
© Zühlke 2011

Kai Schwidder

Solutioning Architectures

Software Quality Attributes

9. August 2011

© Zühlke 2011

Qualities and Constraints are often
referred to as „Non-Functional
Requirements‟

Non-functional requirements (or NFRs) define the desirable
qualities of a system and the constraints within which the system
must be built

• Qualities define the properties and characteristics which the delivered

system should demonstrate

• Constraints are the limitations, standards and environmental factors which
must be taken into account in the solution

Qualities Constraints

NFRs

Solution Architectures | Kai Schwidder 9. August 2011

© Zühlke 2011

Good vs. Bad Software Qualities

Well specified are:
• Correct
• Unambiguous
• Complete
• Consistent
• Measurable (verifiable)‏
• Traceable
• Actionable
• Design independent

Note on feasibility:
• It may not be possible to meet a

particular NFR given other
constraints – if so, this is a
design/business issue

They are not well specified if they are:
• Misrepresentative of the true

business need
• Open to interpretation
• High-level “principles” or

“guidelines”
• Conflicting
• Not possible to test
• Implying a specific solution or

technology

• Missing !

© Zühlke 2011

Constraints

The business aspects of the project,
customer's business environment
or IT organization that influence the
architecture

The technical environment and
prevailing standards that the
system, and the project, need to
operate within

Regulatory

Organisational

Risk Willingness

Marketplace factors

Schedule & Budget

Legacy Integration

Development Skills

Existing
Infrastructure

Technology State
of the art

IT Standards

Business Technical

Solution Architectures | Kai Schwidder 9. August 2011

© Zühlke 2011

Qualities

Runtime qualities are ‘measurable’
properties, often expressed as
“Service Level Requirements”.

Qualities might also be related to
the development, maintenance, or
operational concerns that are not
expressed at runtime.

Performance &
Capacity

Availability

Manageability

Security

Usability

Portability

Reliability

Efficiency

Scalability

Maintainability

Data Integrity

Run-time Non-Runtime

Solution Architectures | Kai Schwidder 9. August 2011

© Zühlke 2011

The best technique for reducing the risk
of poor quality of service is to consider
the qualities from the start

Build „quality‟ into the solution starting with early
design
• Understand the risks to the project
• Conduct quality of service engineering from the

first elaboration of the architecture model
• Set guidelines for the developers (software &

infrastructure)‏
• Test the application/system at each major stage

of development
• Make sure that the live support teams will be

able to manage quality

Fix it early, and save money and problems later …

Solution Architectures | Kai Schwidder 9. August 2011

© Zühlke 2011

Common problems with Non-
Functional “requirements”

Requirements are often vague or unactionable

• They need further elaboration, clarification, investigation (and possibly rejection)‏

• It may be possible to derive clear, actionable intentions from them

Requirements can be statements of principle or good intention but come with
little enforcement

• The organisation’s governance models are central

Once captured, requirements are often treated as “musts” or “givens”
whereas in fact they are “tradable” and may need to be challenged

• Classic example is “given” technology standards (e.g. “all applications in .NET”) or
infrastructure constraints (“64kbps links to offices”)‏

Solution Architectures | Kai Schwidder 9. August 2011

© Zühlke 2011

Common problems with Non-
Functional “requirements” (cont.)

Requirements are often of poor quality

• Watch out for these issues:
Unrepresentative, unclear, inaccurate, inconsistent, incomplete or unnecessarily
constraining

NFRs documents often become “dumping grounds” for things which don‟t
have another home

• (regardless of quality or suitability)‏

Solution Architectures | Kai Schwidder 9. August 2011

© Zühlke 2011

In reality, “requirements” are actually “influences” whose
characteristics we have to be clear about

A “requirement” in the widest sense …
stems from many sources … [Context]
is either an aspiration or a constraint …[Polarity]
may be negotiable (i.e. varying in importance) … [Strength]
may be generic or specific … [Level of generality]
may be directly actionable or difficult to interpret … [Actionability]
may affect many components of the Solution … [Affected objects]
may be helpful (good quality) or unhelpful (poor quality) [Quality]

Unless we understand the real context and importance of each
requirement, we risk producing the wrong solution

Solution Architectures | Kai Schwidder 9. August 2011

© Zühlke 2011

The reality of Availability is that
customers directly relate it to the End
User experience

The Availability of a system is a measure of its readiness for usage

Solution Architectures | Kai Schwidder 9. August 2011

© Zühlke 2011

There are certain key terms that are used
to define Availability-related concepts

• High Availability
is taken to mean a requirement for a system or service to be over 99% available – typically
implies thorough design and may require redundant components

• Disaster Recovery
means the recovery of essential services in the event of a major business disruption that
has resulted from the occurrence of a disaster

• Business Continuity
means the continued operation of business processes to a predetermined acceptable level
in the event of a major business disruption

• Unscheduled Outage
is a time period when the system is not ready for use and the users expect it to be. These
are unplanned outages caused by ‘Random Events’

• Scheduled Outage
is a time period when the system is not ready for use and the users do not expect it to be.
These are planned outages driven by predefined events

Solution Architectures | Kai Schwidder 9. August 2011

© Zühlke 2011

There are certain key terms that are used
to define Availability-related concepts

• Continuous Operations
is the requirement for perpetual operations 365 days per year 24 hours per day with
perhaps very rare scheduled outages

• Fault Tolerance
is that property of a component, sub-system or system that means that normal service
continues even though a fault has occurred within the system

• Reliability
is the probability that an item will perform its intended function for a specified interval
under stated conditions

• Maintainability (or Recoverability)
is the probability that using prescribed procedures and resources, an item can be retained
in, or restored to, a specific condition within a given period

Solution Architectures | Kai Schwidder 9. August 2011

© Zühlke 2011

Key Availability terms – Mean Times
…

• Mean Time to Recover (MTTR)
is the typical time that it takes to recover (includes repair) a component, sub-system or a
system.

• Mean Time to Failure (MTTF)
is the mean time between successive failures of a given component, sub-system or system.

• Mean Time between Failure (MTBF)
is the average time between successive failures of a given component, sub-system or system

Down! Up!

MTTR MTTF

MTBF

Down!

© Zühlke 2011

Availability – a final word

It is estimated that
• ~20% of your total availability is a function of your use of

technology

• ~80% is a function of your people and processes

E.g. someone says the:
• Root cause was that firewall logs were full

• The real reason was there was insufficient process in place to

monitor the logs and clear them down

Technology and design is important, however don‟t
assume that is your only challenge

Solution Architectures | Kai Schwidder 9. August 2011

© Zühlke 2011

What is Performance?

Definition
• “Performance. The degree to which a system or component accomplishes

its designated functions within given constraints, such as speed, accuracy,
or memory usage.” [IEEE-610.12]

In general
• Timeliness of response, and predictability, are the two main goals
• “Faster” is not always enough, as in for example, a real time system

requires extremely consistent performance

An (old) quote (from ICCM):
• “A manager's goal should always be to strike the right balance between

system function, processing costs, people costs, and performance. This is
why the technical aspects of performance can never be entirely divorced
from organizational politics”

Solution Architectures | Kai Schwidder 9. August 2011

© Zühlke 2011

Performance Aspects

There are three main, heavily inter-related aspects of
Performance to be considered

• Response Times

– On-line response times
– Batch run times

• Throughput

– Transactions per second
– Records processed per hour

• Capacity

– Component sizing to handle load
– Contingency and Scalability

9. August 2011 Solution Architectures | Kai Schwidder

Must have adequate
throughput to avoid
poor response
times

Sufficient capacity is
required to meet
throughput
requirements

© Zühlke 2011

The Importance of Numbers

Performance Architects rely on

VOLUMETRIC DATA and

ASSUMPTIONS in‏order‏to‏….

Feed performance and

capacity models, in

order‏to‏….

Predict system performance
• online and batch

Size systems

Evaluate & improve designs

Plan capacity

Plan testing

Or difficult to map

down to the technical

level?

What do you do

when these are

vague or difficult

to get?

Solution Architectures | Kai Schwidder 9. August 2011

© Zühlke 2011

Security is an example of a run-time
quality and covers these topics

Safety
• To reduce or eliminate danger
• To reduce or eliminate anxiety
• To reduce or eliminate risk or liability

Protection
• To defend against attacks (insider and outsider)
• To defend against fraud (misuse of assets or misrepresentation of identity)
• To defend tangible assets (IT systems and applications or stored information

or information in transit)
• To defend intangible assets (reputation)

Assurance
• To ensure correct and reliable operation
• To enforce identity and ownership
• To promote trust

© Zühlke 2011

Security & Safety

Security is a wide and fascinating topic encompassing a vast range of
issues, arenas and disciplines

• from deep mathematics to international espionage

In IT systems, “security” can be associated with the following qualities:

• Not open to intentional misuse
• Not open to accidental misuse
• Protects the truth – maintains integrity
• Protects service in the face of attack (overlap with Availability)

Secure means SAFE:

• Your data, your assets, your reputation

9. August 2011 Solution Architectures | Kai Schwidder

© Zühlke 2011

A good general approach to tackling IT
security is to take a „threat-based‟
approach
 • Document assets

Identify and decide what you need to protect. This could be data, intellectual capital,
processes, physical resources, or any other thing of value in the organisation

• Understand threats
Know your enemy. Determine from whom or what are you protecting your system
and/or network

• Define policy
Create a comprehensive security policy and implementation plan which is appropriate to
the level of threat

• Implement policies
Apply the security policies to your organisation and systems. Update or include security
elements and configurations in IT solutions

• Monitor policy
Continually monitor to detect any deviation from your policies and take actions if
needed

9. August 2011 Solution Architectures | Kai Schwidder

© Zühlke 2011

Key objectives of Security Engineering
(1/2)

Authentication – knowing who
• The process of determining who users (human or otherwise) are and that

they are who they claim to be. The most common technique for
authenticating is by user ID and password. Others include certificate-
based methods or biometrics

Authorisation – knowing what can they do
• The process of establishing the ‘rights’ that a user has to access and to

perform actions on resources. (Simple example – the permissions to read
and/or write a file)

Confidentiality – protecting confidential data
• Ensuring that data classed as confidential is only seen by appropriately

authorised parties. Often achieved through cryptography – i.e. encrypting
data

9. August 2011 Solution Architectures | Kai Schwidder

© Zühlke 2011

Key objectives of Security Engineering
(2/2)

Integrity – protecting the “truth”
• The quality of a system whereby data and processing always conforms to the

specified rules and constraints within the system

Auditable – what did they do?
• The trail of evidence proving the activities that have been performed on an

internal asset – and attributing this to a known identity. This must be stored in
a non-repudiable (tamper proof) format.

Non-Repudiation – proving what happened happened
• The ability to prove without contradiction that a transaction or event which is

recorded as having taking place did take place May need to be able to prove
events in a court of law

9. August 2011 Solution Architectures | Kai Schwidder

© Zühlke 2011

Security architecture is about
answering the question “how much
security is enough security”
From a security perspective, all IT solutions
must balance three conflicting factors:

• The risk – to the organisation of operating the

IT solution

• The cost – of implementing and operating the
security controls in general, the tighter the
controls the lower the risk

• The usability – of the solution in general, the
tighter the controls, the greater the impact on
the users of the system

9. August 2011 Solution Architectures | Kai Schwidder

The resulting set of controls
must be, as far as possible
“necessary and sufficient”.

