for some
T :: Time, but my approach allows more general conditions.

The aim of this section is now to prove the following statement, which is
sometimes attributed to Merton:

Given nonnegative interest rates, an American call option on a
dividend-free share is never exercised before maturity. Hence, the
American and European call options are equal in present value.

I start with a few preparations:
First, for working with american, one needs to restrict b to “reasonable”

conditions. As an example, consider b = (n > T): american b y is thought to
be valid until and including the first occurrence of b. However, it is not clear
what this is supposed to mean unless time is discrete. For these “strange” b,
Merton’s theorem does not hold and one needs to exclude them as follows:
Definition 4.27. An observable b :: OB is called initialized if

e b = e (f b).

Lemma 4.28. Let y :: Con and b :: OB initialized. Then

W′ b yb ≈¬ē b W
′ b y.

Proof. As b is initialized, the statement is equivalent to

W′ (f b) yb ≈¬ē (f b) W
′ (f b) y.

To see this for the condition, note that ē b = ē (e b) = ē (e (f b)) = ē (f b).
By lemma 3.21, it now suffices to show

yb ≈f b y,

which is clear by definition of yb since f b⇒ ¬ē b.

64 4.6 American options, Merton’s theorem

Remark 4.29. Lemma 4.28 is wrong if b is not initialized:
For example, consider a model where time is dense after t, i.e.

∀t′ > t ∃t′′ : t < t′′ < t′

and let b = n > t. Then it is easy to see that ē b = n > t = b and hence
¬ē b = n ≤ t = ¬b. Note also that b = e b.

We have yb = cond b 0 y ≈b 0 and so W′ b yb ≈ W′ b 0 ≈ 0 by lemma 3.21.
But the RHS W′ b y is not in general 0 which can be seen from the properties
of the next operation in section 3.4.

Lemma 4.30. Let y ⪰ 0 and b, c :: OB be arbitrary. Then

1. W′ c yb ⪯e b yb.

2. W′ c (W′ b yb) ⪯ W′ b yb

Proof. 1:
Use case distinction for e b = ē b ∨ f b⇐ ē b ∨ e c ∨ (¬e c ∧ f b).
For e c, the statement is trivial.
For ē b, note that yb ≈ē b 0 by definition and ē b = e (ē b), so one can apply

the monotonicity lemma 3.21 to receive

W′ c yb ≈ē b W
′ c 0 ≈ 0 ≈ē b yb.

For f := ¬e c ∧ f b, note the following:

1. f ⇒ ¬ē b and yb ≈¬ē b y by definition. Further, y ⪰ 0 by assumption.

2. f ⇒ b ∧ ¬e c⇒ e (b ∧ ¬e c) and

W′ c yb ≈e (b∧¬e c) W
′ c 0 ≈ 0.

To see this, note that e (b ∧ ¬e c)∧e c⇒ ē b by lemma 2.25 and recap that
yb ≈ē b 0 by definition. Then apply monotonicity of W′ c (lemma 3.21).

In total we have
yb ≈f y ⪰ 0 ≈f W′ c yb.

2:
By lemma 3.22, W′ c (W′ b yb) ≈ W′ b (W′ c yb). Now, applying mono-

tonicity of W′ b to part 1, the claim follows.

Remark 4.31. From the proof of the previous theorem, it is clear that the as-
sumptions could be weakened to y ⪰¬ē b 0 or even y ⪰¬e c∧f b 0.

As expected, one receives the “easy direction” that the American option is
always worth at least as much as the European one. Recap that the “general”
version of the European options corresponding to american is simply W′.

Theorem 4.32. Let b :: OB be initialized.

1. If y :: Con, then
american b y ⪰¬ē b W

′ b y.

4.6 American options, Merton’s theorem 65

2. If K :: R+ and x :: Con, then

Cb,K,x ⪰¬ē b Cb,K,x

Pb,K,x ⪰¬ē b Pb,K,x.

Proof. 1:

american b y = A yb

⪰ W′ b (A yb) ⪰ W′ b yb

≈¬ē b W
′ b y

by lemma 4.28.
2 now follows directly from the definitions of the involved contracts.

Remark 4.33. The ¬ē b constraint above is due to a technical detail: An Ameri-
can option acquired strictly after maturity, i.e. in a situation where ē b holds, is
worthless, while for a European option as defined above, the underlying contract
is acquired immediately.

One receives a variant of american which mirrors the above behavior of the
European option by

american′ b y := cond (e b) (y ∨ 0) (american b y).

For this variant, one receives “⪰” without side conditions in theorem 4.32. I
use american here for simplicity.

Theorem 4.34 (Merton, general version). Let b :: OB be initialized and y :: Con
be such that 0 ⪯ y ⪯ W′ b y. Then

american b y ⪯ W′ b y.

As W′ b y ⪯¬ē b american b y by theorem 4.32, we receive equality in present
value under conditions ¬ē b.

Proof. Perform case distinction on ⊤ = ē b ∨ ¬ē b:
For ē b, we have y ⪰ 0 and hence also W′ b y ⪰ W′ b 0 ≈ 0. On the other

hand, yb ≈ē b 0 and hence also american b y = A yb ≈ē b 0 (via monotonicity.
We have ē b = e (ē b).)

So consider ¬ē b. By lemma 4.28 and definition of american it suffices to
show that

A yb ⪯ W′ b yb.

To that end, I use minimality of anytime (axiom (*3.31)). One has to show the
following:

1. W′ b yb ⪰ yb

2. W′ b yb ⪰ W′ c (W′ b yb) for all c :: OB.

66 4.6 American options, Merton’s theorem

2 is just lemma 4.30.2.
1 follows from the assumption as follows: Do case distinction on⊤ = e b∨¬ē b.

For e b, the statement is trivial, so consider ¬ē b.
Since we have y ⪰ 0, also y ⪰ yb (cf. definition of yb) and so

yb ⪯ y ⪯ W′ b y ≈¬ē b W
′ b yb

where the second relation is by assumption and the third is lemma 4.28.

Corollary 4.35 (Merton). Assume non-negative interest rates.
Let b :: Con be initialized and let x :: Con be such that W′ b x ⪰ x. Let

K :: R+. Then
Cb,K,x ⪯ Cb,K,x.

As for the general case, we receive equality in present value under conditions
¬ē b together with theorem 4.32.

Proof. Non-negative interest rates imply that W′ b one ⪯ one. Hence

x−K ⪯ W′ b x−W′ b K ≈ W′ b (x−K).

By 0 ≈ W′ b 0 one then receives

0 ∨ (x−K) ⪯ W′ b 0 ∨W′ b (x−K) ⪯ W′ b (0 ∨ (x−K))

where the last relation is lemma 3.24.
Hence, 0∨(x−K) is suitable for theorem 4.34 and the result follows directly

from the definition of Cb,K,x and Cb,K,x.

As for forward prices and the put-call parity, Hull[1, sec. 10.5] states the
above corollary for dividend-free shares and b = (n = T).
Remark 4.36. For ∆t :: TimeDiff one receives a time-offset variant like for
European options as

C∆t,K,x := n; λ t. C(n=t+∆t),K,x.

It is clear that (n = t+∆t) is initialized and if after ∆t x ⪰ x, then one again
receives

C∆t,K,x ⪯ C∆t,K,x.

One can also consider the next occurrence of an event b :: OB via

C̃b,K,x := n; λ t. C(b∧n≥t),K,x

C̃b,K,x := n; λ t. C(b∧n≥t),K,x.

If b is now such that b ∧ n ≥ t is initialized for any t :: Time, W b x ⪰ x and
non-negative interest rates are assumed, then

C̃b,K,x ⪯ C̃b,K,x.

One receives the converse of the two variants of Merton’s theorem as well if
one can assume the involved contracts to be non-negative in present value:

Theorem 4.37. Let b :: OB be initialized.

4.7 A definition for dividend-free shares 67

1. If y :: Con is such that

american b y ⪯ W′ b y,

then y ⪯ W′ b y.

2. If x :: Con is such that x ⪰ 0 and

Cb,K,x ⪯ Cb,K,x

for any K :: R+, then x ⪯ W′ b x.

Proof. 1: Case distinction on ⊤ = e b∨¬ē b. Under e b, the statement is trivial.
Under ¬ē b we have

y ≈¬ē b yb ⪯ A yb = american b y ⪯ W′ b y.

2: The assumption for K = 0 means that part 1 applies to 0 ∨ (x− 0) ≈
x.

4.7 A definition for dividend-free shares
Hull [1] states that the put-call parity and Merton’s theorem should hold when-
ever x is a dividend-free share and b = (n = t) for some t :: Time. From this
assumption, one can vice versa characterize what it should actually mean for x
to be a dividend-free share:

• From theorem 4.20, we know that the theorem on forward prices is equiv-
alent to x ≈ W′ (n = t) x.

• From theorem 4.24, we know that the PCP is also equivalent to x ≈
W′ (n = t) x.

• Then Merton’s theorem 4.35 follows as well.

The case where x is only known to be dividend-free until a certain point in
time is covered here as well: Then the statements only hold certain t.

So the following seems to be a reasonable definition:

Definition 4.38. A contract x is called a dividend-free share if x ≈ W′ (n = t) x
for any t.

x is called dividend-free until T :: Time if the above holds for any t ≤ T .

68 4.7 A definition for dividend-free shares

5 A probabilistic model for LPT 69

5 A probabilistic model for LPT
The aim of this section is to show that a generalized version of the binomial
model, i.e. a probabilistic model with finite states and finite time, is in fact a
model for LPT.

Peyton Jones and Eber [3] gave a sketch of the binomial model for their
framework and claimed that any other model could be simply “plugged in”. In
the light of theorem 5.1 below, this claim seems doubtable: As soon as sample
spaces become uncountable, it is not clear what a sensible definition of the Obs
monad could look like.

LetM be the category of measurable spaces and maps where a measurable
space X ∈ M is a pair (X,A(X)) where A(X) is a σ-algebra on X. In the
following section, I will develop a model A of LPT with the following properties:

• A is based in the categoryM, i.e. the interpretation of any sort is a mea-
surable space and the interpretation of any functional term is a measurable
map.

• Every contract has a price, i.e. all the contracts are, up to present value,
of form moneyG o for some o :: Obs R.

• Observables are stochastic processes on their respective value types.

• Contracts are stochastic processes on R which define their present values.

The construction follows the three steps in the construction of LPT: First
I show how the primitive types and ADTs can be modeled in M (LPTPrim).
Then I define the monad RV of random variables on a certain class of sample
spaces and – based on that – the monad PR of stochastic processes which will
model the Obs type (LPTObs). Finally, I show how to model contracts.

The presented class of models for the theory of observables will be more
general in that it allows infinite states and infinite time. In the model for the
full theory with contracts, everything will be finite.

5.1 The primitive types as measurable spaces
For the numeric types, one can simply choose the obvious models which their
natural σ-algebras: The set R of real numbers for the numeric type R, R+ for
R+, R \ {0} for R∗ etc.

For the Time type, different options like Z, Q, and {1, . . . , T} (with their
natural σ-algebras) will be discussed below. For TimeDiff, one can choose e.g.
Z.29

The theory presented above uses two algebraic data types, Bool and Maybe a
(Maybe a is only used in timeOffset). Models in M for these are easily con-
structed as follows:

BoolA should be the discrete two-point space, of course.

29Recap that Time and TimeDiff are connected only by the timeOffset map which is of
Maybe result type, so one is free to choose TimeDiff whatever fits best.

70 5.2 Observables as stochastic processes

(Maybe a)A , where a is some sort the interpretation aA of which is already
defined as a measurable space, should be the disjoint union aA ∪̇ {∗}
where ∗ is a distinguished point not in aA .
Then define NothingaA := ∗ and let JustaA : aA → aA ∪̇ {∗} be the
inclusion. Finally, define the caseMaybe,a schema by the universal property
of the coproduct “∪̇” inM.

Sensible measurable spaces for general algebraic data types can be defined by
first translating a ADT definition into a much more general combinatorial frame-
work called species, then providing measurable spaces for these. The translation
mechanism exposes a rich structure. It can be found in appendix D.

5.2 Observables as stochastic processes
In the following, I want to define a monad RV onM such that RV X is the set
of random variables, i.e. measurable maps from a certain sample space Ω to X,
together with a suitable σ-algebra. In a second step, I will then take products of
these monads with respect to a filtration to receive the monad PR of stochastic
processes which will model Obs.

However, such a σ-algebra does not exist for every Ω. Aumann [10] showed
the following:

Theorem 5.1 (Aumann). Let J be the two-element space and I the unit interval
with their natural σ-algebras. Let JI be the set of measurable functions I → J .
Then there is no σ-algebra on JI such that the evaluation map

ε : I × JI → J

ε(x, f) := f(x)

is measurable.

Aumann’s paper provides a detailed discussion of which subsets of maps
allow evaluation.

As the RV monad should describe the space of all random variables and
I require evaluation below to define the join operation, one needs to make a
restriction on the sample space:

Definition 5.2. Let Ω ∈ M be a measurable space. An element A ∈ A(Ω) is
called an atom if A ̸= ∅ and the only measurable proper subset of A is ∅.

Ω is called atomic if any element of Ω is contained in an atom. Ω is called
an admissible sample space if it is atomic with at most countably many atoms.

It is clear that atoms are pairwise disjoint. All spaces considered in this
section are atomic. The below theorem 5.13 will show that admissible sample
spaces allow evaluation.
Remark 5.3. An admissible sample space Ω with K ∈ N ∪ {N} atoms is isomor-
phic up to indistinguishability to (K,P(K)). Here, two maps f, g :: X → Y are
called indistinguishable if for all x ∈ X and A ∈ A(Y) we have f(x) ∈ A ⇔
g(x) ∈ A.

5.2 Observables as stochastic processes 71

To see this, fix an enumeration {Ki | i ∈ K} of the atoms of Ω and choose
for any i some ωi ∈ Ki. Then define

f : Ω→ K
f(ω) := i if ω ∈ Ki

g : K→ Ω

f(i) := ωi

These maps are measurable: f is measurable because any preimage of a
subset of K is a (countable) union of atoms (which are measurable sets). g is
measurable because K is discrete.

Clearly f ◦ g = idK. g ◦ f is indistinguishable from idΩ: (g ◦ f)(ω) is in the
same atom as ω, hence these two points cannot be distinguished by a measurable
set (easy to see / cf. below).

Note that the maps f and g are not canonical, which is the reason one can-
not just replace any admissible sample space with its K space. For example, if
there are two admissible σ-algebras A ⊆ B on Ω, the correspondence would not
reflect the relationship between A and B. However, it is a helpful piece of intu-
ition that admissible sample spaces behave “essentially like discrete countable
spaces”. In particular, any random variable h : Ω → X must factor over K up
to indistinguishability. If X has atoms as points such as R, this factorization
must be exact, so h is essentially a map on a countable set.

Note that R itself is not admissible.
Fix a measurable space Ω admissible as of above. Usually, one also would

fix a probability measure, but these are not important yet.

5.2.1 A few notes on atomic measurable spaces

To prepare for the following arguments, I give some general lemmas about atomic
measurable spaces. All lemmas below are standard. The longer proofs can be
found in appendix C.

Lemma 5.4. Let X1, . . . , Xn, Y be measurable spaces and let f : X1×. . .×Xn →
Y be a map of sets defined by application of certain (fixed) measurable functions
to n variables. Then f is measurable.

The lemma states that measurable functions can be combined to terms. Note
how this property is crucial to arrive at a model where any term is measurable:
It suffices to give measurable functions for all the functional symbols defined in
LPT.

Proof. The lemma is almost trivial in that such a function is almost a chain of
measurable functions. A hidden point is that a variable may be used more than
once, for example in f := (x 7→ g(x, h(x, x))). One can arrive at a true chain of
measurables by using the function

∆ : X → X ×X
∆(x) := (x, x).

Now the above example is f = g ◦ (id, h) ◦ (id,∆) ◦∆.

72 5.2 Observables as stochastic processes

∆ is measurable for any space X because the generators of X × X are
rectangles of form A × B, A,B measurable, and ∆−1(A×B) = A ∩ B is mea-
surable.

Lemma 5.5. Let X = (X,A) be an atomic measurable space.
Two elements x, y ∈ X are called A-indistinguishable if there is no A ∈ A

such that x ∈ A and y /∈ A.

1. For any x ∈ X there is a unique atom Kx := KA
x ∈ A containing x.

2. Any measurable set is a union of atoms.

3. For x, y ∈ X, x, y are indistinguishable iff they lie in the same atom iff
Kx = Ky.

4. If f : X → Y is a measurable map and x, y ∈ X are indistinguishable,
then f(x), f(y) are indistinguishable. If K ∈ A is an atom, then f [K] does
not have proper, nonempty subsets in B.

Note that f [K] is in general not element of A(Y), hence can’t be called
“atom”.

Definition 5.6. If X and Y are spaces, E ⊆ X × Y and A ⊆ X, define the
section

EA := {y ∈ Y | A× {y} ⊆ E} .

Define EA for A ⊆ Y analogously. If x ∈ X, write short Ex := E{x}.

Lemma 5.7. Let X,Y ∈M be atomic. Then the following holds for the product
space X × Y :

1. The atoms of X × Y are of form KX ×KY where KX ⊆ X and KY ⊆ Y
are atoms. In particular, X × Y is atomic.

2. Let E ⊆ X × Y be measurable and K ⊆ X be an atom. Then EK is
measurable. If x ∈ X, then Ex = EKx is measurable. (analogously for Y)

Corollary 5.8 (Partial Application inM). If f : X × Y → Z is a measurable
function and x ∈ X, then

f(x, ·) : Y → Z

f(x, ·)(y) := f(x, y)

is measurable.

Remark 5.9. The converse of corollary 5.8 is wrong in general, i.e. if f : X×Y →
Z is a map of sets such that for any x, f(x, ·) is measurable, this does not in
general make f measurable.

To see this, let X = Y be a space of cardinality strictly greater than the
cardinality of the continuum |R| such that points are measurable in X. Let Z
be the two-element space Bool and define

f(x, y) :=

{
True if x = y

False otherwise
.

5.2 Observables as stochastic processes 73

Then for any x, f(x, ·)(y) = True iff y = x, so f(x, ·)−1
({True}) = {x}, so

f(x, ·) is always measurable.
However,

f−1({True}) = {(x, x) | x ∈ X}

is not measurable. This is called Nedoma’s Pathology.30

The above remark is the main reason why general higher-order functions are
problematic inM. For example, if ζ assigns to a function g : Y → Z a function
ζ g : Y ′ → Z ′ in some way, then g could be of form f(x, ·) for f as above. Then
the functions ζ f(x, ·) are all measurable, but the function

(x, y) 7→ (ζ f(x, ·))(y)

is not in general measurable. So these are unexpectedly hard to combine.
As a reaction, I introduced the closure emulation schema (cf. section A.1.3)

which will be mentioned again in section 5.2.2 below.

Corollary 5.10. Let X be atomic, Ω an admissible sample space and E ⊆ X×Ω.
Let A ⊆ X and B ⊆ Ω be measurable. Then the following sets are measurable:

1. EB = {x ∈ X | {x} ×B ⊆ E}

2. EA = {ω ∈ Ω | A× {ω} ⊆ E}

3. π1[E] = {x ∈ X | ∃ω ∈ Ω : (x, ω) ∈ E}

4. π2[E] = {ω ∈ Ω | ∃x ∈ X : (x, ω) ∈ E}

Note that corollary 5.10 is wrong in general if Ω is not admissible. E.g.
application of 3 to R× R would mean that every analytic subset of R is Borel,
which is famously not true and led to the development of descriptive set theory.31

5.2.2 The monad of random variables

Notation 5.11. From now on, for the sake of readability, I will leave out the
interpretation marker ·A in some cases. E.g. I will write just return instead
of returnA .

With the preparation in place, one can define the monad of random variables:

Definition 5.12. Given X ∈M, define RVΩ X to be the following space:

RVΩ X is the set of measurable functions p : Ω→ X , i.e. the set of morphisms
Hom (Ω, X) inM.

A(RVΩ X) is the σ-algebra generated by the sets Bω,A := {p ∈ RVΩ X |
p(ω) ∈ A} for ω ∈ Ω and A ∈ A(X). This is equivalent to saying that
A(RVΩ X) is generated by the maps (p 7→ p(ω)) for ω ∈ Ω.

30Nedoma [11] showed this in 1957. Schechter [12, p. 550] gives the proof in a somewhat
more accessible form.

31Cf. [13, thm. 14.2] for the statement and [13] in general for the topic of descriptive set
theory.

74 5.2 Observables as stochastic processes

When the space Ω is clear from the context, also write RV for RVΩ.
If f : X → Y is measurable, let

RV f := fmap f : RV X →RV Y
fmap f o := f ◦ o

For X ∈M let

returnX : X →RV X
returnX x := (ω 7→ x)

joinX : RV (RV X)→RV X
joinX p := (ω 7→ p(ω)(ω))

and write return and join without the subscripts when the context is clear.

It is easy to see that fmap, return and join fulfill the functor laws (*Fu1)
and (*Fu2), the monad laws (*Mo1)–(*Mo5) and the laws (*Ob1)–(*Ob3) from
section 2. Showing that the functions are well-defined and in categoryM again,
i.e. measurable, requires some work though.

I first show two core statements about the structure of RV X all the other
statements will reduce to.

Theorem 5.13. Let (X,A) be a measurable space. Then the evaluation function

ε : Ω×RV X → X

ε(ω, o) := o(ω)

is measurable.

Proof. If A ∈ A and K ∈ A(Ω) is an atom, then

BK,A := {p ∈ RV X | p [K] ⊆ A}

is measurable:32 If K = Kω, then by lemma 5.5 BK,A = Bω,A.
I now show that

ε−1(A) =
∪

K∈A(Ω) atom

K ×BK,A.

The RHS is a countable union of sets measurable in Ω×RV X, hence measurable.
“⊇”: If (ω, o) ∈ K ×BK,A, then by definition ε(ω, o) = o(ω) ∈ A.
“⊆”: If ε(ω, o) = o(ω) ∈ A, then o ∈ Bω,A = BKω,A. Also, ω ∈ Kω, so

(ω, o) ∈ Kω ×BKω,A.

Lemma 5.14. Fix an admissible sample space Ω and let X,Y ∈M be atomic.

1. If f : X →RV Y is measurable, then

uncurry f : X × Ω→ Y

(uncurry f)(y, ω) := f(y)(ω)

is measurable.
32In fact, it is easily seen using countability that all the sets BB,A for B ∈ A(Ω) are

measurable.

5.2 Observables as stochastic processes 75

2. If f : X × Ω→ Y is measurable, then

curry f : X →RV Y
(curry f)(x) := (ω 7→ f(x, ω))

is well-defined and measurable.

As curry and uncurry are inverses to each other, this establishes a 1:1
correspondence between the two kinds of measurable maps.

Proof. 1: uncurry f can be described as a chain of measurable maps:

..
..X ..RV Y
..× ..× ..Y
..Ω ..Ω
.. . ..

.

f

.
ε

.
id

.

uncurry f

2: Well-definedness: Let x ∈ X. By corollary 5.8, then (curry f)(x) =
f(x, ·) : Ω→ Y is measurable, i.e. (curry f)(x) ∈ RV Y .

Measurability of curry f : Let ω ∈ Ω and A ⊆ Y measurable. I check
preimages of the sets Bω,A ⊆ RV Y . Let x ∈ X. We have

x ∈ (curry f)−1
(Bω,A)⇔ (curry f)(x)(ω) ∈ A

⇔ f(x, ω) ∈ A
⇔ x ∈ f−1(A)ω

which is measurable in X by lemma 5.7.2.

Remark 5.15. The operations ε and curry above make RV X the exponential
object XΩ in the categoryM. Recap thatM does not have general exponential
objects by Aumann’s theorem 5.1, i.e. it is not cartesian closed.33

This is the main reason why one has to be “careful” when passing from a
Haskell-style framework to categoryM.

Note that the construction of curry f leads to a measurable function even
if Ω is not admissible (the proof did not use admissibility). On the other hand,
if uncurry f is always measurable, then so is ε = uncurry id.
Remark 5.16. Lemma 5.4 said that any map that is given by a term of measur-
able functions is measurable. The above theorem 5.13 introduced a limited way
of higher-orderness in that if one has variables of form RV X and Ω, one may
perform application in the term. And the curry construction from lemma 5.14
essentially said that one may even introduce new variables of form Ω and receive
an element of RV Y for some Y .

Without admissibility, one would still be allowed to apply a parameter of
form RV X to some fixed ω ∈ Ω (by definition of the σ-algebra on RV X), but
that ω could not be given as an argument to the function.

Theorem 5.17. The following functions are well-defined and measurable:

1. fmap f : RV X →RV Y if f : X → Y is a measurable function
33For the category-theoretic concepts, as usual, cf. [7].

76 5.2 Observables as stochastic processes

2. return : X →RV X

3. join : RV (RV X)→ RV X

RV :M→M is a monad.

Proof. Via remark 5.16, these follow directly from the definitions of fmap, return
and join.

When in doubt, note that it suffices to show that the uncurry variants are
well-defined and measurable by lemma 5.14 and one has uncurry (fmap f) =
f ◦ ε, uncurry return = π1 and uncurry join = ε ◦ (ε, id) ◦ (id,∆) where
∆(ω) := (ω, ω) and π1(x, ω) := x

Closure Emulation While now RV is a monad, my framework in fact re-
quires something slightly stronger for fmap, namely that also the closure emu-
lation schema from section A.1.3 is supported.

Consider a function f : X → Y where fmap is to be applied to. f may
have arisen by partial application from g : X × Z → Y as f = g(· , z) for some
z ∈ Z (cf. corollary 5.8). z could be called the closure context of g in fmap. The
framework does not only require that fmap f be measurable but even that it is
created in a measurable way, i.e. that the map

RV X × Z → RV Y
(o, z) 7→ fmap (g(· , z)) o

be measurable so that a term like

λ z o. fmap (λx. g x z) o

leads to a measurable map again. This is exactly what the following theo-
rem 5.18 states.

As of section A.1.3, the framework in fact defines symbols for these functions
(and not for fmap, which is higher order) as

f̃mapλx z. g x z

and the above term is short for

λ z o. f̃mapλx z. g x z z o.

Theorem 5.18 (Closure emulation for fmap). Let X,Y, Z be measurable spaces
and let g : X × Z → Y be measurable. Define

f̃mapg : RV X × Z →RV Y
f̃mapg(o, z) := (ω 7→ g(o(ω), z))

= fmap g(· , z) o.

Then f̃mapg is measurable.

Proof. The proof goes exactly like in theorem 5.17.

5.2 Observables as stochastic processes 77

Again, the complication of fmap vs. f̃mapg is introduced by the fact that
M supports only some function spaces (exponential objects). For example, one
can’t state that “the map (z 7→ g(·, z)) is measurable” because there is in general
no sensible σ-algebra on the set of measurable functions X → Y .
Remark 5.19. One can show well-definedness and measurability of fmap f ,
return and f̃mapg without using admissibility in an elementary way: We have
(fmap f)−1(Bω,A) = Bω,f−1(A), return−1(Bω,A) = A and f̃map

−1

g (Bω,A) can be
shown to be measurable as well.

However, it is not clear whether join can be measurable while ε is not.

5.2.3 From random variables to stochastic processes

I will next extend the concept above to stochastic processes on a countable index
set.

Let T be a totally ordered set of at most countable cardinality, e.g. {1, . . . , T},
N, Z, Q or the ordinal number ω · ω, and assume the discrete σ-algebra on T.34

Let T model the Time type. Let Ω be some set and fix a filtration (Ft)t∈T of Ω
such that for any t ∈ T, (Ω,Ft) is an admissible sample space. I call (Ft)t∈T an
admissible filtration.
Remark 5.20. One can see similarly to remark 5.3 that (Ω, (Ft)t∈T) is up to
indistinguishability a tree with T levels and at most countably many branchings
per level:

Consider the following partially ordered set:
• V :=

∪
t∈T({t} × {atoms of Ft})

• (t,K) ≤ (s, L) :⇔ t ≤ s ∧K ⊇ L

Note that this defines indeed a partial order and the ordering is tree-like:35 If
v1, v2, w ∈ V and v1, v2 ≤ w, then v1 ≤ v2 or v2 ≤ v1. This follows from the
fact that (Ft)t∈T is a filtration and V is defined on atoms. Note how each of
the “levels” of V (sets with equal t) is countable and that there are T levels.

Let W be the set of maximal chains through V , i.e. the set of branches
of V , such that the intersection of the second components of a chain in W is
non-empty. Define sets

v ↑ := {w ∈W | v ∈ w}

for v ∈ V and define a filtration (Gt)t∈T on W by letting Gt be generated by the
sets (t,K) ↑ where K is an atom of Ft. It is easy to see that these generators
are atoms then, so (W,Gt) is admissible for all t.

Finally, define the following maps:

f : Ω→ W

f(ω) := {(t,K) ∈ V | ω ∈ K}

g :W → Ω

g(w) := ω ∈
∩
{K | ∃t ∈ T : (t,K) ∈ w}

34This is not the same as “discrete time”, of course. Q can be used to receive – not
continuous, but – dense time, i.e. there is never a “next” point in time.

35without a root unless T has a minimum which is assigned the trivial σ-algebra. A root
is not required for the following argument.

78 5.2 Observables as stochastic processes

The values of g leave a certain degree of freedom, so a (arbitrary) choice must
be made here.

It is clear that f and g are well-defined. For any t, f is measurable with
respect to Ft and Gt because f−1((t,K) ↑) = K and g is measurable because
g−1(K) = (t,K) ↑ if K is an atom of Ft. We have that f ◦ g = idW and f ◦ g
is indistinguishable from idΩ by any σ-algebra Ft because it maps atoms to
themselves. Hence, f and g define a correspondence between the two filtrations
as required.

So if the discrete space N is the canonical admissible sample space by re-
mark 5.3, the tree NN is the canonical admissible filtration. Note that the limit,
i.e. the σ-algebra induced by the union, of the filtration on the tree NN is the
discrete space NN, which is not admissible.

Using countability of T, it is easy to see that the limit of (W, (Gt)t∈T) is always
discrete. Hence, the limit of (Ω, (Ft)t∈T) is admissible iff the corresponding W
is countable.

One can now define the monad PR of random processes as the categorical
product of the monads RVFt . This is known to exist for categoryM.

Definition 5.21. Write just RVFt for RV(Ω,Ft).
Given X ∈M, define PR X to be the product space

PR X := PR(Ω,(Ft)t∈T) X :=×
t∈T
RVFt X.

The underlying set of this space is just the cartesian product of the spaces
RVFt X. The σ-algebra A(PR X) is the one generated by projections out of
the product, i.e. generated by the sets

Ct,A := {o ∈ PR X | ot ∈ A}

= ×
t′∈T

{
A if t′ = t

RVFt′ X otherwise

for t ∈ T and A ∈ A(RVFt X).
If f : X → Y is measurable, let

PR f := fmap f : PR X → PR Y

(fmap f o)t := fmap f ot

For X ∈M let

returnX : X → PR X

(returnX x)t := returnX x ∈ RVFt X

joinX : RV (RV X)→RV X
(joinX p)t := joinX pt ∈ RVFt X

and write return and join without the subscripts again when the context is
clear.

It is again clear as forRV (section 5.2.2) that PR fulfills the functor-, monad-
and Ob laws. Well-definedness of the operations follows point-wise and mea-
surability follows from the universal property of the product that measurable
functions can be combined point-wise.

5.2 Observables as stochastic processes 79

With the general monad operations set up, one can define the operation
ever from section 2.3:

Lemma 5.22. Define the following map:

ever : PR Bool→ PR Bool

(ever b)t(ω) :=

{
True if ∃t′ ≤ t : bt′(ω) = True
False otherwise

ever is a well-defined and measurable map.

Proof. For t ∈ T consider

ft : PR(Ft′)t′≤t Bool→RVFt Bool

ft(b) :=

{
True if ∃t′ ≤ t : bt′(ω) = True
False otherwise.

ft(b) is the lift “
∨
” applied on top of b where∨

: Bool{t
′∈T|t′≤t} → Bool∨

(α) :=
∨
t′≤t

αt′

is measurable:
∨−1

({True}) =
∪

t′≤t Ct′,{True} which is a countable union by
countability of T.

So ft is well-defined and measurable for any t. Now ever is just a combina-
tion of the maps

....gt : PR Bool ..PR(Ft′)t′≤t Bool ..RVFt Bool.proj . ft

over t ∈ T via the product property.

Finally, one can define now in the obvious way:

now ∈ PR T
nowt := return t ∈ RVFt T

It is clear that this is well-defined.
It is easy to see that the above definitions of ever and now fulfill the axioms

for the modal logic S4.3 in section 2.3 and the axioms for now in section 2.4:
Simply fix a ω ∈ Ω and consider the trajectories.

Altogether, one can model ObsA = PR.

5.2.4 More about maps on RV X

Using the results from the previous sections, one sees that the concepts of indis-
tinguishability and limits (in this section) and conditional expectation (in the
next section) fit well into the framework of RV and PR. All results for RV also
carry to PR via the (countable) product property.

For this section, fix some admissible σ-algebra on Ω again.

80 5.2 Observables as stochastic processes

Lemma 5.23. The equivalence classes in RV X with respect to indistinguisha-
bility of maps as of remark 5.3 are exactly the atoms of RV X. In particular,
RV X is atomic.

Proof. For o ∈ RV X, let [o] be the equivalence class of o with respect to
indistinguishability. [o] is measurable:

[o] =
∩
ω∈Ω

Bω,Ko(ω)

=
∩
ω∈Ω

BKω,Ko(ω)

where the RHS is in fact a countable intersection as by admissibility, there are
only countably many choices for Kω, and Kω determines Ko(ω).

To see that [o] is an atom , I show that the set

{B ⊆ RV X | ∀o ∈ B : [o] ⊆ B}

is a σ-algebra containing all the Bω,A.

• Let ω ∈ Ω and A ⊆ X measurable. Let o, o′ be indistinguishable and
o ∈ Bω,A, i.e. o(ω) ∈ A. By the definition of indistinguishability, then also
o′(ω) ∈ A, i.e. o′ ∈ Bω,A. Hence, Bω,A has the property.

• The σ-algebra properties follow just like in the proof of lemma 5.7.1 in
appendix C.

Corollary 5.24. Two measurable maps o, o′ : Ω → X are indistinguishable as
maps iff they are indistinguishable as elements of RV X.

Proof. Two elements of an atomic space are indistinguishable iff they lie in the
same atom. Now apply lemma 5.23.

curry and uncurry provide means of going back and forth between maps
from certain measurable spaces to X and maps to RV X. This has interesting
consequences for point-wise operations:

Lemma 5.25. Let X ∈M be atomic.
The measurable maps X → RV R are closed under point-wise limits in the

following sense:
Let fi : X → RV R for i ∈ N be measurable maps.

1. The set

Lf :=
{
x ∈ X | ∀ω ∈ Ω : (fi(x)(ω))i∈N converges

}
is measurable in X.

2. The map

lim
i→∞

fi : Lf →RV R(
lim
i→∞

fi

)
(x) :=

(
ω 7→ lim

i→∞
fi(x)(ω)

)
is well-defined and measurable.

5.2 Observables as stochastic processes 81

Proof. By lemma 5.14, the functions uncurry fi : X × Ω → R are measurable.
Let

Jf =
{
(x, ω) ∈ X × Ω | ((uncurry fi)(x, ω))i∈N converges

}
.

By a standard theorem from measure theory,36 Jf is measurable.
x ∈ X is in Lf iff for all ω ∈ Ω, (x, ω) ∈ Jf , so

Lf = (Jf)Ω.

By corollary 5.10.1, this is measurable, i.e. 1 holds.
To show 2, wlog. assume that Lf = X. Otherwise, replace X by its mea-

surable subset Lf . Again by a standard theorem[12, thm. 21.3], the map
limi (uncurry fi) = ((x, ω) 7→ limi fi(x)(ω)) is measurable. Then by the other
direction of lemma 5.14, limi fi = curry (limi (uncurry fi)) is well-defined and
measurable.

Remark 5.26. The statement of lemma 5.25 holds for sup, inf, lim sup etc. with
the same proof.

5.2.5 Expectation

Fix now a common probability measure P on Ω for the σ-algebras mentioned
below. This will amount to having P always be a probability measure on B.

Definition 5.27. Let A ⊆ B be two σ-algebras on Ω such that (Ω,A) and
(Ω,B) are both admissible sample spaces. Define for A,B ∈ B:

P [A | B] :=

{
0 if P[B] = 0
P[A∩B]
P[B] otherwise

For o ∈ RVB R and ω ∈ Ω define

E [o | A] (ω) :=
∑

L∈B atom
o(L) · P

[
L | KA

ω

]
if this countably infinite sum is well-defined.

Here, o(L) is the unique value in the image of the set L under the function
o. This is well-defined as o is measurable in B, L is always an atom of B and
points are measurable in R.

Let L0 (B,A) be the set of o ∈ RVB R such that the above expression is
well-defined for all ω.

In the above definition, the value of P[A | B] under P[B] = 0 is arbitrary, of
course. Lemma 5.32 will show that this is fine. The following lemma will show
that the above function as well as its domain are measurable.

First, notice that the above definition includes the (unconditional) expecta-
tion as a special case:

36Let gi := uncurry fi. y ∈ Jf iff (gi(y))i converges, i.e. iff it is a Cauchy sequence. Hence,
Jf =

∩
ε∈Q+

∪
N∈N

∩
n,m≥N{y | |gn(y)− gm(y)| < ε}.

82 5.2 Observables as stochastic processes

Definition 5.28. In definition 5.27, let A = {∅,Ω} be the trivial σ-algebra on
Ω. Then E[o | A] – if it exists – is constant as Ω is an atom of A. Let

E [o]

be the unique value of E[o | A].
Let L0 (B) be the set of o ∈ RVB R such that E[o] exists.

Theorem 5.29. Let A and B be as in definition 5.27.

1. If L ∈ B is an atom and ω ∈ Ω, define

pL(ω) := P
[
L | KA

ω

]
.

pL ∈ RVA R.

2. L0 (B,A) ⊆ RVB R is measurable.

3. The map

E [· | A] : L0 (B,A)→ RVA R

is well-defined and measurable.

Proof. 1: Let KA
L be the unique atom of A containing L. This must exist as

the atoms of A are pairwise-disjoint B-measurable sets covering Ω and L is an
atom of B. For the same reason, L ∩KA

ω is either L or ∅ for any ω ∈ Ω and it
is L iff KA

L = KA
ω , i.e. iff ω ∈ KA

L . Hence, we have

pL =

{
P[L | KA

L] on KA
L

0 anywhere else,

which is clearly A-measurable.
2, 3: I apply lemma 5.25 to the partial sums in the definition of E[· | A].
Fix some enumeration37 {Li | i ∈ N} of the atoms of B. Define for j ∈ N

and o ∈ RVB R:

fj(o) :=

j∑
i=0

o(Li) · pLi

For any j, fj : RVB R→RVA R is a well-defined and measurable function:

• For any i and o, o(Li) · pLi ∈ RV
A R as pLi is A-measurable by part 1

and o(Li) is a constant.

• For any i, the map (o 7→ o(Li) · pLi) is measurable as (o 7→ o(Li)) is mea-
surable by choice of the σ-algebra on RVB R and pLi is a constant with
respect to o.

• The finite sum corresponds to a lift applied on top of the functions
(o 7→ o(Li) · pLi), so fj is well-defined and measurable as well.

37assuming wlog. that B is infinite

5.2 Observables as stochastic processes 83

Seeing that
E [o | A] (o)(ω) = lim

j→∞
fj(o)(ω),

the claim now follows from lemma 5.25: In the definition from there, L0 (B,A) =
Lf and E[· | A] = limj→∞ fj . Lemma 5.25 can in fact be applied here as RVB R
is atomic by lemma 5.23.

Definition 5.30. Let A and B be as in definition 5.27 and p ∈ N, p ≥ 1. Define
the following sets:

Lp (A,B) :=
{
o ∈ RVB R | |o|p ∈ L0 (B,A)

}
Lp (B) :=

{
o ∈ RVB R | |o|p ∈ L0 (B)

}
Here, |o|p denotes fmap (x 7→ |x|p) o, of course.

Corollary 5.31. The sets Lp (A,B) ⊆ RVB R are all measurable.

Proof. Lp (A,B) is the preimage under the measurable function (lift) (o 7→ |o|p)
of the, by theorem 5.29, measurable set L0 (B,A).

So definition 5.27 of the conditional expectation has all the properties one
would naturally want. It remains to show that this definition is actually correct.

Lemma 5.32. Let A, B, and o be as in definition 5.27.
E[o | A] is (almost surely) the conditional expectation of the real-valued

random variable o given the σ-algebra A.

Proof. Let E′ [p] be the “actual” expectation, i.e. the integral of a random vari-
able p. It is easy to see that for o ∈ RVA R

E′ [o] =
∑

K∈A atom
o(K) · P [K] (5.1)

if any of the two sides exists.
One needs to show that for any A ∈ A the following holds:38

E′ [E [o | A] · 1A] = E′ [o · 1A] (5.2)

where 1A is the characteristic function of A.
Note that E[o | A] · 1A is A-measurable while o · 1A is only B-measurable in

general.
Inserting the definition of E[o | A] and equation (5.1), one receives that the

LHS is equal to ∑
K∈A
atom

∑
L∈B
atom

1A(K) · o(L) · P [L | K] · P [K] .

In the above sum, 1A(K) = 0 unless K ⊆ A (and otherwise 1A(K) = 1) and
P[L | K] = 0 unless L ⊆ K. Also note that for L ⊆ K, P[L | K] · P[K] = P[L],

38cf. e.g. [2, p. 404]

84 5.2 Observables as stochastic processes

even for the special case P[K] = 0 as then also P[L] = 0. So the above sum is
equal to ∑

K∈A atom
K⊆A

∑
L∈B atom

L⊆K

o(L) · P [L]

=
∑

L∈B atom
L⊆A

o(L) · P [L]

=
∑

L∈B atom
1A(L) · o(L) · P [L]

= E′ [o · 1A]

as required. Here, the second line follows as the atoms K of A define a partition
of Ω and therefore, being B-measurable sets, also of the atoms L of B. The last
line is again (5.1).

From the above considerations it is further clear that the LHS exists iff the
RHS exists. This concludes the proof.

Corollary 5.33. The unconditional expectation E[·] from definition 5.28 is
well-formed in the following sense: Let (Ω,B) be an admissible sample space.

1. L0 (B) ⊆ RVB R is measurable.

2. The map
E [·] : L0 (B)→ R

is well-defined and measurable.

3. The sets Lp (B) ⊆ RVB R are all measurable.

4. If o ∈ RVB R, then E[o] is the expectation of the real-valued random
variable o.

Proof. These all follow as special cases of theorem 5.29, corollary 5.31 and
lemma 5.32 when choosing the trivial σ-algebra for A.

For 2, we receive that the map

E [· | {∅,Ω}] : RVB R→RV{∅,Ω} R

is measurable. And RV{∅,Ω} R is isomorphic to R via evaluation at the atom Ω
and its inverse return.

For 4, apply (5.2) to A = Ω. Inserting (5.1) at the LHS, it is clear that the
expectation of o corresponds to evaluation at the single atom Ω of {∅,Ω}.

As a last step, one can consider PR again: Let T and (Ft)t∈T be as above,
let P be a common probability measure for all the Ft and let ∆t be a positive
number. Let

PR∆t :=×
t∈T

t+∆t∈T

L0 (Ft+∆t,Ft)

and define

shift∆t : PR∆t R→ PR R

(shift∆t o)t :=

{
E[o(t+∆t) | Ft] if t+∆t ∈ T
0 otherwise

5.3 Modeling contracts by their present value 85

Lemma 5.34. The function shift∆t as defined above is well-defined and mea-
surable.

Proof. shift∆t is the combination of the functions

....gt : PR∆t R ..L0 (Ft+∆t,Ft) ..RVFtR.proj . E[· |Ft]

for t+∆t ∈ T and gt := const (return 0) for t+∆t /∈ T. By the above theorems,
these are all well-defined and measurable and then the statement follows from
the universal property of the product.

Remark 5.35. If ((Ft)t∈T) is such that the conditional expectation always exists,
i.e. such that L0 (Ft+1,Ft) = RVFt+1 R for all t with t+∆t ∈ T, then one can
interpret

....shift∆t : PR R ..PR∆t R ..PR R..proj . shift∆t

This will be used in the following section 5.3

5.3 Modeling contracts by their present value
In the following, I will build a model for the Con type, therewith completing the
probabilistic model of LPT.

Notation 5.36. I will again leave out “ ·A ” in most cases for the ease of reading.

Consider a special case of the model for the LPTPrim and LPTObs parts from
above where the additional assumption is made that

1. T = {1, . . . , T} for some T ∈ N and

2. Ft is finite for each t.

Fix a common probability measure P for the Ft.
Remark 5.37. The canonical form (cf. remarks 5.3 and 5.20) of such a filtration
is a finite tree.

As mentioned before, I want to use ConA = (Obs R)A = PR R.
Choose some set with the discrete σ-algebra as a model for the Currency

type. Fix a valuation currency K ∈ Currency and choose an observable R ∈
Obs R+ = PR R+ and for any k ∈ Currency an observable WK/k ∈ PR R+

such that the following hold:

R > 0 (5.3)
WK/k > 0 (5.4)
WK/K = 1 (5.5)

R will describe the one-period-K-interest rate, i.e. 1
R will be the price of a

zero-coupon bond over one unit of currency K with maturity one time step39

39except for RT (= R at time T), which is ignored. The interest rate, as of section 4.2,
must be ∞ at time T .

86 5.3 Modeling contracts by their present value

and WK/k is the K/k-exchange rate, i.e. the number of units of currency K
corresponding to one unit of currency k (cf. sections 4.2 and 4.3).

In other words, we will have in A :

after 1 (one K) ≈ 1

R
· one K

one k ≈ WK/k · one K

after is from figure 7 in section 3.
Example 5.38. R = 1 yields a model without interest, i.e. after ∆t (one K) ≈
one K for any ∆t :: TimeDiff.

The meaning of x ∈ Con = Obs R = PR R will be that for t ∈ T, xt is
the present value in currency K and at time t of the contract x, expressed as
a random variable in the information available at time t (which is described by
Ft). This is equivalent to saying that at time t, receiving a payment of xt units
of K is equally preferable to acquiring x. The interest rate R will be used to
discount future payments.

Note how for x, y ∈ Con, one can construct (x ≤ y) = (lift2 (≤) x y) ∈
PR Bool = Obs Bool = OB. Define for A :

x ⪯b y :⇔ b⇒ x ≤ y

Note how x ≈ y iff x = y in this model. One can already see that the logical
axioms from section 3.1.1 hold in A by fixing certain ω ∈ Ω and t ∈ T: Then
one only needs to consider the operations “∨”, “→” etc. on Bool.

The last remaining definitions are the primitive operations on contracts:

5.3.1 The time-local primitives

Model one k by the fixed exchange rates from above:

one k :=WK/k

Note how now, x ∈ Con is its own price in currency K as of definition 4.1.
Note further how the axiom zero ≺ one follows because we required that

WK/k > 0 for any currency. (5.5) is just a normalizing condition here that
ensures that one K has always present value 1.

Theorem 4.3 now dictates that the models of zero, give, and, scale and
or must be point-wise application of 0, (−), (+), multiplication with a constant
and maximum, respectively. So choose the interpretations like that. From the
same theorem, one receives that “;” must be “≫=” and so read′ must be join,
so choose this. We have already seen in the discussion of PR that these maps
are well-defined and measurable.

It is easy to see that the laws from section 3.1 which involve only these time-
local primitives hold in A , except for maybe the rule for “;” is not completely
obvious:

Lemma 5.39. If a, b ∈ M, o1 ∈ PR a, o2 ∈ PR b, f1 : a → PR R and
f2 : b → PR R are measurable functions and d ∈ PR Bool, then the following
axiom for “;” holds in A :(

∀x1 :: a1, x2 :: a2 : f1 x1 ⪯
d∧o1=x1∧o2=x2

f2 x2

)
⇒ o1 ; f1 ⪯d o2 ; f2 (*3.38)

5.3 Modeling contracts by their present value 87

Proof. The premise is in A equivalent to

(λx1 x2. ((d ∧ o1 = x1 ∧ o2 = x2)→ f1 x1 ≤ f2 x2)) = const2 ⊤.

Now the rest of the proof can be done inside LPT: By lift reduction

((o1, o2)≫= λ (x1, x2) . (d→ f1 x1 ≤ f2 x2)) = ⊤.

d inside the lambda term does not depend on x1 or x2, so this is easily seen to
imply

d⇒ ((o1, o2)≫= λ (x1 x2) . (f1 x1 ≤ f2 x2))

and the RHS is equal to

(o1≫= f1) ≤ (o2≫= f2),

so we receive in A the required conclusion o1 ; f1 ⪯d o2 ; f2.

So left are when′ and anytime.

5.3.2 when′ and anytime

The easiest way do define these is to give an interpretation of the next operation
from section 3.4. Recap that we defined

next x = n; λ t.W′ (n > t) x. (5.6)

In A , time is discrete, so next x can be thought to mean “acquire x after one
time step”. (next x)t should hence be the present value, expressed as a Ft-
random variable, of acquiring x at time t+ 1 (unless t = T , then it is 0). This
can be computed as follows:

1. Take the conditional expectation of xt+1 under Ft, i.e. the expected value
of acquiring x at time t+1 given the information at time t. The conditional
expectation always exists as Ft+1 is finite.
This is achieved for all t by the shift∆t function from the end of the
previous section 5.2.5 for ∆t = 1.

2. The result is thought to be a payment at time t+ 1, so use the provided
interest rate Rt to discount it one time step back.
This is achieved for all t by multiplying with 1

R . Recap that we required
R > 0, so this is well-defined.

Translated into formulas, one receives

next x :=
1

R
· shift1 x (5.7)

which expands to

(next x)T := 0

(next x)t :=
1

Rt
· E [xt+1 | Ft] for t < T.

88 5.3 Modeling contracts by their present value

Figure 10 Definition of when′ and anytime in A resulting from (3.39), (3.40)
and (5.7)

(when′ b x)T := if′ (e b)T xT 0

(when′ b x)t := if′ (e b)t xt
(

1

Rt
· E

[(
when′A b x

)
t+1
| Ft

])
for t < T

(anytime x)T := max (xT , 0)

(anytime x)t := max
(
xt,

1

Rt
· E

[
(anytime x)t+1 | Ft

])
for t < T

Here, if′ c x y should mean the lift (ω 7→ if′ (c(ω), x(ω), y(ω))) of the function
if′ : Bool× R× R→ R to RVFt and likewise max should mean the lift of the
maximum function.

Here, the RHSs are expressions in RVFt R. It was seen previously that shift1,
and hence next, is well-defined and measurable.

Note that it is not yet clear that this definition of next is sensible. I will show
that when′ as defined right below fulfills the axioms and yields this definition of
next.

However, if one just assumes that the definition makes sense, one immedi-
ately receives the unique possible definitions of when′ and anytime from sec-
tion 3.4: We need in abstract terms

W′ b x ≈ cond (e b) x (next (W′ b x)) (3.39)
A x ≈ x ∨ next (A x) (3.40)

and these then directly yield the inductive definitions of when′ and anytime as
depicted in figure 10.

The interpretation of anytime is also called the Snell envelope of the stochas-
tic process x. Peyton Jones and Eber [3] mention the Snell envelope as the
suitable model for anytime. For a discussion of the structural properties of the
Snell envelope cf. [2, p. 280].

Lemma 5.40. when′ and anytime as defined above are well-defined and mea-
surable maps

when′ : PR Bool× PR R→ PR R
anytime : PR R→ PR R.

Proof. These maps can be constructed by finitely many applications of next
and lifts. For example, for T = 3 we have

anytime x = x ∨ next (x ∨ next (x ∨ 0)).

Here, “∨” is the interpretation of or which is already known to be measurable.

5.3 Modeling contracts by their present value 89

As a first indicator of the correctness of when′, note how the abstract defi-
nition (5.6) corresponds to the definition in A (5.7) now and how (3.39) and
(3.40) hold.

Still assuming that the given definition of when′ conforms to the axioms, our
definition of anytime does so as well: It fulfills the recursive equation (3.40),
A has reverse inductive time and so by theorem 3.47 anytime is correct: The
proof of this theorem did not use the existence of anytime and showed that any
contract for which this equation holds has the required property.

So all that’s left is to show that when′ conforms to the axioms:
As a first block, one needs to show:

when′ b 0 ≈ 0 (*3.20)
when′ b (x+ y) ≈ when′ b x+ when′ b y (*3.21)
when′ b (α · x) ≈ α · (when′ b x) (*3.22)

Considering the definition of when′, these follow directly (as usual, via down-
wards induction on t ∈ T) by linearity of the involved operations (if′ (e b)t),
scaling by the random variables Rt and conditional expectation.

Now towards the behavior of when′ over time. To show:

W′ b x ≈e b x (*3.23)
x ⪯
e d∧b

W′ c y and W′ b x ⪯
e d∧c

y ⇒ W′ b x ⪯
e d∧¬e b∧¬e c

W′ c y (*3.24)

Lemma 5.41. Axioms (*3.23) and (*3.24) hold in A .

Proof. In the following proof, I will leave out the sample parameter ω ∈ Ω, the
time t ∈ T and – as before – the interpretation marker ·A where possible.

(*3.23) means in A that

e b⇒ (when′ b x = x).

This is clear by definition of when′ as it always contains a “if′ (e b)t xt” in front
for any t.

For (*3.24), assume wlog. that d = e d and assume that the premise holds.
I.e., using the definition of “⪯·” in A we assume:

a) d ∧ b⇒ x ≤W′ c y

b) d ∧ c⇒W′ b x ≤ y

One needs to show that for any t ∈ T, whenever dt is true and (e b)t and
(e c)t are false, then

(W′ b x)t ≤ (W′ c y)t.

I show this via backwards induction on t.
Consider in the following states where dt ∧ ¬(e b)t ∧ ¬(e c)t is true.
If t = T , then by definition (W′ b x)t = 0 = (W′ c y)t. So assume t < T

and assume that the statement holds for t+ 1.
The following are true as well:

i. dt+1 because d = e d.

90 5.3 Modeling contracts by their present value

ii. (e b)t+1 ↔ bt+1 and (e c)t+1 ↔ ct+1 because e b and e c were false at time
t.

iii. “W′” reduces to its second case:

(W′ b x)t =
1

Rt
E
[
(W′ b x)t+1 | Ft

]
(W′ c y)t =

1

Rt
E
[
(W′ c y)t+1 | Ft

]
By iii., it suffices to show that (W′ b x)t+1 ≤ (W′ c y)t+1. – The conditional

expectation and scaling are monotonic, of course.
By i. and ii., the following is a case distinction (with overlaps) for time t+1

over all states considered above:

• If dt+1∧¬bt+1∧¬ct+1 holds, then by the induction hypothesis, (W′ b x)t+1

≤ (W′ c y)t+1.

• If dt+1 ∧ bt+1 holds, then (W′ b x)t+1 = xt+1 by definition. And xt+1

≤ (W′ c y)t+1 by a).

• If dt+1 ∧ ct+1 holds, the statement follows analogously from b).

Altogether one receives:

Theorem 5.42. A as defined above is a model of LPT.

Corollary 5.43. LPT is consistent if set theory is.

Remark 5.44. I only required existence of the interest factor for a single period
and currency K. However, as any contract has a price, all interest factors exist.
In fact, the interest factor Rb,k is equal to

1

W′ b (one k)

in A .
Remark 5.45. The model can be used to compute present values as numbers by
setting F1 = {∅,Ω}. Then F1-random variables are just constants.

6 Conclusion and outlook 91

6 Conclusion and outlook
I have established a probability-free, purely formal framework to model the
arbitrage behavior of a large class of financial contracts. I have shown that the
framework is sufficient to prove key statements from arbitrage theory and that a
simple stochastic model can implement it. My approach shows how assumptions
commonly made – such as a fixed interest rate – are not actually needed and
makes other assumptions – such as the defining property of a dividend-free share
– explicit.

The framework replaces complex portfolio arguments by a series of small,
intuitively clear steps, related by the proven mathematical framework of many-
sorted first-order logic. As LPT proofs are usually general, the interconnection
and the deeper reasons for why certain arbitrage arguments work can be seen
much clearer than when showing arbitrage relations for specific assets such as
swaps or stock options. A possible application is therefore in teaching: A stu-
dent trained with (a simplified version of) LPT will easily recognize the patterns
present in real-world contracts. Teaching can clearly separate arbitrage state-
ments and stochastic models and the transition to stochastics is made easy by
giving implementations of the combinators.

Another application is where the framework [3] originally came from, namely
in software (cf. below).

6.1 Future work
Models Further research should focus on whether more general models, such
as infinite time and/or infinite states, can implement LPT and whether models
with continuous states and time – such as the Black-Scholes model – can be
applied: Aumann’s work shows that evaluation is not possible in these cases,
but it is not clear whether the monadic join can still be defined on a suitable
σ-algebra without using evaluation.

BID-ASK spread Another question is how the assumption of perfect mar-
kets can be lifted to receive weaker arbitrage bounds that can include transaction
costs or taxes. This ultimately amounts to handling the BID-ASK spread: As
briefly discussed in section 4.3, in practice, there is not “the” price of an asset,
but the price for buying (ASK) is slightly higher than that for selling (BID).40

The difference is called the spread. It is clear that the (effective) spread, i.e. the
difference between the price the buyer pays and the amount the seller receives,
must be at least the total cost of the transaction.

The first question would be how to define BID- and ASK prices in the frame-
work. I propose the following:

o :: Obs R is called a BID price (ASK price) for x :: Con if o is
maximal (minimal) with the property that o ⪯ x (o ⪰ x).

This definition looks promising because it is a true generalization of the defini-
tion of a price from section 4.1: If x has a price, then that is both a BID- and

40It cannot be the other way round, otherwise buying, then directly selling would be an
arbitrage strategy.

92 6.1 Future work

ASK price. Also, the “priceless” contract from example 4.14 has neither a BID-
nor a ASK price, as is easily seen.

Note however that a BID-ASK spread introduces a considerable complication
in that a contract y can be “priced higher” than a contract x in three different
ways:

ASK (x) ≤ BID (y): y can always be exchanged for x without additional cost.
Implies the other two.

BID (x) ≤ BID (y) and ASK (x) ≤ ASK (y): y is valued at least as high as x
by the market, but we cannot in general exchange. Implies the third.

BID (x) ≤ ASK (y): One cannot make profit from buying y and selling x, i.e.
exchanging x for y.

So even if there are BID- and ASK prices for the two contracts, it is not clear
what a counterpart of lemma 3.12 for BID- and ASK prices should look like. To
which extent the primitives are compatible to which of the above three relations
is a subject of future research.

Value quantification for OB The primitives e and a allow quantification
only over time and only in a limited way. It would be interesting to see how
one can arrive at a stronger notion of quantification that makes patterns like
“b has happened before, hence there must be a point in time where it was true”
possible. A first idea is to introduce a combinator

exists :: (a→ OB)→ OB

where exists f is true whenever there is an x :: a such that f x is currently true.
Together with reasonable axioms such as that exists commutes with “≫=”, one
could show axiom (*2.4) from the others. But there are two problems:

1. From exists, one could make the solution to difficult mathematical prob-
lems a basis for contracts, such as “if a certain polynomial (read from some
observable, of high degree) has a root, then receive a dollar, otherwise pay
a dollar”. This might well not be desired.

2. More critically, the canonical model of exists in the probabilistic model
of observables from section 5.2 is for f : X → Bool the following:

exists f : PR Bool

(exists f)t(ω) :=

{
True if there is some x ∈ X with f(x)(ω) = True
False otherwise.

Even if T is a single point, it is easy to see that the preimage of {True}
under exists f is essentially a projection and hence not in general mea-
surable.

Unobservables While LPT only talks about observables which are, by name,
known to everyone, in reality not all events are observable. For example, a
participant might choose to exercise a anytime option at the moment an urgent
order from a foreign country arrives at her company. This event is not observable

6.1 Future work 93

Figure 11 LPT trader high-level overview

to the market, but it is the basis for a choice which is visible to the market.
Another example would be insider information (which, however, violated the
assumption of perfect markets).

Such unobservable events could be modeled by a new type constructor UnObs
which is similar in structure to Obs, to which Obs embeds and which can occur
as a condition in “⪯·, but which cannot occur as an argument to when′. Further
assumptions could then describe the “degree of perfect information” the market
has.

Algorithmic trading / market analysis LPT describes the behavior of
perfect markets. In reality, however, markets are not perfect and arbitrage is
possible for short periods of time. In fact, the assumption of arbitrage-freeness
is based on the assumption that there are traders exploiting arbitrage opportu-
nities as soon as they arise.

A question that arises now is the following: If arbitrage opportunities mani-
fest as inconsistencies with LPT, then how can one use LPT instead of describing
an arbitrage-free world to identify arbitrage opportunities and how would an al-
gorithmic trader, i.e. a computer program trading at the stock exchange, use
this capability? My hope is that a LPT-based trader could execute not only
certain pre-defined strategies, but analyze the whole of the market to identify
opportunities a conventional trader would not notice. A high-level overview is
given in figure 11.

Even if the trader component is left out, LPT could be used to holistically
analyze a derivatives market, which might be useful for research.

94 6.1 Future work

A Lambda notation and Haskell for many-sorted first-order logic 95

A Lambda notation and Haskell for many-sorted
first-order logic

In this section, I describe in detail the formal framework in which all argumen-
tation in this thesis happens.

As mentioned in section 1, this thesis is based on a paper about Haskell[5]
and hence, notational and conceptual conventions were adopted from that pro-
gramming language. The latter include a style generally centered around func-
tions as in

(≫=) :: Obs a→ (a→ Obs b)→ Obs b
from section 2. One would then use “≫=” as in

o≫= λx. return (x+ 1)

where “λx. . . .” should describe a function in one argument x.
The question is now what exactly this notation is supposed to mean: While

arguing with functions can be done in an intuitive manner, my approach is
axiomatic, and the notion of an „axiom” only makes sense inside a formal logic
framework.

Let’s call this style of writing functions “lambda notation”. The first aim of
this section is to give a solid meaning to lambda notation inside many-sorted
first-order logic (MSL). I define my variant of MSL to accomplish this in sec-
tion A.1.

A design decision made here is not to model higher-order functions, i.e. func-
tions taking functions as arguments again. Relatedly, functions are not “objects”
in the sense of first-order logic: For example, one couldn’t bind a variable to a
function. Instead, the above “functions” will in fact be terms and “≫=” does
not actually occur as a symbol, but there will be one “≫=”-symbol per term.
This will be fleshed out in section A.1.3.

The reason for not allowing higher-order mechanisms lies in the models:
While it is easy to come up with a MSL design where functions are first-class
objects and a special evaluation function symbol is provided to apply a function
(object) to an argument – or simply use a higher-order logic – it was seen in
theorem 5.1 that there is no model of such a theory in the category M of
measurable spaces which contains e.g. the real numbers.

Given that lambda notation is set up, one notices that Haskell code can
be written to look similar to lambda notation41 as long as certain restrictions
with respect to higher-orderness are made. I will show in section A.2 how the
correspondence can be made explicit to receive a translation from Haskell to
MSL, i.e. a way to derive a formal specification in MSL from a Haskell program
where the data types correspond to sorts, the functions correspond to function
symbols and the models of the resulting MSL theory are meant reflect the in-
tended semantics of the program. In particular, an abstract machine executing
the program should be a model in the category of computable functions.

Finally, one can introduce the elementary data types and functions which
constitute the theory LPTPrim, the first part of LPT (section A.3). Some of
these will be derived from Haskell code.

41This is not coincidental: Haskell implements a variant of the lambda calculus [5, sec. 1.2]
and lambda notation tries to mimic some features of it. An introduction to the lambda
calculus as well as a translation from the Haskell predecessor Miranda can be found in [14].

96 A.1 MSL and lambda notation

A.1 MSL and lambda notation
An introduction to many-sorted first-order logic (MSL) can be found in [15,
chapter VI]. I make the following modifications to Manzano’s approach:

• In Manzano’s book, there is only one kind of symbol, namely functional
symbols, forming the set OPER.SYM, and relations are functions to a special
sort 0, which describes boolean values. Any formula is just an expression
of type 0.
I use a more traditional distinction between relational and functional sym-
bols. There will be no special sort 0 and formulas will be different from
expressions or terms. However, I do introduce a Bool type below (sec-
tion A.3.1) as well functional symbols for almost all relational symbols
(section A.1.4) to get back most of the behavior of Manzano’s MSL.

• I provide a new meta-language layer called functional terms / types to
apply functions by position instead of by variable name and to denote
anonymous functions effectively (lambda notation). I borrow some nota-
tion, but not its expressive power, from the lambda calculus.

• Manzano’s framework allows untyped relational symbols. I do not.

The following definitions provide my variant of MSL.

A.1.1 MSL

Assume that there is a totally ordered countably infinite set of variables.

Definition A.1 (Sort). A set S of sorts is just some set. Typically, S is
thought to consist of character strings.

Definition A.2 (Type). Given a set S of sorts, a S -type is of one of the
following forms:

1. A value type is just a sort.

2. A functional type is of form either

• s ∈ S a sort (such a functional type is called trivial or constant) or
• s→ α where s ∈ S is a sort and α is a functional S -type. s is then

called the argument type and α the result type.

Functional types typically form chains like s1 → (s2 → (. . .→ s)) with
several argument types and a final result (value) type. In this case, I leave
out parentheses and write just s1 → s2 → . . .→ s.

3. A relational type is of form R (s1, . . . , sn) where s1, . . . , sn ∈ S are sorts.

Note that the argument of a functional type cannot be of form s′ → t′ again,
i.e. higher-order types are not supported, as previously mentioned. Functional
types can be seen as an additional layer on top of the logic framework. They
are “shallow” in that complete formulas, proofs etc. will not contain any trace
of them.

A.1 MSL and lambda notation 97

Definition A.3 (Signature). A signature Σ is a pair Σ = (S ,Γ) together with
a function TΓ mapping the elements of Γ to functional or relational S -types. Γ
is called the set of symbols. I also write f :: α (“f has type α”) for TΓ(f) = α
and then TΓ is usually given implicitly.

Definition A.4 (Value Term). Given a signature Σ = (S ,Γ) and s ∈ S , a
(value) Σ-term of (value) type s is of one of the following forms:

1. x :: s where x is a variable.

2. (f t1 . . . tn) where t1, . . . , tn are (value) terms of type s1, . . . , sn, respec-
tively, and f ∈ Γ is a symbol of functional type s1 → . . .→ sn → s.

Leave out parentheses if they are not required.
I write t :: s when a (value) term t has (value) type s. I leave out sort

specifies for variables if they are clear from the context.

Remark A.5. The previous definition technically allows the same variable to be
used several times with different sort specifiers. For example, “x :: Int” and
“x :: Double” would be simply be seen as different symbols. For obvious reasons,
I never do this.

Note again how variables cannot be bound to (non-trivial) functional or
relational types.

Definition A.6 (Functional Term). Given a signature Σ, a Σ-functional term
f of functional type α is of one of the following forms:

1. If α is a value type: f is a value term of type α.

2. If α = s → β: f = λx :: s. g where x is a variable and g is a functional
term of type β.

As usual, I write f :: α to state that a f has functional type α.

Notation A.7. Write short

λx1 . . . xn. g

for
λx1. (λx2. . . . (λxn. g) . . .)

and leave out parentheses by having extend lambda expressions as far to the
right as possible, making the above equivalent to

λx1. λ x2. . . . λ xn. g.

If f ∈ Γ is a functional symbol of type s1 → . . .→ sn → s, write just f for

λx1 . . . xn. f x1 . . . xn,

thus interpreting functional symbols as functional terms.

Definition A.8 (Application of terms). If s is a sort, α is a functional type,
f = λx :: s. g :: s → α is a functional term and t :: s is a value term, the
application f t of f to t is the functional term of type α resulting from f as
follows:

98 A.1 MSL and lambda notation

• If x :: s is parameter still in g, f t = g.

• Otherwise (x :: s is context in g or does not occur), let f t arise from
replacing any occurrence of x :: s in g by t.

Write t t′ t′′ for (t t′) t′′.

Remark A.9.

1. A certain similarity to (simply typed) lambda calculus can be seen here.
However, since variables cannot have functional type, none of the more
complex constructions (like e.g. non-terminating expressions) can be done.

2. In fact, my lambda expressions can be seen as just a value term together
with a list of parameter variables: Any functional term f is of form f =
λx1 . . . xn. t where t is a value term. I call x1, . . . , xn the parameters or
arguments of f and the other variables the context.

3. The notation of function application by juxtaposition (f t1 . . . tn instead
of f(t1, . . . , tn)) as well as the structure of functional types (s1 → . . . →
sn → s instead of s1 × . . .× sn → s) are borrowed from Haskell.
Haskell and my notation also share the property that in fact, every func-
tion has only one argument, and applying an argument to a function yields
a new function with one parameter less, where the parameter already ap-
plied would be stored in a closure in Haskell. This is called partial appli-
cation. In terms of sets, it means that the two functions

f :: A×B → C

f(x, y) = g(x)(y)

g :: A→ CB

g(x) = (y 7→ f(x, y))

are identified. This identification is called currying and g is also called
curry f and f is also called uncurry g.
The concept of currying becomes relevant in the context of higher-order
functions. Cf. section A.1.3 for how these are handled and section 5.2.2
for a nontrivial case.

4. The whole machinery is a second layer on top of the normal many-sorted
first-order logic that helps specifying functions. As soon as formulas are
concerned, functional terms are not mentioned any more. Relatedly, the
arguments to function- or relational symbols of the language are always
value terms.
Allowing functional terms here could be a simple way to extend the frame-
work to higher-order mechanisms, but this is intentionally not done here.

5. Relatedly, note how the argument of a functional term cannot be itself
functional. The replacement would not even make sense because it would
require a variable used as a function to stay syntactically valid. But this
is not possible.

A.1 MSL and lambda notation 99

6. It should be mentioned that a variable bound by a lambda does not have
to be used inside the defining value term. This provides a way to denote
functional terms constant in a parameter.
Note also that a functional term may specify the same parameter more
than once. Then the term is constant in all but the last occurrence.

Example A.10. Given the machinery above, now the following is meaningful:
Given sorts Int and Double and symbols (−)Int :: Int → Int → Int,

(−)Double :: Double → Double → Double, floor :: Double → Int and
asDouble :: Int → Double, the following are functional terms (partly using
my short notation):

• t1 := λx y. (−)Int (x :: Int) (y :: Int)

• t2 := λ (y :: Double) (x :: Double). (−)Double x y

• t3 := λx. (−)Double (asDouble (floor x)) x

• t4 := λx. (+)Double (t3 x) x

The types are t1 :: Int → Int → Int, t2 :: Double → Double → Double,
t3 :: Double→ Double and t4 :: Double→ Double.

From the names of the functions, one would expect that floor and asDouble
come with axioms such that t4 x = x for any x.

For (−)Double and (−)Int above, one would typically just write (−). I do this
from now on if the types are clear. Haskell provides a mechanism called type
classes for this which are briefly mentioned in section A.2.5.

Notation A.11. When I write down lambda expressions, parameters are always
applied explicitly. I assume that a parameter variable does not occur in the
mentioned terms, except for at the place where the lambda is defined.

For example, if f is assumed to be a functional term of type Z → Z and I
write “g := λx. f x · 2”, then I assume that x does not occur as context in f . If
f is e.g. λ y. x+ y, then g should not be

λx. (x+ x) · 2

where x being parameter in f and context in g leads to an unwanted name clash,
but the parameter should be renamed to yield e.g.

λ z. (x+ y) · 2,

so the context is preserved.
As only parameters are renamed, no further modifications are necessary.

Definition A.12 (Formulas). Given a signature Σ = (S ,Γ), a Σ-formula ϕ
takes one of the following forms:

• There are value terms t1 and t2 of the same result type and ϕ is of form
t1 = t2.

• There is a relational symbol R ∈ Γ, R :: R (s1, . . . , sn) where s1, . . . , sn ∈
S are sorts and value terms t1, . . . , tn of result types s1, . . . , sn, respec-
tively, and ϕ = R t1 . . . tn.

100 A.1 MSL and lambda notation

• ϕ is of form ¬ψ or (ψ ∨ ψ′) where ψ and ψ′ are formulas.

• There is a formula ψ with a free variable x :: s where s ∈ S is a sort and
ϕ = ∃x :: s : ϕ.

A Σ-theory is a set of Σ-sentences (formulas without free variables). A triple
is of form (S ,Γ,Φ) where (S ,Γ) is a signature and Φ is a (S ,Γ)-theory.

As promised, the definition of formulas did not mention functional terms,
so they can really be seen as a “convenience” layer on top of the usual logic
framework.

Definition A.13 (Structures). If Σ = (S ,Γ) is a signature, a Σ-structure A
consists of the following:

• A set dom (A).

• For any s ∈ S a subset sA ⊆ dom (A) such that
∪

s∈S sA = dom (A).

• For f ∈ Γ of functional type s1 → . . .→ sn → s a map fA : s1
A × . . .×

sn
A → sA .

• For R ∈ Γ of relational type R (s1, . . . , sn) a subset RA ⊆ s1A ×. . .×snA .

Manzano’s MSL allows a hierarchy (i.e. a partial order) on the set of sorts to
implement subtyping: A sort b may be marked “derived” from a sort a, allowing
a variable of type b to be used in a a-context. While many object-oriented
programming languages provide such a subtyping mechanism for their class
hierarchy, Haskell does not do this, as does my translation below and the MSL
variant here: While structures are not required to assign disjoint sets to different
sorts, the subset relations would not be visible to the theory.

In Haskell, explicit conversion functions together with heavy use of type
class polymorphism are applied to provide the features for which subtyping
and implicit conversion are used elsewhere.42 The MSL-translation will provide
conversion mechanisms for certain cases where required.
Remark A.14. Let A be a Σ-structure.

If f :: s1 → . . .→ sn → s is a functional term with context types t1, . . . , tm,
in order, and ai ∈ tiA for i = 1, . . . ,m, it is easy to define the interpretation

fA [ā] : s1
A × . . .× snA → aA

of f in A with context ā.
Given a Σ-structure A , consider the category CA where the objects are

of form sA for s ∈ S (plus the cartesian products) and morphisms are of
form fA [ā] like above. Together with the interpretations of id = λx. x and
f ◦ g = λx. f (g x), this indeed forms a category.

I call A a structure in a category C if CA can be enriched to a subcategory
of C. This can be made precise by requiring that there is a canonical forgetful
functor from C to Sets and that CA is the image of a subcategory under that
functor. The enrichment is typically mentioned together with the model A .
For example, for the most popular choice C = M, there are obviously several
options, the trivial cases being the discrete or trivial σ-algebra for everything.

42Cf. the from/toInteger/Rational functions in the “Standard Prelude” [5, sec. 8].

A.1 MSL and lambda notation 101

It is left as an exercise to the reader to define what it means for a formula
to hold in a structure and what a model of a theory is. No surprises are to
be expected here. One receives proof rules analogous to sequent calculus where
“types must match”, and a variant of the completeness theorem. Translation to
Manzano’s MSL can be easily done as well.

A.1.2 Modification Operations

In the main part of this thesis, the following sections A.1.3 and A.1.4 and in
section A.2 I construct, step by step, a triple as of definition A.12. To do this,
it is required to add sorts, symbols, and axioms, and to iterate over all possible
terms in some places. As adding symbols or sorts creates new terms, the process
has to be repeated infinitely often.

The following definition provides a technical device to do this:

Definition A.15. A modification operation M is a map that constructs from
a signature (S ,Γ) a set S (M,S ,Γ) of new sorts, a set Γ(M,S ,Γ) of new
symbols and a set Φ(M,S ,Γ) of axioms.

If M is a set of modification operations, the application of M to a triple
(S ,Γ,Φ) is the triple (S ′,Γ′,Φ′) defined by induction on N as follows:

• S0 = S , Γ0 = Γ, Φ0 = Φ

• Si+1 := Si ∪
∪

M∈M S (M,Si,Γi), analogous for Γi+1 and Φi+1.

• S ′ :=
∪

i∈N Si, analogous for Γ′ and Φ′.

For (S ′,Γ′,Φ′) to be in fact a triple again, M must be “complete enough” (any
symbols/sorts mentioned in generated axioms must be added at some point).
This will be the case for the modification operations used below.

Remark A.16. Note that a set of modification operations must be applied in
parallel to receive the desired result: If M = K ∪̇L , then applying M to some
triple is not the same as applying first K and then applying L to the result.

That’s why modification operations should be thought of as being collected,
then applied together to the empty triple. And so, a set of modification opera-
tions can be seen as a “generalized triple”.

The following section A.2 as well as the sections 2 and 3 above can be thought
of as defining certain modification operations when introducing new types and
axioms. The lemmas stated in these sections hold in any triple that arises
from application of the modification operations introduced until the respective
lemma.

A.1.3 Closure Emulation

Consider a higher-order function like

fmap :: (a→ b)→ Obs a→ Obs b

from section 2. fmap applies a function “on top of” an observable.
Using fmap, one could then write e.g.

pluses :: Int→ Obs Int→ Obs Int
pluses := λ i io. fmap (λ j. i+ j) io.

102 A.1 MSL and lambda notation

pluses i io adds i on top of the result of io.
Now there’s a problem here, namely fmap being higher order: Its type

(a→ b) → Obs a → Obs b is not actually a valid (functional) MSL type as
of above because the argument type a→ b is not a value type. So fmap can’t be
a symbol. However, one can (intuitively) use fmap to define a function pluses,
which is not higher-order, where fmap is applied to a function which is defined
using the parameter i. In programming language terms, one would say that the
parameter i is “stored in a closure”.

To resolve the issue, one could quantify over all functional terms f :: Int→
Int to receive many functional symbols fmapf :: Obs Int→ Obs Int. But now
there is no way to carry the closure parameter i!

The solution is to have the context i as an additional parameter to a fmapg
symbol where g is λ j. i+ j: We receive f̃mapg :: Int→ Obs Int→ Obs Int and
can write:

pluses :: Int→ Obs Int→ Obs Int
pluses := λ i io. f̃mapg i io

Formally:

Definition A.17. Let f be a symbol and let α and β be functional types. The
closure emulation schema f :: α→ β is the following modification operation:

For any functional term g :: α with context variables y1 :: b1, . . . , ym :: bm,
in order in the ordering of variables, add a new functional symbol

f̃g :: b1 → . . .→ bm → β.

Then add the following axioms: Assume that α = a1 → . . . → ak → a,
β = s1 → . . . → sn → s and let g, h :: α. Let {y1 :: b1, . . . , ym :: bm} be the
union of the context variables from g and h, in order. Add the following axiom:

∀ȳ :: b̄ : (∀z̄ :: ā : g z̄ = h z̄)→
(
∀x̄ :: s̄ : f̃g ȳ x̄ = f̃h ȳ x̄

)
where “∀ȳ :: b̄” is short for “∀y1 :: b1 . . .∀ym :: bm” and g z̄ is short for g z1 . . . zk.

The axioms ensures that identical, with context, function arguments yield
identical resulting functions.

f itself does not become a symbol and “α→ β” is not actually a well-defined
functional type, but we can use f as if it was:

Notation A.18. In the above situation, write f g for the functional term

f̃g ȳ

= λ x̄ :: s̄. f̃g ȳ x̄.

In this setting, I call the sorts b̄ and the variables ȳ the closure context of g in
f .

Remark A.19. Note how …

1. the context of g has become context of f g, so the context is preserved.

A.1 MSL and lambda notation 103

2. application is done explicitly: f̃g is just a symbol, but f̃g ȳ is actual
application of variables to a symbol. This is important in order to e.g.
allow the proof calculus to rename variables.

3. the schema can easily be extended to higher-order functions with several
functional parameters, which is not done here for simplicity.

4. only second-order functions are supported: The schema could not be ap-
plied to a function which takes a higher-order function as its argument. A
generalization to arbitrary orders is possible, but not required here.

One can now write

pluses := λ i io. fmap (λ j. i+ j) io

as wanted. Note again how j is not actually a variable in the RHS term: One
only “sees” the symbol f̃mapλ j. i+j and the variables i and io.

If the polymorphic version

fmap :: (a→ b)→ Obs a→ Obs b

is used, one even receives “polymorphic” (i.e. one for each choice of a and b)
functions like

intoConst :: a→ Obs b→ Obs a
intoConst := λx l. fmap (const x) l

where const = λx y. x, so const x = λ y. x.
Of course, we only added symbols so far. – In order for the symbols to have

the intended behavior, one also needs to add axioms for them. Section A.2.3
only defines a translation for first-order functions, the axioms for higher-order
functions are hand-crafted.

There are two use cases for higher-order functions in this thesis: The above-
mentioned fmap from section 2 and the case functions from section A.2.2 below.
Remark A.20. Closure emulation is not a conservative extension: While a model
might provide sensible interpretations for m = 0, it might fail to do so as soon
as closures are involved. For example, in the model for LPT in the category
M of measurable spaces, it must be explicitly shown that closure emulation for
fmap is supported. Cf. section 5.2.2.

A.1.4 Lifted relations

In Manzano’s MSL, there are not actually any “relational” symbols, just func-
tions to the special two-element 0 type. The same is true for Haskell, of course.
One might say that here, all relations are “computable” in a broad sense or
functionally lifted.

However, this yields a semantic problem: In section 3, I introduce the Con
type modeling financial contracts and a relation ⪯:: R (Con, Con) indicating that
a contract is “worth less than another one in present value”. By the framework
introduced in the sections 2 and 3, contracts may be defined using any kind of
term and so the definitions of contracts would have access to this relation.

104 A.2 Translating Haskell programs to MSL

For separation of concerns, I decided that this should not be possible, and
it can be avoided syntactically by making sure that “⪯” is not a function. On
the other hand, any other relation such as equality or “≤” on numbers should
be available for defining contracts, so these should be functions.

Definition A.21. The functional lift of a relational symbol R :: R (s1, . . . , sn)
(R may be equality) is the modification operation adding a new functional sym-
bol R̂:: s1 → . . .→ sn → Bool and the axiom

∀x̄ :: s̄ : R(x̄) ↔ R̂ (x̄) = True.

R is then called functionally lifted.

All relations defined in this thesis will be functionally lifted, with the ex-
ception of “⪯”. All primitive types defined in section A.3 below will have func-
tionally lifted equality, but equality on the types Obs a and Con will not be
lifted.

Note that the other direction, namely converting from functions to formulas,
is always possible: If f :: s1 → . . . → sn → Bool is a term, then (f x̄ = True)
is the corresponding quantifier-free formula.

A.2 Translating Haskell programs to MSL
With the general framework of MSL set up, one can now start to translate the
different elements of the Haskell[5] language into MSL.

Haskell is a programming language very different from imperative languages
like Java in that it has three properties making it particularly well-suited for
formal considerations: Haskell is …

functional, meaning that functions are given as a sequence of applications of
(possibly recursive) functions to terms rather than a series of commands.

pure, which means that functions never have side effects: All a function does
is produce a value. It does not e.g. modify global variables. Aspects
of a program which conceptually are effectful, such as I/O, are typically
encapsulated in a concept called monads, which was also discussed in
section 2.

strongly typed, which means that any expression has a type determined at
compile time. Programs never43 crash with a “type error” or “null pointer
exception”.

These three properties allow a Haskell function to be viewed as a mathematical
formula, which is what I roll out in full detail in the following sections.

A Haskell program basically44 consists of things:

1. Algebraic Data Type (ADT) definitions

2. Function definitions
43In practice, the type system is sometimes circumvented for reasons of convenience, but

that would by no means be necessary.
44I leave out here things like the module system, type synonyms and other syntactic con-

structions which are rather a tool for the programmer than the core of the expressiveness of
the language. – Any Haskell program could be written without these features.

A.2 Translating Haskell programs to MSL 105

3. Type class- and instance definitions

4. Every function has an associated type which needs to be translated as
well.

For each of these four points, I will give a modification operation which translates
them into MSL.

An important restriction is higher-orderness: In Haskell, functions are first-
class objects just like any other piece of data: They can be stored in a variable
and passed to other functions (so-called higher-order functions). Function types
are ordinary types just like anything else. A function can create another function
from its parameters. Such a function is then called a closure. As mentioned
above, the MSL variant I am using follows a different approach. We will see
that higher-order functions are still supported in some cases.

In addition to the above four points, I will introduce abstract data types
like R which are not defined by their structure (like a ADT), but about which
only certain properties are known. Haskell supports a similar mechanism also
called “abstract data types”: The internal representation of a type can be hidden
through the module system. This happens e.g. for primitive types like Double.

In this section, many features of the Haskell language are ignored, examples
being the module system, the foreign function interface, any syntactic construc-
tion such as named field in data types, almost any property of type classes as
well as any advanced features such as generalized algebraic data types (GADTs)
or type families which are typically implemented as language extensions. The
result is a reduced subset of the language which is however sufficient to define
all of the “standard” library as well as Peyton Jones’ and Eber’s framework and
the framework introduced here.

A.2.1 Types

A Haskell type can take essentially45 one of the following forms:

1. A type variable

2. Application of a type constructor (which is a name with a fixed arity) to a
series of types or other type constructors. The kind of a type constructor
defines which arguments are types and which are type constructors of
which arity.

A special built-in type constructor is the function type constructor “->”.
A function the type of which contains a type variable is called polymorphic:

The type variables can be arbitrarily instantiated, i.e. replaced by types, and the
function will still provide a definition for the more specific type. An example is

if' :: Bool -> a -> a -> a
if' True x y = x
if' False x y = y

which expresses the “if” construct found in any programming language. A type
without variables is called ground or monomorphic.

45Cf. [5, sec. 4.1.2]. As usual, I leave out more “convenience” features like tuples and special
syntax for lists.

106 A.2 Translating Haskell programs to MSL

My translation to MSL does not preserve this structure:46 A sort in MSL
is just an arbitrary identifier. The MSL-types from above do not contain type
variables. Hence, type variables need to be replaced by sorts for a Haskell
type to translate to a MSL type. Polymorphism is instead treated on top of
the meta language: A polymorphic function symbol is translated into many
(monomorphic) function symbols, indexed by type instantiations. For example,
the above example if′ would become the set of symbols

if′a :: Bool→ s→ s→ s

where s is a sort. The if′s are now proper MSL symbols. Of course, I will just
write if′ if the instantiation of a is arbitrary or clear from the context.

Special care has to be taken for Haskell’s function type constructor “->”: In
Haskell, it can be mixed with other types, so a type like Maybe (a -> b) would be
valid. In MSL, as functional types are not sorts, this is not possible. Hence, not
all Haskell types are translatable. For simplicity, type constructors as arguments
to other type constructors are not supported as well, but support for them could
easily be added.

Write in the following short s̄ for s1, . . . , sn etc.

Definition A.22. A Haskell type is called functional if it of form ν -> ζ where
ν and ζ are types.

A Haskell type is called translatable if arguments to type constructors are
never other type constructors and functional types occur only at the top level
or as the second (= RHS) argument of “->”.

The translation of a translatable non-functional Haskell type ν with n type
variables u1, . . . , un, in order, to MSL is the translation operation adding for
any sorts s1, . . . , sn a new sort ν̃(s̄) defined by replacing any occurrence of a
type variable ui in the string ν by the string si.

The translation of a translatable functional Haskell type ζ to MSL is a func-
tional MSL-type defined likewise by inductively translating the contained non-
functional translatable types to sorts, then replacing any instance of “->” by
“→”. This will indeed be a functional MSL-type with respect to the sorts arising
from the translation of the contained non-functional types.

If the type variables of a Haskell type η are contained in {u1, . . . , un} (but
are not necessarily exactly u1, . . . , un) and s1, . . . , sn are sorts, define the named
translation η̃[ū/s̄] to be the MSL type constructed just like above.

Note that the above produce two things: A translation operation and a
resulting type η̃(s̄) for any choice of s̄.
Remark A.23. The above translation operation does not recur: Translating a
type like Maybe Int will just add this string as a sort, it does not automatically
add a sort Int as well. However, any below translation will make sure that the
contained types are added as well at some point.
Example A.24. Given the 0-ary Haskell type constructors Int and Char, unary
type constructors Maybe and List and the binary type constructor Either, then

• the following are translatable non-functional Haskell types:
Int, List a, Either (List a) (Either b Int).

46Of course, MSL, being a very general framework, can be used to give meaning to type
variables and instantiation, but I chose a simple approach to typing here.

A.2 Translating Haskell programs to MSL 107

• the following are translatable functional Haskell types:
Int -> a, a -> Int, Either Int a -> b -> Char

• the following are not translatable:
Maybe (a -> b), (a -> b) -> c

The type constructors Maybe and List are defined below.
The most popular GHC compiler provides a wide range of extensions to the

type system [16, sec. 7] such as higher-rank types where quantifiers may be
placed inside types. I do not support these and most extensions are interesting
only together with higher-order functions. – which are only supported in a
limited way:

A.2.2 Algebraic Data Types

Haskell supports47, besides the built-in types of data such as IEEE floating point
numbers (Double), algebraic data types (ADTs), i.e. a data type that is defined
by a finite set of primitive functions (or constructors) . The constructors define
the different (mutually exclusive) “shapes” a value of that type may have.48

Functions can then pattern match, i.e. perform case distinction between the
different “shapes”. ADTs may be parameterized over other types. This structure
is encoded into MSL as follows:

An Algebraic Data Type definition has a form as follows:

data T u1 . . . uk = K1 t1,1 . . . t1,k1 | . . . | Kn tn,1 . . . tn,kn (A.1)

where data is a defined language keyword, k ∈ N, n ∈ N, k1, . . . , kn ∈ N, T and
K1, . . . ,Kn are names, u1, . . . , uk are type variables and ti,j for i ∈ {1, . . . , n}
and j ∈ {k1, . . . , kn} are Haskell types which may mention exactly the variables
u1, . . . , uk.4950 The ti,j may very well mention T or another ADT mentioning
T again, leading to a recursive ADT .

Again, we need to restrict the possible values of ti,j to translatable non-
functional types: A function cannot be stored in a data type in MSL while this
is possible in Haskell.
Example A.25.

1. For T = Bool, k = 0, n = 2, K1 = True, K2 = False and k1 = k2 = 0
one receives

data Bool = True | False,

i.e. the well-known type of boolean values: An object of type Bool can
have one of exactly two possible abstract values, which are called True
and False.

47Cf. [5, sec. 4.2.1]. I ignore features like record labels and strictness annotations as well
as any language extensions.

48In fact, any ADT has an additional “shape” called “bottom”, which models the compu-
tation that never terminates or an exception. I do not model “bottom”. Non-termination will
instead correspond to a inconsistent or underspecified theory. Cf. section A.2.3.

49Types and constructors are always set in upper case while anything else is set in lower
case. This rule not only a convention, but part of the language. The language elements do
not share a common namespace.

50Technically, n = 0 requires the EmptyDataDecls extension which is implemented e.g. in
the GHC compiler [16, sec. 7.4.1].

108 A.2 Translating Haskell programs to MSL

2. Let T = Maybe, k = 1, n = 2,K1 = Just, k1 = 1, t1,1 = u1,K2 = Nothing
and k2 = 0:

data Maybe u1 = Just u1 | Nothing

A value of type Maybe a is either of form Just x where x is of type a or
of form Nothing. Thus, such a value is indeed “maybe an a”. Note that
this type is parameterized: It has k = 1 > 0 type parameter.

3. The canonical recursive ADT is List: Consider T = List, k = 1, n = 2,
K1 = Cons, k1 = 2, k1,1 = u1, k1,2 = List u1, K2 = Nil and k2 = 0:

data List u1 = Cons u1 (List u1) | Nil

A List a is either empty (form Nil) or it consists of a first element x :: a
and a remaining list l :: List a (form Cons x l). x is sometimes called the
head and l the tail of the list.
Haskell offers special syntax for lists, writing [a] for List a, x : l for
Cons x l and [x1, . . . , xn] for Cons x1 (Cons . . . (Cons xn Nil)), but the
definition is exactly equivalent.
Lists do not need to be finite in Haskell, e.g. the list [0, 1, ..] of all natural
numbers is easily definable. This is equally reflected in the translation:
While not enforcing that infinite lists exist, the translation does not try
to impose that lists be finite either.51

4. A tree type can be defined as follows:

data Tree u1 = Branch u1 (List (Tree u1)) | Leaf

The following definition provides the translation in question:

Definition A.26. A ADT definition T as in equation (A.1) is called translatable
if all the types ti,j are translatable and non-functional as of section A.2.1.

Given such a translatable ADT definition, the translation of T is the follow-
ing modification operation:

1. Add a k-ary type constructor named T , i.e. perform the translation of the
non-functional Haskell type T u1 . . . uk from section A.2.1.

2. For i = 1, . . . , n and s1, . . . , sk sorts, add a functional symbol

Ki,s̄ :: t̃i,1 [ū/s̄]→ . . .→ t̃i,ki [ū/s̄]→ T s̄

where t̃i,j [ū/s̄] was defined in section A.2.1
For any sorts s and s1, . . . , sk, add symbols as of the closure emulation
schema from section A.1.3 with respect to the higher-order function name

51An example where all ADT elements are finite expression in their constructors is the
translation to (species and) measurable spaces in section D. An example with infinite lists is
given in section A.2.6 below.

A.2 Translating Haskell programs to MSL 109

caseT,s,s̄ and type (
t̃1,1 [ū/s̄]→ . . .→ t̃1,k1 [ū/s̄]→ s

)
→ . . .

→
(
t̃n,1 [ū/s̄]→ . . .→ t̃n,kn [ū/s̄]→ s

)
→ T s̄

→ s

This means the following: Whenever f1, . . . , fn are functional terms of
types fi :: t̃i,1[ū/s̄] → . . . → t̃i,ki [ū/s̄] → s such that the union of their
context variables, in order, is y1 :: b1, . . . , ym :: bm, add a new functional
symbol

c̃aseT,f̄ :: b1 → . . .→ bm → T s̄→ s.

3. Add the following axiom for any choice of the sorts s̄:

∀y :: T s̄ :
∨̇

i=1, ...,n

(
∃x̄ :: ˜̄ti [ū/s̄] : y = Ki x̄

)
(A.2)

where “∃x̄ :: ˜̄ti[ū/s̄]” is short for “∃x1 :: t̃i,1[ū/s̄] . . .∃xki :: t̃i,ki [ū/s̄]” and “
∨̇
”

is short for the formula stating that “exactly one of them holds”.
For any choice of s̄, s and f̄ in the definition of the case functions above
and i = 1, . . . , n, add the following axiom:

∀ȳ :: b̄ : ∀x̄ :: ˜̄ti [ū/s̄] : caseT,f̄ ȳ (Ki x̄) = fi x̄ ȳ (A.3)

The first axiom from A.26.3 states that any ADT value must be defined
by one of the ADT constructors Ki while the second states that one can use
pattern matching to get the contained values back as arguments to functions.

Of course, I will leave out the indices whenever possible.
Example A.27.

1. The Bool ADT from above now indeed yields a sort Bool together with
two 0-ary function symbols (i.e. constants) True, False :: Bool and the
axiom

∀y :: Bool : y = True ∨̇ y = False

as expected. One can now also define – using the closure emulation syntax
from section A.1.3 – a function like

not :: Bool→ Bool
not := caseBool False True

and it follows from the axioms that this is a complete and consistent
definition.

110 A.2 Translating Haskell programs to MSL

In practice, one would write the above as

not True := False
not False := True.

Note how caseBool is usually called if′.

2. Likewise, for Maybe, one receives many new sorts Maybe a, functions Justa
and constants Nothinga such that

∀y :: Maybe a : y = Nothing ∨̇ ∃x :: a : y = Just x

and one can define functions (for any sort a)

fromMaybe :: a→ Maybe a→ a

fromMaybe := λx m. caseMaybe,a id x m

where id = λ y. y.

3. Finally, for List, one receives

∀y :: List a : y = Nil ∨̇ ∃x :: a, l :: List a : y = Cons x l.

Note that it is not stated that y ̸= l. And indeed, as soon as lists can
be infinite – and there’s no way to prevent that axiomatically – it is not
clear whether this should hold. For example, Haskell allows a definition
like this:

trues :: List Bool
trues = Cons True trues

Now it is not clear whether the tail of trues is truly equal to trues or
just exhibits the same behavior as trues. The internals of the (GHC com-
piler’s) Haskell runtime as well as the encoding from below section A.2.3
suggest that they should be equal.

One easily receives that constructors must be injective:

Lemma A.28. Let be given a translation of a ADT definition as of defini-
tion A.26 and fix sorts s̄. All the functions Ki are injective in the sense that
for any i the following holds:

∀x̄, ȳ :: ˜̄ti : Ki x̄ = Ki ȳ →
∧

j=1, ...,ki

xj = yj

Proof. Let i ∈ {1, . . . , n} and j ∈ {1, . . . , ki} and apply case distinction to the
functions fl, l = 1, . . . , n, defined by

fl =

λx1 . . . xki

(
z :: t̃i,j

)
. xj if l = i

λ x1 . . . xki

(
z :: t̃i,j

)
. z if l ̸= i

where the variable z will occur as context in the case schema and is only required
for well-definedness.

A.2 Translating Haskell programs to MSL 111

Now, if x̄, ȳ :: ˜̄ti are such that Ki x̄ = Ki ȳ and z :: t̃i,j is arbitrary, one
receives

xj = fi x̄ z

= c̃aseT,f̄ (Ki x̄)

= c̃aseT,f̄ (Ki ȳ)

= fi ȳ z = yj

ADTs can be found in many places where a sense of “combining” or “case
distinction” is required. For example, the set of functional types is actually a
recursive non-parameterized ADT handled in the meta language, as is the set
of formulas. Template Haskell [16, sec. 7.12] provides a mechanism to represent
a Haskell program as a ADT during compilation. The category-theoretic con-
structions of the product and coproduct can be thought of as ADTs as well. I
give a translation of general ADTs into the category of measurable spaces in
section D.

A.2.3 Functions

A Haskell function definition is basically52 of the form

f = e

where f is a name and e is a Haskell expression.
A Haskell expression is basically of one of the following forms:

1. A variable (which must be in scope).

2. A function name.

3. Application of a expression to another expression, denoted by juxtaposi-
tion.

4. A lambda term, of form \x :: ν -> e where x is a variable newly brought
into scope, ν is a Haskell type and e is an expression.

5. A case distinction on an expression e′ of a ADT type Tν1 . . . νk where
ν1, . . . , νk are Haskell types, being of form

case e' of
K1 x1 ... x_k1 -> e1
...
Kn x1 ... x_kn -> en

where K1, . . . ,Kn are the constructors of T , x1, . . . , xki
are variables

newly brought into scope for each i and e1, . . . , en are Haskell expressions
of the same type.
The types of the variables xi can be inferred from the definition of T and
ν̄.

52Cf. [5, sec. 4.4.3]. As usual, Haskell supports many more syntactic features than listed
here, e.g. pattern matching on the LHS of function definitions and many more, which can be
easily translated into the form discussed here.

112 A.2 Translating Haskell programs to MSL

A Haskell function definition is then simply of form f = e where f is a name and
e is a (lambda) expression. Any Haskell expression has a type, but the compiler
can usually infer it. In the following, I assume that the type of an expression
is always given.53 For the details of assigning a type to an expression, cf. [5,
sec. 4.5].

A Haskell expression can be translated into a MSL term (for a certain sig-
nature) by recursively performing application of terms for function application
(possibly with closure emulation), replacing “\x ->” by “λx. ” and replacing
case distinctions by calls to the case functions from section A.2.2. This is
formalized by the following definition.

Again, not every piece of Haskell code can be translated due to the restric-
tions of MSL with respect to higher-order functions.

Definition A.29. A Haskell expression e is called translatable if a variable is
never of functional type and lambda expressions are not passed as arguments
to functions.

Assume a 1:1 correspondence between Haskell’s and MSL’s variables and
function names. Let e be a Haskell expression of Haskell type η and let ū be
the type variables occurring anywhere in the types of e and its sub-expressions,
in order. Let s̄ be sorts.

The translation of e, instantiated to s̄, is a MSL term ẽ[ū/s̄] of type η̃[ū/s̄]
defined as follows: Write ẽ for ẽ[ū/s̄] and η̃ for η̃[ū/s̄].

1. If e = x :: η is a variable, then η is non-functional and ẽ = x :: η̃ is just
this variable.

2. If e is a function name and η̃ = s1 → . . . → sn → s, then ẽ = e = λx1 ::
s1 . . . xn :: sn. e (x1 :: s1) . . . (xn :: sn).

3. If e = f g is application, then ẽ is the term f̃ g̃ received by application of
terms as of section A.1.1.

4. If e = \x :: ν -> f is a lambda term, then ν is non-functional and η̃ = ν̃ → θ̃
where θ is the Haskell type of f and one can set ẽ = λx :: ν̃. f̃ .

5. If e is a case distinction as above, let for i = 1, . . . , n fi = ẽi and translate
ẽ = caseT,f̄ .

Function definitions can be translated by just adding a new functional sym-
bol and stating that it should equal its defining expression. This can in fact be
done for any MSL term:

Definition A.30. If f is a new function name and ϕ is a MSL term of functional
type α = s1 → . . .→ sn → s, then adding a function f = ϕ is the modification
operation that adds a functional symbol f :: α and the axiom

∀x̄ :: s̄ : f x̄ = ϕ x̄.

Recap that f is a plain symbol while ϕ x̄ is a value term received from ϕ by
replacing variables.

53Defining Haskell functions this way requires at least two GHC extensions, namely
NoMonomorphismRestriction (in order to have the compiler accept the lambda-style defini-
tion) and ScopedTypeVariables (in order to give all type annotations). Cf. [16, sec. 7].

A.2 Translating Haskell programs to MSL 113

If f = e is a Haskell function definition of translatable functional Haskell
type ζ with type variables ū, then adding a Haskell function is the modification
operation adding, for any choice of sorts s̄, a (MSL) function fs̄ = ẽ[ū/s̄] :: ζ̃[ū/s̄].

Notation A.31 (Function equality). I abbreviate the above formula as

f = ϕ.

A translated Haskell expression is a valid MSL-term with respect to the
signature where all the functional symbols occurring in the term exist. Hence,
if a function is recursive, i.e. its name occurs in its own definition, or is part of
a recursive group of functions calling each other, this function must indeed be
added as a symbol.54 On the other hand, a non-recursive function definition
can be seen as a shortcut for its defining expression, replacing any uses of the
function by its definition.
Example A.32. Consider the Haskell definition of the fromMaybe function from
above:

fromMaybe :: a -> Maybe a -> a
fromMaybe x (Just y) = y
fromMaybe x Nothing = x

This definition is equivalent to

fromMaybe = \x -> \m -> case m of
Just y -> y
Nothing -> x

which is translated by definition A.29 into the MSL terms, one per sort a,

fromMaybe :: a→ Maybe a→ a

fromMaybe = λx m. caseMaybe (λ y. y) x m

where the RHS uses the notation for closure emulation and is equal to

caseMaybe,(λ y. y),x x m.

Here, the two functions (λ y. y) and (x) (of trivial functional type) passed to
caseMaybe have in total one context parameter x which is then passed explicitly.
Remark A.33 (Effects of bottoms). A Haskell function may “hangup” or “yield
bottom”, i.e. go into an infinite loop, on certain values. As in any Turing-
complete language, this cannot be prohibited syntactically by the halting prob-
lem.

If a Haskell function that may “bottom” is translated into MSL, the result
can be either inconsistent or underspecified. In the former case, models cannot
give an interpretation for the inputs leading to “bottom”, in the latter they are
free to choose any interpretation. For example, consider the following code:

54Traditionally, the lambda calculus would provide a recursion- or fixed-point combinator
Y that does recursion. Cf. [14, sec. 2.4.1]. One could add such a combinator here as well in
a similar fashion to the closure emulation schema, but it would amount to essentially adding
any functional term as a symbol.

114 A.2 Translating Haskell programs to MSL

f :: Int -> Int
f x = f x

g :: Int -> Int
g x = (g x) + 1

When run, both functions would go into an infinite loop for any input. However,
the function f yields the axiom

∀x :: Int : f x = f x,

which is true for any function, while g yields

∀x :: Int : g x = (g x) + 1,

which implies 0 = 1 and is hence false.

A.2.4 Adding higher-order functions

The above schema does not support higher-order functions, but at least support
for second-order functions which are bound to function names can easily be
added as follows. I consider only higher-order functions with a single functional
argument, which is their first argument.

In definition A.29, allow as another case applications of form e = f g where
f is a name for a higher-order function of type α→ β and g has a Haskell type
that translates to α and define ẽ by the corresponding instance of the closure
emulation schema.

If f = e is a Haskell function definition of higher-order type like above, then
e is of form (z :: ξ) -> e′ where ξ is a functional Haskell type and e′ is a Haskell
expression of type – say – ζ that may use z like a function. Then do the following
to add the function f = e (for any instantiation of the type variables, which is
kept implicit here):

• Execute the closure emulation schema f :: ξ̃ → ζ̃.

• If g :: ξ̃ is a functional MSL-term, let ẽ′g be the functional MSL-term
resulting from first translating e′ where z is treated like a functional symbol
of type ξ̃, then replacing z by g and performing all applications. Add the
axiom

fg = ẽ′g.

Note how ẽ′g may refer to an instantiation of f again (fg or some other instance),
so higher-order functions may well be recursive.

A.2.5 Type Classes

Haskell provides a mechanism to group a set of types supporting certain opera-
tions into hierarchical classes [5, sec. 4.1]. This concept should not be confused
with the idiom of a “class” from object-oriented programming: The term “type
sets” might be more appropriate. The GHC compiler implements several exten-
sions to the type class mechanism, such as multi-parameter type classes where
combinations of more than one type may be grouped into classes [16, sec. 7].

For example, consider a class like this (from the Prelude, [5, sec. 8]):

A.2 Translating Haskell programs to MSL 115

class (Eq a, Show a) => Num a where
(+) :: a -> a -> a
...

A type of class Num must be a member of the Eq and Show classes and provide
a binary operation (+). Then the “+” symbol can be used for this type.

A polymorphic Haskell type may contain restrictions that the type variables
must belong to certain classes. This is called parametric polymorphism.

An instance declaration adds a type to a class, providing the required oper-
ations. For example, one could define

instance Num Fraction where
(+) (Frac d1 n1) (Frac d2 n2) =
Frac (d1 * n2 + d2 * n1) (n1 * n2).

I do not support parametric polymorphism though the above approach could
be easily modified to do so by remembering subsets of sorts. Instead, parametric
polymorphism is handled directly on top of the meta language, i.e. I add sort-
indexed symbols as required. For the above example of “+”, I will below add
symbols (+)R and (+)Z, but write just (+) if the types are clear.

A.2.6 Effects of functions on models

A defined function relates the choice of models for the types it is defined on.
Example A.34. Consider the triple corresponding to the following Haskell code:

data List a = Cons a (List a) | Nil

length :: List a -> IntPlus
length Nil = 0
length (Cons x l) = (length l) + 1

Further require a “+” operation and constants 0, 1 on IntPlus.
Let A be a model of this triple such that IntPlusA = N, and the inter-

pretations of 0, 1, (+) are as expected. Note that this cannot be axiomatically
enforced by similar reasons as the well-known first-order indefinability of the
natural numbers.

Then all lists are finite, i.e. for any sort s and any l ∈ List sA , there are
1n, . . . , 1∈s

A such that

l = ConsA x1
(
. . .

(
ConsA xn Nil

))
and n = lengthaA l.

Proof. Induction on the lengthA of a list. The only value of length 0 is Nil,
so the statement is trivial here. If l is a list of length n + 1 and the statement
holds for n, l must be of form l = ConsA x l′ (as the other case, Nil, has length
0). And n + 1 = lengthA l = lengthA l′ + 1, so lengthA l′ = n. By the
induction hypothesis, there are x′1, . . . , x′n for l′ as above. Then setting

xi =

{
x if i = 1

x′i−1 if i = 2, . . . , n+ 1

yields the statement for l.

116 A.3 Common data types and functions

Example A.35. Consider the triple corresponding to the Haskell code from ex-
ample A.34 where IntPlus is replaced by Int.

There is a model A where IntA = Z and there are infinite lists (i.e. lists
which are not finite in the notion above) and lists of negative length.

Proof. Define List aA to be the set of pairs (−→x , i) where −→x is a finite or infinite
sequence in aA and i ∈ Z and if −→x is finite, then i is the length of −→x . Define
further

NilA = (∅, 0)
ConsA x (−→x , i) = (x−→x , i+ 1)

caseList a
A fN fC (−→x , i) =

{
fN if −→x = ∅
fC x

(−→
x′ , i− 1

)
if −→x = x

−→
x′

lengthA (−→x , i) = i.

It is clear that the axioms arising from the definition of length are fulfilled. For
the axioms for the ADT List, note that if (−→x , i) ∈ (List a)A , then −→x = ∅ ⇔
(−→x , i) = Nil. From that, one receives that a list is of form Nil or Cons and that
the case function is correct with respect to the axioms. Hence, this is a model.

A list which is both infinite and of negative length is (−→x , i) where −→x is
infinite and i < 0.

Remark A.36. The previous (pathological) example could be eliminated by in-
troducing a new axiom that allows induction on ADTs: As Nil has non-negative
length and if l has non-negative length, then so has Cons x l, it should follow
that any list has non-negative length.

Recap that the length function in Haskell has one more possible value,
namely “bottom”, which is attained on infinite lists, but the theory should be
able to view lists like they are finite.

Such an axiom is a subject of future work. It should be chosen powerful
enough to deal with complex cases such as mutually recursive data types and
cases where in total potentially infinitely many types are involved such as the
following:

data V a = VNil | VCons a (V (V a))

A.3 Common data types and functions
The triple LPTPrim is the triple resulting from the empty triple by executing
the modification operations associated to the following paragraphs and adding
functional lifts for all relational symbols including equality.

The resulting theory is the LPT version of Haskell’s Standard Prelude [5,
sec. 8]. Some functions below are in fact taken from there.

A.3.1 Well-known ADTs and functions

For any n ∈ N, add a tuple type55

55Recap that types and constructors do not share a common namespace: The ADT name
Tn and the constructor name Tn just happen to be the same string. This is a common pattern
for ADTs with a single constructor.

A.3 Common data types and functions 117

data Tn a1 ... an = Tn a1 ... an.

I also write (x1, . . . , xn) for Tn x1 . . . xn and leave out calls to the caseTn

functions. For n = 0, one receives the unit type () = T0 with exactly one
possible value which is also denoted () = T0.

Add the following ADTs:

data Bool = True | False
data Maybe a = Just a | Nothing

Add the functions corresponding to the following Haskell code:

id :: a -> a
id x = x

(.) :: (b -> c) -> (a -> b) -> a -> c
f . g = \x -> f (g x)

(&&) :: Bool -> Bool -> Bool
True && True = True
-- all remaining cases:
x && y = False

(||) :: Bool -> Bool -> Bool
False || False = False
x || y = True

not :: Bool -> Bool
not True = False
not False = True

I use the symbols ◦, ∧ and ∨, ¬ for (.), (&&), (||) and not, respectively.

A.3.2 Numeric types

The following paragraphs add the numeric types Real = R, RealPlus = R+

etc. For the operations, it is important that types match: For example, there
is no sensible definition for division as of type Real → Real → Real, but
only as Real → RealNZ → Real where RealNZ should be like Real without 0.
As mentioned before, subset relations between the different numeric types are
modeled explicitly.

• Add new sorts Real, RealPlus, RealNZ, Int, Nat. Let SNum be the set of
these sorts. Define RealA = R, RealPlusA = R+, RealNZA = R \ {0},
IntA = Z and NatA = N.

118 A.3 Common data types and functions

• Add the following functional symbols:

0X :: X for X ∈ {Real, RealPlus, Int, Nat}
1X :: X for X ∈ SNum

(+)X :: X → X → X for X ∈ SNum \ {RealNZ}
(−)X :: X → X for X ∈ {Real, RealNZ, Int}
(·)X :: X → X → X for X ∈ SNum

(/) :: Real→ RealNZ→ Real
(· ·)X :: X → X → X for X ∈ SNum \ {Int}

Use the canonical interpretations in the structure A . Leave out the sub-
scripts if the types are clear.

• Add the following relational symbols:

(≤)X :: R (X,X) for X ∈ SNum

Use the canonical interpretations in the structure A . As usual, write
x < y for x ≤ y ∧ ¬x = y.

• For s, t ∈ SNum, add a functional symbol (projection)

πs,t :: s→ t

and let

πs,t
A
(
x ∈ sA

)
:=

{
x if x ∈ tA

z otherwise, where z is some fixed element of tA

• Add the first-order many-sorted theory of the structure A as axioms.

The π functions above are my approach to emulate some sense of sub-typing
in a simple way. One can now define, for example,

[·]+ :: Real→ RealPlus
[x]

+
:= if′ (x ≥ 0) (πReal,RealPlus x) 0.

Finally, one can define the expected notation for numeric types:
Notation A.37. Write short R for Real, R+ for RealPlus, R∗ for RealNZ, Z
for Int and N for Nat.

Omit applications of the π functions if it is clear what is meant.
Remark A.38. Just taking the theory of A is an easy way to get all the (first-
order) properties one needs. For example, one directly receives that all the πs,t
where sA ⊆ tA commute, that they are compatible with the operations and
orderings and that πt,s ◦ πs,t = id whenever sA ⊆ tA .

However, other axioms, which might not be desired, are included as well.
For example,

∃x :: R : ∄p, q :: Z : x = (πZ,R p)/(πZ,R∗ q)

prohibits that Q can be chosen instead of R in a model.
In the following, I only use the very basic properties of the numeric types,

essentially only that one can do computations. So one may replace the axioms
defined here by hand-crafted ones that allow a wider range of models.

The set of numeric types could be extended as required.

A.3 Common data types and functions 119

A.3.3 Time

Add new sorts Time and TimeDiff and the following functional symbols:56

(+) :: TimeDiff→ TimeDiff→ TimeDiff
0 :: TimeDiff

(≤) :: R (TimeDiff, TimeDiff)
(≤) :: R (Time, Time)

timeOffset :: Time→ TimeDiff→ Maybe Time

timeOffset has Maybe result type because time should be allowed to be finite,
so not all TimeDiff values can be added to all Time values and still yield a valid
Time. I also write (+) for timeOffset, which is actually abuse of notation.

Add the following axioms:

• (TimeDiff, (+), 0, (≤)) should form a linearly ordered commutative mono-
id, i.e. (+) should be associative and commutative, 0 neutral with respect
to (+) and (+) should be strictly monotonic.

• Time should be linearly ordered as well and timeOffset should be com-
patible with (+), 0, (≤) on TimeDiff in the following sense:

– t+ 0 = Just t
– If t + ∆t = Just t′ and t′ + ∆t′ = Just t′′, then t + (∆t+∆t′) =
Just t′′.

– If t < t′ and t+∆t = Just s and t′ +∆t = Just s′, then s < s′.
– If ∆t < ∆t′ and t+∆t = Just s and t+∆t′ = Just s′, then s < s′.

Further add a functional symbol

ιTime,R :: Time→ R

and require that ιTime,R be strictly monotonic. As usual, I will leave out the
ιTime,R and treat Time values as elements of R.
Example A.39. The canonical model A of the numeric types from above can be
extended in a number of ways to support Time and TimeDiff:

1: Let Time be of form {1, . . . , T} for some T ∈ N and use TimeDiff = Z.
Use the obvious interpretations for ιTime,R, operators and (≤). Define

timeOffsetA (t,∆t) =

{
Just (t+∆t) if − t+ 1 ≤ ∆t ≤ T − t
Nothing otherwise.

2: Similarly, one can choose Time and TimeDiff freely in N,Z,R+,R.
3: Let TimeA be the ordinal ω ·ω = {n·ω+m | n,m < ω}. Let TimeDiffA =

Z. Define

timeOffsetA (n · ω +m,∆t) =

{
Just (n · ω +m+∆t) if ∆t ≥ −m
Nothing otherwise

56The approach of having separate types for Time and TimeDiff can be found in the time
Haskell package [17].

120 A.3 Common data types and functions

and

ιTime,R
A (n · ω +m) = 3n+ 1− 1

m+ 1

This model views Time as an infinite series of “days”, indexed by n, each of length
1 and 2 apart from each other and each consisting of infinitely many discrete
time steps which will get closer and closer together as the day progresses. One
can reach via timeOffset exactly the points in time of the same day. If one
replaces 2 by 0 above, days follow immediately upon each other.

For the case where Time is an ordinal, a σ-algebra is required for a model
as in section 5.1. One can use the Borel sets with respect to the order topology.
In the above countable example ω · ω, this is just the discrete σ-algebra.
Remark A.40. It is tempting to add a function timeDiff :: Time → Time →
TimeDiff and an embedding ιTimeDiff,R :: TimeDiff → R together with certain
compatibility conditions. However, either of them would break the last example
above:

If one has timeDiff, it is not clear what e.g. the time difference ω − 1 is
supposed to be (it’s not an ordinal!), so one would have to extend TimeDiff
considerably and then, through timeOffset, also Time. If one has ιTimeDiff,R,
one would probably require that all time steps have the same length ι(1). Then
one couldn’t embed ω · ω.

What can be done to measure the time elapsed between two points t, t′ ::
Time is to just use ιTime,R(t

′)− ιTime,R(t).
One may also add functions seconds, minutes, . . . of type N → TimeDiff,

but I shall not need these.

B Some proofs of monadic lifting properties 121

B Some proofs of monadic lifting properties
This section gives the proof details for some of the lemmas from section 2.

Proof of lemma 2.2. Proof by induction on n. For n = 0, the statement is
f = join (return f), which is just axiom (*Mo4). So let n > 0 and assume
that the statement holds for n− 1.

Define
g := λx1. liftn−1 (f x1) o2 . . . on.

Then

join (liftn f o1 . . . on)

= join (o1≫= g)

= join (join (fmap g o1))
= join (fmap join (fmap g o1))
= join (fmap (join ◦ g) o1)
= o1≫= (join ◦ g)

where the third equality is axiom (*Mo3), the fourth is (*Fu2) and the others
are just definitions.

By the induction hypothesis, we have that

join ◦ g = λx1. o2≫= λx2. . . . on≫= λxn. f x1 x2 . . . xn

and so follows the claim.

Proof of lemma 2.3. Induction on n. For n = 0, the statement reduces to

liftm+1 f (return g) = liftm (f g)

This follows directly from the definition of liftm+1:

liftm+1 f (return g) o2 . . . om

= return g≫= λx. liftm (f x) o2 . . . om

= (λx. liftm (f x) o2 . . . om) g

= liftm (f g) o2 . . . om

Now assume n > 0 and assume the statement to be proven for n − 1. By
definition of the lift functions and the monad laws for “≫=”, we have

liftm+1 f (liftn g p1 . . . pn) o1 . . . om

= liftn g p1 . . . pn≫= λx. liftm (f x) o1 . . . om

= (p1≫= λ y. liftn−1 (g y) p2 . . . pn)≫= λx.

liftm (f x) o1 . . . om

= p1≫= ζ

122 B Some proofs of monadic lifting properties

where

ζ y := (liftn−1 (g y) p2 . . . pn)≫= λx.

liftm (f x) o1 . . . om

= liftm+1 f (liftn−1 (g y) p2 . . . pn) o1 . . . om

(IH)
= liftm+n−1 (f ◦n−1 (g y)) p2 . . . pn o1 . . . om

= liftm+n−1 ((f ◦n g) y) p2 . . . pn o1 . . . om

Thus, by definition, we receive

p1≫= ζ = liftm+n (f ◦n g) p1 . . . pn o1 . . . om

Proof of lemma 2.4. For n = 0 there is nothing to show. So let n > 0 and
assume that the statement holds for n− 1. We have that

liftn f (return x1) . . . (return xn)
= return x1≫= λx′1. liftn−1 (f x′1) (return x2) . . . (return xn)
= liftn−1 (f x1) (return x2) . . . (return xn)
= return (f x1 . . . xn)

where the last equality follows by induction hypothesis, the second is a monad
law and the first is the definition of liftn f .

Proof of lemma 2.6. Start with 1: Any permutation can be defined as a chain
of permutations which swap consecutive elements. Hence, it suffices to consider
these only. By the recursive definition of liftn, it suffices to consider only the
permutation (1 2) swapping the first two elements. Now,

liftn fπ oπ−1(1) . . . oπ−1(n)

= liftn f(1 2) o2 o1 o3 . . . on

= o2≫= λx1. o1≫= λx2. liftn−2

(
f(1 2) x1 x2

)
o3 . . . on

= join (lift2 ϕ o2 o1)

where ϕ = λx1 x2. liftn−2 (f(1 2) x1 x2) o3 . . . on. By Axiom (*Ob2), this is
equal to

join (lift2 (λx1 x2. ϕ x2 x1) o1 o2)

But λx1 x2. ϕ x2 x1 = ϕ(1 2) is equal to

λx1 x2. liftn−2 (f x1 x2) o3 . . . on.

Hence, by unrolling the definition of liftn again, one receives equality to
liftn f o1 . . . on.

2: For n = 1, there is nothing to show. For n ≥ 2, it follows easily by
unrolling the definition of liftn: Proof by induction on n:

liftn f o . . . o = o≫= λx1. liftn−1 (f x1) o . . . o

= o≫= λx1. fmap (λx. f x1 x . . . x) o

= lift2 (λx1 x. f x1 x . . . x) o o

= fmap (λx. f x . . . x) o

B Some proofs of monadic lifting properties 123

where in the middle parts, “. . .” should mean n − 1 repetitions. The middle
equality follows from the induction hypothesis and the last one is axiom (*Ob2).

3: Proof by induction on n. For n = 0, there is nothing to show (as const0 =
id). So let n ≥ 1, assume that the statement holds for n − 1 and consider the
definition of liftn (constn x):

liftn (constn x) o1 . . . on

= o1≫= λx1. liftn−1 (constn x x1) o2 . . . on

= o1≫= λx1. liftn−1 (constn−1 x) o2 . . . on

= o1≫= const (liftn−1 (constn−1 x) o2 . . . on)

= liftn−1 (constn−1 x) o2 . . . on

where the last equality is (Ob3’) and the others are simple transformations. Now
the claim follows by the induction hypothesis.

Proof of lemma 2.7. 1: For n = 1, we have by the monad laws

join (return (o1≫= λx1. g x1))

= join (return (o1≫= g))

= o1≫= g = join (fmap g o1).

So let n > 1 and assume that the statement holds for n− 1. Using lemma 2.6.1
we have that the LHS is equal to

join
(
liftn g(1 2) o2 o1 o3 . . . on

)
(a)
= o2≫= λx2. join

(
liftn−1

(
g(1 2) x2

)
o1 o3 . . . on

)
(IH)
= o2≫= λx2. join

(
liftn−2

(
λx3 . . . xn.

o1≫= λx1. g(1 2) x2 x1 x3 . . . xn
)
o3 . . . on

)
= o2≫= λx2. join

(
liftn−2

(
λx3 . . . xn.

o1≫= λx1. g x1 . . . xn
)
o3 . . . on

)
(a)
= join

(
liftn−1

(
λx2 . . . xn. o1≫= λx1. x1 . . . xn

)
o2 . . . on

)
as required. Here, equalities (a) follow by two applications of lemma 2.2.

2: For n = 0, the statement follows from axiom (*Mo4). So let n > 0 and
assume that the statement holds for n−1. Let pi :: Obs (Obs ai) for i = 1, . . . , n
and write short p̄ for p1 . . . pn and p̄2 for p2 . . . pn. We need to show:

liftn f (join p1) . . . (join pn) = join (liftn (liftn f) p̄)

By definition and (Mo3’), the LHS is equal to p1≫= ζ where

ζ o1 := o1≫= λx1. liftn−1 (f x1) (join p2) . . . (join pn)
(IH)
= o1≫= λx1. join (liftn−1 (liftn−1 (f x1)) p̄2).

Using (a) from part 1, the RHS is equal to p1≫= ξ where

ξ o1 := join (liftn−1 (liftn f o1) p̄2).

124 B Some proofs of monadic lifting properties

I show that ζ = ξ:

ζ o1
(a)
= join (liftn (λx1. liftn−1 (f x1)) o1 p̄2)

(part 1)
= join (liftn−1 (λ o2 . . . on. o1≫= λx1. liftn−1 (f x1) o2 . . . on) p̄2)

(def)
= join (liftn−1 (liftn f o1) p̄2) = ξ o1

3 follows from 2: Recap that oi≫= fi = join (fmap fi oi) and so by part 2,
the LHS is equal to

join (liftn (liftn f) (fmap f1 o1) . . . (fmap fn on)).

Via lift collapsing (lemma 2.3 / remark 2.5), applied to the outer liftn, this is
equal to join (liftn g o1 . . . on) as required.

C Some proofs about atomic measurable spaces 125

C Some proofs about atomic measurable spaces
This section contains some proofs from section 5.2.1.

Proof of lemma 5.5. 1: There is an atom K ∋ x by definition of “atomic”. If
there is another one K ′ ∋ x, then x ∈ K ∩ K ′ ̸= ∅, so by minimality K =
K ∩K ′ = K ′.

2: If A ∈ A and K ∈ A is an atom, then K ∩B is by minimality either ∅ or
K. Hence:

B =
∪
ω∈B

{ω} =
∪
ω∈B

Kω

3: Clear. It suffices to see that the atoms form a partition of X, which is
also clear.

4: If there is B ∈ A(Y) with f(x) ∈ B and f(y) /∈ B, then x ∈ f−1(B) and
y /∈ f−1(B), i.e. x and y can be distinguished by f−1(B) ∈ A, contradicting 1.

If there is B ∈ A(Y) with ∅ ⊊ B ⊊ f [K], then in particular B separates two
points in f [K], contradicting the first part of 3.

Proof of lemma 5.7. 1: I show that the set

{E ⊆ X × Y | ∀(x, y) ∈ E : Kx ×Ky ⊆ E}

is a σ-algebra containing all rectangles.

1. ∅ and X × Y trivially have the property.

2. Rectangles: A×B with A ⊆ X, B ⊆ Y is easily seen to fulfill the property.

3. Complement: Let E ⊆ X×Y be with the property. Let (x, y) ∈ (Ω× Ω)\
E and assume that Kx ×Ky ̸⊆ (Ω× Ω) \ E, i.e. that there are (x′, y′) ∈
E ∩Kx ×Ky.
Then, as E has the property, also Kx′×Ky′ ⊆ E. But (x, y) ∈ (Kx′ ×Ky′)
\ E. Contradiction. Hence, (Ω× Ω) \ E has the property.

4. Countable union: Follows easily as the property is local.

2: Again, I show that the set

{E ∈ A(X × Y) | EK is measurable}

is a sub-σ-algebra of A(X × Y) containing all rectangles and must hence be
identical to it.

1. ∅K = ∅, (X × Y)K = Y .

2. Rectangles: Let A ⊆ X,B ⊆ Y measurable.

(A×B)K =

{
B if K ⊆ A
∅ otherwise

126 C Some proofs about atomic measurable spaces

3. Complements: Let E ⊆ X × Y be with the property. Let y ∈ Y . By 1,
K ×Ky ⊇ K × {y} is an atom in X × Y . Together with measurability of
E, one receives

y ∈ Ω \ EK ⇔ K × {y} ̸⊆ E
⇔ K ×Ky ̸⊆ E
⇔ K ×Ky ⊆ (Ω× Ω) \ E
⇔ K × {y} ⊆ (Ω× Ω) \ E
⇔ y ∈ ((Ω× Ω) \ E)K .

So ((Ω× Ω) \ E)K = Ω\EK which is measurable by the inductive assump-
tion.

4. Countable union: It is easy to see that (
∪

iEi)K =
∩

i (Ei)K .

For x ∈ X, it is easy to see that Ex = EKx similar to the step for complements
above:

y ∈ Ex ⇔ (x, y) ∈ E ⇔ Kx × {y} ⊆ E ⇔ y ∈ EKx

Proof of corollary 5.8. Let C ⊆ Z be measurable.

f(x, ·)−1
(C) = {y | f(x, y) ∈ C}

=
{
y | (x, y) ∈ f−1(C)

}
= f−1(C)x.

This set is measurable by measurability of f and lemma 5.7.2.

Proof of corollary 5.10. 1: By admissibility of Ω, B is the countable union of
its atoms. And so

EB = E∪
ω∈B Kω

=
∩
ω∈B

EKω

is a countable intersection of – by lemma 5.7.2 – measurable sets.
3: It is easy to see that

π1 [E] = Ω \ ((Ω× Ω) \ E)Ω

which is measurable by 1.
2: For a ∈ A and ω ∈ Ω, we have (a, ω) ∈ E ⇔ {a} ×Kω ⊆ E as that latter

set is contained in the atom Ka ×Kω by lemma 5.7.1. Hence, A× {ω} ⊆ E ⇔
A×Kω ⊆ E. And so

EA =
∪
{K ⊆ Ω atom | A×K ⊆ E}

which is, being a countable union, measurable.
4: Just like 3.

D Building measurable spaces for ADTs via species 127

D Building measurable spaces for ADTs via
species

The intuitive idea for building a model of an ADT T a (cf. section A.2.2) with
respect to a measurable space X goes as follows:

1. Build the intuitive “smallest set-model” of T inductively as a set, leaving
“holes” / “markers” / “labels” where data of type X would be put. In such
a set, any element is a finite expression in the constructors. For example,
if T a = List a, one would take the smallest set that contains Nil and is
closed under Cons.

2. Put a copy of the “content” X at each of the “labels”.

3. Be sure to keep track of which copy went where in order to define the
required morphisms.

One would then expect that manipulations of the “shape” such as appending
an element or tree rotations can be done in the measurable-space interpretation
as well and that measurable maps, i.e. manipulations of the “content” X yield
measurable maps again. The latter can be expressed categorically in that every
ADT is expected to give rise to a functor onM.

Fortunately, there already is a framework for the first and third step above
called combinatorial species.57

Definition D.1. A species is a functor58 from the category of finite sets and
bijections into the category of finite sets and arbitrary maps. A species mor-
phism is a natural transformation of such functors, i.e. just a morphism in the
category of species.

Application of a species F to a finite set U is written F [U] and application
to a bijection τ : U → V is written F [τ] : F [U]→ F [V].

Let Spec be the category of species and species morphisms.

Note that, by functoriality, the image of a species always consists of bijec-
tions, but species morphisms might employ non-bijections.

The idea of the definition is that a species should assign a set of n labels to
a set of structures where each of the labels marks a position in the structure.
Species morphisms then map a structure to another structure of a different
species such that they commute with relabeling: They should only operate on
the “shape”, not on the labels.

Species support “sum” (+) and “product” (•) operations which “distribute”
the given set of labels among disjoint union and cartesian product, respectively.
A “fixed-point operator” µ is also supported which allows defining recursive
species. Together with the primitive species 1 (point species) and X (identity),
these can model the structure of Haskell ADTs. Cf. [18].

I will only cover species with a single label set parameter here. These can
encode Haskell ADTs with a single type parameter. The generalization to mul-
tisort species is straightforward.

57For a quick introduction into species in the context of Haskell ADTs cf. [18]. I only made
the minor change of relaxing the target category to receive the required species morphisms.

58For the category-theoretic concepts of a functor and natural transformation cf. [7] again.
[18] also provides a more detailed definition of species.

128 D Building measurable spaces for ADTs via species

Species provide a much more general framework for describing finite data
structures than ADTs and I will now give a construction of a measurable space
for arbitrary species.

Definition D.2. Let X be a measurable space. If U is a finite set, define the
product space XU analogously to Xn for n = |U |. XU is interpreted as the set
of functions from U to X. An element of XU is called a generalized tuple. X∅

consists of a single element ∅, the empty function.
Let F be a species and if U is a finite set, choose the discrete σ-algebra59 on

F [U]. Define the measurable space EXF as

EXF := ẼXF/∼

where
ẼXF :=

∪
U⊆N
finite

(
F [U]×XU

)
and ((s, x̄) ∈ F [U]×XU) ∼ ((s′, x̄′) ∈ F [U ′]×XU ′

) if there is a bijection τ :
U → U ′ such that (s′, x̄′) = τ(s, x̄) := (F [τ](s), x̄ ◦ τ−1).

The idea of the above definition is that, following [18], the species should
define the “structure” while the “content” is given externally by a map from
the sets of labels to X. The content map should adjust with a relabeling.
This is what “∼” is for: For example, “∼” guarantees that a pair of – say
– a list and a content assignment ((1 2 3), (x1, x2, x3)) is considered equal to
((1 3 2), (x1, x3, x2).

In the previous definition, I allow arbitrary finite subsets of N as label sets.
This way, e.g. projections can be represented by just restricting a generalized
tuple to a subset (lemma D.10). One could also have used sets of form {1, . . . , n}
together with some normalizing relabeling.

The following lemma will make some statements about the structure of EXF
and lifting properties. For that, define

ẼX,UF := F [U]×XU for U ⊆ N finite.

This set is measurable by definition. Let p : ẼXF ↠ EXF be the projection
map onto equivalence classes and define for A ⊆ ẼXF measurable the union of
orbits intersecting A by

OrbA :=
{
y ∈ ẼXF | ∃x ∈ A : y ∼ x

}
= p−1(p [A]).

Lemma D.3.

1. If A ⊆ ẼXF is measurable, then OrbA is measurable as well.

2. Images of measurable sets in ẼXF under p are measurable in EXF . In
fact, the measurable sets in EXF are exactly the images of measurable sets
in ẼXF under p.

59Any σ-algebra that makes the images of bijections F [τ] and any natural transformation
measurable would do. One could even use M as the target category for Spec instead of
finite sets as long as the natural transformations used below such as inclusion into a sum are
supported.

D Building measurable spaces for ADTs via species 129

3. If α : ẼXF → Y is a measurable map such that α(x) = α(y) whenever
x ∼ y, then α gives rise to a measurable map

α/∼ : EXF → Y

(α/∼)([z]) := α(z).

4. If α : ẼXF → ẼY F is a measurable map such that α(x) ∼ α(y) whenever
x ∼ y, then α gives rise to a measurable map

α/∼ : EXF → EY F
(α/∼)([z]) := [α(z)] .

Proof. 1: By definition of “∼”,

OrbA =
∪

U,V⊆N, |U |=|V |
τ :U→V bijection

τ̂
[
A ∩ ẼX,UF

]

where

τ̂ : ẼX,UF → ẼX,V F

τ̂(s, x̄) := τ(s, x̄) =
(
F [τ](s), x̄ ◦ τ−1

)
.

τ̂ is the product of two maps which are known to be measurable60 and hence
measurable. By considering ˆτ−1, also images under τ̂ of measurable sets are
measurable. Now τ̂ [A∩ ẼX,UF] is measurable for any choice of (U, V, τ) and the
union above is countable.

2: If A ⊆ ẼXF is measurable, then p−1(p[A]) = OrbA, which is measurable
in ẼXF by 1 and hence p[A] is measurable in EXF . The last sentence is clear:
p is surjective, so any measurable set B in EXF is of form B = p[p−1(B)].

3: Well-definedness of α/∼ is equivalent to compatibility with “∼”. For
measurability, let B ⊆ Y be measurable.

(α/∼)−1
(B) = {[z] | α(z) ∈ B}

= p
[
α−1(B)

]
which is measurable by 2 and measurability of α.

4 is just 3 applied to p ◦ α.

Remark D.4. Multisets separate orbits: If x̄ and ȳ do not contain the same
elements with same multiplicities, then (s, x̄) ̸∼ (t, ȳ) ∀s, t. If x̄ is a generalized
tuple, write πx̄ for the multiset consisting of the elements of x̄. If π ⊆ X is a
finite multiset, let

ẼπF :=
{
(s, x̄) ∈ ẼXF | πx̄ = π

}
and let EπF be its image under p. Then the ẼπF form a partition of ẼXF and
the EπF form a partition of EXF .

60Recap that (x̄ 7→ x̄ ◦ τ−1) is just reordering / relabeling of generalized tuple components.

130 D Building measurable spaces for ADTs via species

It is also clear that cardinalities of the sets U ⊆ N separate orbits: The sets

EX,nF := p
[
ẼX,nF

]
where ẼX,nF :=

∪
U : |U |=n

ẼX,UF

for n ∈ N form a partition of EXF .
Example D.5.

1. Let F = 0. F [U] = ∅ for all U and hence ẼXF and EXF are ∅.

2. Let F = 1. F [∅] = {∗} is the singleton set containing some non-label and
F [U] = ∅ for any U ̸= ∅. Hence, ẼX,∅F = {∗} × {∅} and all the other
ẼX,UF are ∅. So EXF is a single point.

3. Let F = X. By definition, F [{u}] = {u} and the other F [U] are ∅. Any
two singleton sets are related by a bijection and the bijection trivially
carries to the F -structures. Hence, ({u}, (x)) ∼ ({v}, (y)) iff x = y. Alto-
gether, EXF = (ẼX,1F)/∼ ∼= X. The isomorphism is received by applying
lemma D.3.3 to the map (({u}, (x)) 7→ x).

4. It is easy to see that EX(F + G) ∼= EXF ∪̇ EXG. The isomorphism can
again be constructed via lemma D.3.3.
F + G is indeed the coproduct in the category Spec: One receives the
expected inclusions (species morphisms) ι1 : F → F + G and ι2 : G →
F + G and the required universal property.

5. Let F = X2 = X • X. F [U] = ∅ unless U is a two-element set and
F [{u1, u2}] = {(u1, u2), (u2, u1)}. The elements of ẼXF are then of form
((u1, u2), x̄) where x̄ is a map {u1, u2} → X.
A “∼”-equivalent element is obtained as

((u2, u1), (u1 7→ x̄(u2), u2 7→ x̄(u1)),

but recap that we allow relabellings to different index sets as well. One
can obtain an isomorphism to X2 in one of the following two equivalent
ways:

• Given ((u1, u2), x̄), the result is (x̄(u1), x̄(u2)).
• Given ((u1, u2), x̄), find ȳ ∈ X2 = X{1,2} such that ((1, 2), ȳ) ∼

((u1, u2), x̄). This exists and is unique. Then let the result be ȳ.

I will show that general “•”-products in Spec correspond to products in
M in lemma D.10.
Note that F • G is not the categorical product of F and G in Spec! To
see that, try to construct a projection π1 : F • G → F : This would have
to be a natural transformation, so for any label set U one would need a
map

(F •G)[U] =
∪̇

U=U1∪̇U2

F [U1]×G[U2] → F [U].

D Building measurable spaces for ADTs via species 131

However, such a map cannot be sensibly defined. For example, consider
the above case of F = G = X: For |U | = 2, there is no map π1,U : ∅ ̸=
X2[U]→ X[U] = ∅.
The problem here is that (F •G) “distributes” the labels in U to both the
F and G sides of the product while one would want to extract a structure
that corresponds only to a subset of the labels. This can be done by
mapping not to F , but to SF defined right below.
The product in Spec is in fact given by the cross product F × G that
“applies F and G to the same label set at the same time”.

In order to receive the projections out of “•”, one needs to consider a more
general construction:61

Definition D.6. If F is a species, let SF be the species defined by

SF [U] :=
∪̇

V⊆U

F [V]

SF [τ : U → U ′](s ∈ F [V]) := F [τ |V](s) ∈ F [τ [V]] ⊆ SF [U ′].

It is easy to see that SF is indeed a species, i.e. that it is functorial on rela-
bellings.

Note that the union above is disjoint. I write s ∈ F [V ⊆ U] to make clear
that I mean s as an element of the V -component of SF [U].

Remark D.7.

1. It can be shown that SF ∼= F •E where E is the species of sets mapping any
set of labels to the singleton containing itself. Yorgey [18] in fact mentions
briefly that “•E” can be used as a “sink” to mark labels optional. This is
exactly what’s happening here.

2. S is in fact a functor Spec→ Spec: Given a species morphism f : F → G,
define Sf : SF → SG by (Sf)U (s ∈ F [V ⊆ U]) := fV (s) ∈ G[V ⊆ U]. It
is easy to see that this mapping is indeed functorial.

3. It is further easy to see that F • E ∼= (X •E) ◦ F where “◦” is species
composition.62 So S is given simply by the species X • E. One can show
that any transformation (F 7→ H ◦ F) where H is some species gives rise
to a functor.63 Such a functor “adds a second layer of structure on top” of
an existing species. For example, F 7→ B ◦ F replaces e.g. lists with trees
of lists.
In comparison, F 7→ F ◦ B would replace lists by lists of trees, which is
obviously not the same: The new tree layer is added “below” the existing
structure. Transformations defined by precomposition give rise to functors
as well.

61We will see in section D.2 that this in fact means transition to another category.
62Recap from [18] that “◦” is not functor composition! Rather, the available labels are

partitioned and for each part, a F -structure is chosen. Then these structures are used as the
label set for X • E, which will essentially just pick one of them.

63For the morphisms, one needs to assume that no structure can be defined on two different
label sets at the same time, which can always be ensured isomorphically.

132 D Building measurable spaces for ADTs via species

Figure 12 Mapping in the species part of ẼXf

..

..F [U ′] ..SG[U ′] ..G[V ′]

..F [U] ..SG[U] ..G[V]

.

fU′

.

ι

.F [τ] .

fU

.SG[τ] .

ι

. G[τ |V]

Lemma D.8. Let f : F → SG be a species morphism and X a measurable
space. Then f gives rise to a measurable map

EXf : EXF → EXG
EXf

([
(s, x̄) ∈ ẼX,UF

])
:=

[(
fU (s), x̄|V (fU (s))

)]
where V (fU (s)) ⊆ U is such that fU (s) ∈ G[V (fU (s)) ⊆ U].

Proof. I apply lemma D.3.4 to

ẼXf : EXF → EXG
ẼXf

(
(s, x̄) ∈ ẼX,UF

)
:= (fU (s), x̄|V)

where V := V (fU (s)).
Measurability: The space ẼXG is generated by sets N×BB,v,V where V ⊆ N

is finite, N ⊆ G[V], v ∈ V and

BB,v,V :=
{
x̄ ∈ XV | x̄(v) ∈ B

}
is a generator of XV . Consider the preimages of these sets under ẼXf :

For some U and (s, x̄) ∈ ẼX,UG we have ẼXf(s, x̄) ∈ N × BB,v,V if V ⊆ U ,
fU (s) ∈ N ⊆ G[V ⊆ U] and (x̄|V)(v) ∈ B, i.e. if s ∈ f−1

U (N) and x̄(v) ∈ B.
Hence: (

ẼXf
)−1

(N ×BB,v,V) =
∪

U⊆N finite
U⊇V

(
f−1
U (N)×BB,v,U

)
This countable union is measurable by measurability of the maps fU .

Compatibility with “∼”: Let (s, x̄) ∈ ẼX,UF , (t, ȳ) ∈ ẼX,U ′F and let τ :
U → U ′ be a bijection relating the two, i.e. τ(s, x̄) = (t, ȳ). Let V := V (fU (s))
and V ′ = τ [V].

By naturality of f and definition of SG, diagram 12 commutes, so
G[τ |V](fU (s)) = fU ′(t). Further, x̄|V ◦ (τ |V)−1 = (x̄ ◦ τ−1)|V ′ = ȳ|V ′ . So
τ |V relates ẼXf(s, x̄) and ẼXf(t, ȳ).

Remark D.9. If F is a species, define the following species morphisms:

returnF : F → SF
returnF,U (s ∈ F [U]) := s ∈ F [U ⊆ U] ⊆ SF [U]

return just maps a structure to itself in the “top layer” of SF .

D Building measurable spaces for ADTs via species 133

return can be used to lift “normal” species morphisms f : F → G to
measurable functions EXF → EXG by lifting return ◦ f : F → SG instead.
The resulting measurable function will then separately map EπF to EπG for any
multiset π. I write just EXf for EX(return ◦ f).

It is easy to see that any isomorphism f : F
∼−→ G gives rise to a isomorphism

EX(return ◦ f)EXF
∼−→ EXG with inverse EX(return ◦ f−1).

There is also an accompanying join turning S into a monad. This will give
rise to a category EX · forms a functor on. Cf. section D.2.

One can now define the projections as species morphisms: Given F,G species,
let

π1 : (F •G)→ SF
π1,U ((s, t) ∈ F [V]×G[W]) := s ∈ F [V ⊆ U]

where V,W are such that U = V ∪̇W

and π2 analogous. It is easy to see that these commute with relabellings.

Lemma D.10. Let F,G be species and X a measurable space.

1. The species morphisms ι1 : F → F + G and ι2 : F → F + G induce an
isomorphism of measurable spaces

EXF ∪̇ EYG
∼−→ EX(F + G).

2. The species morphisms π1 : F •G→ SF and π2 : F •G→ SG induce an
isomorphism of measurable spaces

EX(F •G) ∼−→ EXF × EXG.

Proof. 1: Recap that (F + G)[U] = F [U] ∪̇ G[U] and ι1,2 are the inclusions. I
identify A ∪̇G with (A× {1}) ∪ (B × {2}).

Define ξ := EXι1 ∪̇ EXι2. We have

ξ : EXF ∪̇ EXG→ EX(F + G)

ξ([(s, x̄)] , 1) = [((s, 1), x̄)]

ξ([(t, ȳ, 2)]) = [((t, 2), ȳ)]

where one should recap that EX(F + G) =
∪

U ((F [U] ∪̇G[U])×XU). It is
known from the previous discussion that ξ is well-defined and measurable.

I define the inverse map. Let

ζ̃ : ẼX(F + G)→ EXF ∪̇ EXG
ζ̃((s, 1), x̄) := (([s] , x̄), 1)

ζ̃((t, 2), x̄) := (([t] , x̄), 2).

ζ̃ is clearly measurable. If ((s, i), x̄) ∼ ((t, j), ȳ) then by definition of F + G

i = j and (s, x̄) ∼ (t, ȳ), so ζ̃ is compatible with “∼”. By lemma 3, one receives
its factorization ζ := ζ̃/∼ : EX(F + G)→ EXF ∪̇ EXG. It is easy to see that ζ
and ξ are inverse.

134 D.1 Modeling algebraic data types

2: Recap that (F •G)[U] =
∪

V ∪̇W=U (F [V]×G[W]) and define ξ := EXπ1×
EXπ2. We have

ξ : EX(F •G)→ EXF × EXG
ξ
([

((s, t), x̄) ∈ (F [V]×G[W])×X(V ∪̇W)
])

= ([(s, x̄|V)] , [(t, ȳ|W)]).

For the inverse, define

ζ : EXF × EXG→ EX(F •G)
ζ([(s, x̄)] , [(t, ȳ)]) := [((s, t), x̄ ∪ ȳ)] if dom (x̄) ∩ dom (ȳ) = ∅.

ζ is well-defined:

1. The constraint dom (x̄)∩ dom (ȳ) = ∅ still includes all elements of EXF ×
EXG: Whenever (s, x̄) ∈ ẼX,UF and U ′ = dom (ȳ) is some set, let U be
a set of the same cardinality as U disjoint from U ′, pick a bijection τ :
U → U ′ and let (s′, x̄′) = τ(s, x̄). Then [(s′, x̄′)] = [(s, x̄)] and dom (x̄′) ∩
dom (x̄) = ∅.

2. Let (s′, x̄′) = τ(s, x̄) and (t′, ȳ′) = ρ(t, ȳ) such that dom (x̄′) ∩ dom (ȳ′) =
dom (x̄) ∩ dom (ȳ) = ∅. Then τ ∪ ρ is a well-defined bijection dom (x̄) ∪
dom (ȳ) → dom (x̄′) ∪ dom (ȳ′) and by definition of (F •G) τ ∪ ρ relates
((s, t), x̄ ∪ ȳ) and ((s′, t′), x̄′ ∪ ȳ′).

ζ is measurable: Recap from lemma 2 that any measurable set of EX(F •G)
is of form p[A] where A ⊆ ẼXF measurable. And:

ζ−1(p [B]) = {([(s, x̄)] , [(t, ȳ)]) | dom (x̄) ∩ dom (ȳ) = ∅, [((s, t), x̄ ∪ ȳ)] ∈ p [A]}
= {([(s, x̄)] , [(t, ȳ)]) | dom (x̄) ∩ dom (ȳ) = ∅, ((s, t), x̄ ∪ ȳ) ∈ Orb (A)}
= (p× p) [E]

where E =
∪
V,W

V ∩W=∅

{
((s, z̄|V), (t, z̄|W)) | ((s, t), z̄) ∈ Orb (A) ∩ ẼX,V ∪W (F •G)

}

The set E is a mere reordering of generalized tuple components from a measur-
able set and hence measurable. It is further known that images under p (and
then also p× p) are measurable.

It is easy to see that ξ and ζ are inverse to each other.

D.1 Modeling algebraic data types
Now that the essential translations for species are set up, it is straightforward to
give a model for a ADT inM compliant to the translation from section A.2.2.

Recap the general form of a Haskell ADT as in (A.1) with a single type
argument a:

data T a = K1 t1,1 . . . t1,k1 | . . . | Kn tn,1 . . . tn,kn

Such a ADT corresponds to a species F of form

F ∼= F1 + . . . + Fn

D.2 More on species and M 135

in the category Spec, where the Fi are species of form

Fi
∼= Fi,1 • . . . • Fi,ki

.

Note that a Fi,j can well be F or “contain” F in a sub-expression if T is recur-
sive.64

Via lemma D.8, all the isomorphisms lift from Spec to M and via lemma
D.10, “+” in Spec corresponds to “∪̇” inM and “•” corresponds to “×”. Hence:

EXF ∼=
n∪̇

i=1

ki×
j=1

EXFi,j

for any X ∈M. Defining the required functions is now straightforward:
Let ιi : Fi → F be the embeddings. Let X be some measurable space, e.g. a

sort that already has an interpretation inM in the model A. Define:

FA X := EXF
KA

i,X := EXιi

Lemma D.10.2 ensures that Ki,X
A has the correct type (up to isomorphism).

For the case functions, let fi : EXFi,1×. . .×EXFi,ki×Y → Z be measurable
functions, e.g. interpretations of terms, where Y and Z are measurable spaces.
Y models the closure context as of section A.1.3.

Via lemma D.10.2, fi can be viewed as a function fi : EXFi × Y → Z. By
the universal property of the coproduct inM, one receives∪̇

i

fi :
∪̇
i

(EFiX × Y)→ Z.

The space on the LHS is isomorphic to (
∪̇

i EFiX) × Y which is again via
lemma D.10.1 isomorphic to EXF × Y . Lifting

∪̇
i fi over these isomorphisms,

one receives the desired function

caseA
T,X,f̄ : EFX × Y → Z.

It remains to check the axioms (A.2) and (A.3). The first states that any
element of EXF is given by one of the “constructors” EXιi, which is clear by
construction. The second states that case is “correct” in that a function can
get back values from a constructor, which is clear by construction as well.

D.2 More on species and M
The mapping taking f : F → SG to EXf : EXF → EXG can be made a functor
as follows:

I already defined the function return : F → SF . One can also define
join : S(SF)→ SF by

joinF : S(SF)→ SF
joinF,U (s ∈ F [W ⊆ V ⊆ U]) := s ∈ F [W ⊆ U] ⊆ SF [U].

64This is the point where species do the “heavy lifting” of resolving the definitions of
recursive ADTs.

136 D.2 More on species and M

Figure 13 Universal property of a potential product in Kleisli(S)

..

..F ..F •G ..G

. ..H

.

π1

.

π2

.
f

.(f,g).
g

join “collapses the two instances of a layer” of S(SF). Note that join is
surjective, but not injective: For the same W and U , there are several possible
choices of V unless W = U .

Having noted above that S is actually a functor Spec→ Spec, it is easy to
see that return and join are natural transformations id→ S and (S ◦ S)→ S,
respectively, i.e. that they commute with lifts of species morphisms to S. Setting
η = return and µ = join, it is easy to see that S is a monad as of [7, chap.r VI].
Alternatively, setting fmap f = Sf whenever f : F → G is a species morphism,
one receives that the (equivalent) monad laws (*Mo1)–(*Mo5) from section 2
hold. So S is a monad.

If f : F → SG and g : G → SH are species morphisms, one receives a
species morphism (g <=< f) : F → SH as join ◦ fmap g ◦ f . “<=<” is called
Kleisli composition.

The category that has species as objects, where an arrow F → G is a species
morphism F → SG, where the identity morphism is return and where compo-
sition is done using “<=<” is called the Kleisli category Kleisli(S) of the monad
S.

It is easy to see that EX(f <=< g) = EXf ◦ EXg for f, g like above and that
EXreturn = id. Hence, EX is a functor Kleisli(S)→M for any X.
Remark D.11. Note that Kleisli(S) still does not have F • G as the product:
While the projections exist, it is not in general possible to find a (Kleisli) mor-
phism (f, g) to make diagram 13 commute.

To see this, let F = G = H = X and f = g = idKleisli(S),X = returnX. For
|U | = 1 then the map

returnX,U : X[U]→ SX[U]

would have to factor through SX2[U] = ∅, but X[U] ̸= ∅.

D.2.1 Lifting measurable functions

If species morphisms can be lifted to work on the “structure” part of EXF , it
is natural to assume that measurable functions can work on the “content” X.
This intuition turns out to be correct:

Lemma D.12. Let α : X → Y be a measurable function and let F be a species.
Then α induces a measurable function

EαF : EXF → EY F
EαF ([(s, x̄)]) := [(s, α ◦ x̄)] .

D.2 More on species and M 137

Figure 14 Universal property for Eα : EX → EY

..

..EXF ..EY F

..EXG ..EYG

.EXf .

EαF

. EY f.

EαG

The assignment is natural in F , i.e. one receives a natural transformation Eα :
EX → EY .

Proof. Well-definedness and measurability: Consider the map

ẼαF : ẼXF → ẼY F
ẼαF (s, x̄) := (s, α ◦ x̄).

This map is measurable: The maps (x̄→ α ◦ x̄) are just point-wise application
of the measurable function α to the generalized tuple x̄. When in doubt, use
the universal property of the product. The map is also clearly compatible with
“∼”. Hence, one receives EαF as its lift (lemma D.3.4).

Naturality: One has to show that diagram 14 commutes for any two species
F and G and any natural transformation f : F → SG. But that is clear because
EXf and EY f operate only on the first component of a (s, x̄) pair and EαF and
EαG operate only on the second.

To go one step further, note that the map (α→ Eα) is itself functorial: We
have that EidX

= idEX
for any X and E(β◦α) = Eβ ◦ Eα for α : X → Y and

β : Y → Z.
Hence, E is a functor from the category of measurable spaces and maps to

the category of functors Kleisli(S) → M and their natural transformations.
Short: E :M→MKleisli(S).

By abstract arguments, one can also view E as a functor Kleisli(S)→MM:
E assigns to any species F the functor EF maps X ∈ M to EXF ∈ M and
mapping Kleisli(S)-morphisms (in particular species morphisms) to natural
transformations of these functors.

So the question whether “every ADT is a functor” can not only be answered
affirmative, but even every species defines a functor and the assignment is itself
functorial on Kleisli(S).
Remark D.13. As a final remark, note that none of the proofs here used comple-
mentation in the σ-algebra. Hence, the categoryM of measurable spaces could
be replaced by the category Top to receive topological spaces and continuous
functions instead.

138 D.2 More on species and M

REFERENCES 139

References
[1] J. C. Hull, Options, Futures and Other Derivatives, 8th ed. Boston, MA,

USA: Pearson/Prentice Hall, 2012.

[2] H. Föllmer and A. Schied, Stochastic Finance: An Introduction in Discrete
Time, 2nd ed., ser. de Gruyter Studies in Mathematics. Berlin, Germany:
Walter de Gruyter, 2004.

[3] S. Peyton Jones and J.-M. Eber, “How to write a financial contract,” in
The Fun of Programming, ser. Cornerstones of Computing, J. Gibbons and
O. de Moor, Eds. Palgrave Macmillan, 6 2005. [Online]. Available: http:
//research.microsoft.com/en-us/um/people/simonpj/papers/papers.html

[4] S. Peyton Jones, J.-M. Eber, and J. Seward, “Composing contracts:
An adventure in financial engineering (functional pearl),” in Proceedings
of the Fifth ACM SIGPLAN International Conference on Functional
Programming, ser. ICFP ’00. New York, NY, USA: ACM, 2000, pp.
280–292. [Online]. Available: http://research.microsoft.com/en-us/um/
people/simonpj/papers/papers.html

[5] S. Peyton Jones, Ed., Haskell 98 Language and Libraries – The
Revised Report. Cambridge, England: Cambridge University Press, 2003.
[Online]. Available: http://www.haskell.org/haskellwiki/Language_and_
library_specification

[6] P. Wadler, “Monads for functional programming,” in Marktoberdorf
Summer School on Program Design Calculi, ser. NATO ASI Series
F: Computer and systems sciences, vol. 118. Springer, 1992, also in
J. Jeuring and E. Meijer, editors, Advanced Functional Programming,
Springer Verlag, LNCS 925, 1995. [Online]. Available: http://homepages.
inf.ed.ac.uk/wadler/topics/monads.html

[7] S. Mac Lane, Categories for the Working Mathematician, 2nd ed., ser. Grad-
uate Texts in Mathematics. New York, NY, USA: Springer, 1998.

[8] P. Blackburn, M. de Rijke, and Y. Venema, Modal Logic. New York, NY,
USA: Cambridge University Press, 2001.

[9] T. Jech, Set Theory, 3rd ed., ser. Springer Monographs in Mathematics.
Berlin, Germany: Springer, 2002.

[10] R. J. Aumann, “Borel structures for function spaces,” Illinois Journal
of Mathematics, vol. 5, no. 4, pp. 614–630, 12 1961. [Online]. Available:
http://projecteuclid.org/euclid.ijm/1255631584

[11] G. Nedoma, “Note on generalized random variables,” in Transactions of the
First Prague Conference on Information Theory, Statistical Decision Func-
tions, Random Processes 1956, J. Kozesnik, Ed. Czechoslovak Academy
of Sciences, 1957.

[12] E. Schechter, Handbook of Analysis and Its Foundations. San Diego, CA,
USA: Academic Press, 1997.

http://research.microsoft.com/en-us/um/people/simonpj/papers/papers.html
http://research.microsoft.com/en-us/um/people/simonpj/papers/papers.html
http://research.microsoft.com/en-us/um/people/simonpj/papers/papers.html
http://research.microsoft.com/en-us/um/people/simonpj/papers/papers.html
http://www.haskell.org/haskellwiki/Language_and_library_specification
http://www.haskell.org/haskellwiki/Language_and_library_specification
http://homepages.inf.ed.ac.uk/wadler/topics/monads.html
http://homepages.inf.ed.ac.uk/wadler/topics/monads.html
http://projecteuclid.org/euclid.ijm/1255631584

140 REFERENCES

[13] A. S. Kechris, Classical Descriptive Set Theory, ser. Graduate Texts in
Mathematics. New York, NY, USA: Springer, 1995.

[14] S. Peyton Jones, The implementation of functional programming languages.
Hertfortshire, UK: Prentice Hall, 1987. [Online]. Available: http://research.
microsoft.com/en-us/um/people/simonpj/papers/slpj-book-1987/

[15] M. Manzano, Extensions of First-Order Logic, ser. Cambridge Tracts in
Theoretical Computer Science. Cambridge, UK: Cambridge University
Press, 1996.

[16] The GHC Team, “The glorious glasgow haskell compilation system
user’s guide, version 7.4.1,” Jun. 2014. [Online]. Available: http:
//www.haskell.org/ghc/docs/7.4.1/html/users_guide/

[17] A. Yakeley, “time: A time library,” http://hackage.haskell.org/package/
time-1.4.2, March 2014.

[18] B. A. Yorgey, “Species and functors and types, oh my!” in Proceedings
of the third ACM Haskell symposium on Haskell, ser. Haskell ’10.
New York, NY, USA: ACM, 2010, pp. 147–158. [Online]. Available:
http://www.cis.upenn.edu/~byorgey/pub/species-pearl.pdf

http://research.microsoft.com/en-us/um/people/simonpj/papers/slpj-book-1987/
http://research.microsoft.com/en-us/um/people/simonpj/papers/slpj-book-1987/
http://www.haskell.org/ghc/docs/7.4.1/html/users_guide/
http://www.haskell.org/ghc/docs/7.4.1/html/users_guide/
http://hackage.haskell.org/package/time-1.4.2
http://hackage.haskell.org/package/time-1.4.2
http://www.cis.upenn.edu/~byorgey/pub/species-pearl.pdf

	Contents
	Introduction
	Example arbitrage argument: Put-call parity
	Introduction to the formal framework used

	Observables – Formalizing market data
	Higher lifts
	Boolean observables as market conditions
	Quantifying over time
	Defining time
	Earlier and first occurrences of an event

	Contracts
	The present value relation
	Logical axioms
	zero, and, give
	one
	scale
	or
	when'
	anytime
	read'

	Interim summary
	More about the structure of contracts
	Pricing lemma

	Recursive equations for when' and anytime

	Applications
	Prices
	Interest
	Exchange Rates
	Forwards
	European options, put-call parity
	American options, Merton's theorem
	A definition for dividend-free shares

	A probabilistic model for LPT
	The primitive types as measurable spaces
	Observables as stochastic processes
	A few notes on atomic measurable spaces
	The monad of random variables
	From random variables to stochastic processes
	More about maps on RV X
	Expectation

	Modeling contracts by their present value
	The time-local primitives
	when' and anytime

	Conclusion and outlook
	Future work

	Lambda notation and Haskell for many-sorted first-order logic
	MSL and lambda notation
	MSL
	Modification Operations
	Closure Emulation
	Lifted relations

	Translating Haskell programs to MSL
	Types
	Algebraic Data Types
	Functions
	Adding higher-order functions
	Type Classes
	Effects of functions on models

	Common data types and functions
	Well-known ADTs and functions
	Numeric types
	Time

	Some proofs of monadic lifting properties
	Some proofs about atomic measurable spaces
	Building measurable spaces for ADTs via species
	Modeling algebraic data types
	More on species and M
	Lifting measurable functions

	References

