11. Recursion

Harald Gall, Prof. Dr.
Michael Wursch

Institut fur Informatik
Universitat Zurich

http://seal.ifi.uzh.ch/info1

,/ %) University of Zurich S. €, ad. |A
ll.\n ' /‘ Department 0f|nf0m‘atics ‘suftwareevnlulion&archi(enurelab

Objectives

become familiar with the idea of recursion
learn to use recursion as a programming tool

Introduction to Recursion

A recursive algorithm will have one subtask that
IS a small version of the entire algorithm's task

A Java method definition is recursive if it
contains an invocation of itself.

The method continues to call itself, with ever
simpler cases, until a base case is reached

which can be resolved without any subsequent
recursive calls.

Example: Exponent

private int power(int x, int y) {
// y>=0 returns xAy

}

xX¥=1*x*x*...*x (ytimes)
if y == 0, then stop and return 1

if y >0, then multiply x with the result of x¥™"

Expone

nt /2

retu
else {

2)

rn 1;

private int power(int x,
// y>=0 returns x**y

if (y ==

int assistantResult =
return x * assistantResult;

int y) {

power(x, y-1)

43

A

(1) hires N

(6) returns 16)N (5) returns 4 W

(last) returns 64

(2) hires
-

(3) hires
-

C

40

Activation records

f(O calls power(3, 2):

}

void f(..) {

int q = power (3,2);

activation record = memory block, with parameters, local
variables, and return address:

Sender: whoever invoked f

X

3

Y

2

Sender: method f, line N

assistantResult

Activation record for f(. . .)

Activation record for power(3,2)
(the current activation record)

Stack of Activation records /2

After power (3,1) has been called:

Sender: whoever invoked f

X113 Y

2

Sender: method f, line N

\
assistantResult

Activation record for f(. . .)

Activation record for power(3,2)

X113

Y

Sender: method power,line 5

1 assistantResult

Activation record for power(3,1)
(the current activation record)

Stack of Activation records /3

After power (3,0) has been called

Sender: whoever invoked f

Y

2

Sender: method f, line N

assistantResult

Activation record for f(. . .)

Activation record for power(3,2)

3

Y

Sender: method power, line 5

1 assistantResult

Activation record for power(3,1)

X

Sender: method power, line 5

3

Y| O assistantResult

Activation record for power(3,0)
(the current activation record)

Return

A return-Statement
evaluates the return value (e.g., 1)
deletes the current activation record

replaces the expression that called the method with the return
value

continues execution of the caller

Sender: whoever invoked f Activation record for (. . .)

Sender: method f, line N
\ Activation record for power(3,2)

Y [2 assistantResult
Sender: method power, line 5

Activation record for power(3,1)
(the current activation record)

Yil assistantResult

3

X

Return /2

Sender: whoever invoked f

3

Y

2

Sender: method f, line N

assistantResult

Activation record for f(. . .)

Activation record for power(3,2)

X

Sender: method power, line 5

Y

1 assistantResult

Activation record for power(3,1)
(the current activation record)

10

_Return /3

Sender: whoever invoked f

Activation record for f(. . .)

X

3 Y

Sender: method f, line N

assistantResult 3

Sender: whoever invoked f

Activation record for f(. . .)
(the current activation record)

Activation record for power(3,2)
(the current activation record)

11

Example: Digits to Words

Write a definition that accepts a single integer and
produces words representing its digits.

Example
input: 223
output: two two three

12

Digit to Words: Specification

If number has multiple digits, decompose algorithm
iInto two subtasks

Display all digits but the last as words
Display last digit as a word

First subtask is smaller version of original problem
Same as original task, one less digit

13

Recursion Guidelines

The definition of a recursive method typically includes an
if-else statement.

One branch represents a base case which can be
solved directly (without recursion).

Another branch includes a recursive call to the method,
but with a “simpler” or “smaller” set of arguments.

Ultimately, a base case must be reached (termination).

14

Termination

You need to have a return-statement that does not
make a recursive call

The return statement needs to be before the recursive

call
if (y == 0)
return 1;
else { ...

// recursive call

¥

15

Infinite Recursion

If the recursive invocation inside the method does not use
a “simpler” or “smaller” parameter, a base case may never

be reached.

Such a method continues to call itself forever (or at least
until the resources of the computer are exhausted as a

consequence of stack overflow)
This is called infinite recursion

16

Infinite Recursion

= Suppose we leave out the stopping case

public static void displayAsWords(int number)//Not quite right

{
displayAsWords (number / 10);

System.out.print(getWordFromDigit(number % 10) + " ");

}

= Nothing stops the method from repeatedly
iInvoking itself

= Program will eventually crash when computer exhausts
its resources (stack overflow)

17

Recursive Versus lterative

Any method including a recursive call can be
rewritten to do the same task without recursion

Recursive method

Uses more storage space than iterative version
Also runs slower

However in some programming tasks, recursion
IS a better choice, a more elegant solution

18

Overloading is Not Recursion

If a method name is overloaded and one method calls
another method with the same name but with a different

parameter list, this is not recursion

Of course, if a method name is overloaded and the
method calls itself, this is recursion

Overloading and recursion are neither synonymous nor
mutually exclusive

19

Example: Family Tree

Heinrich: 98

Hans: 70 Agnes: 72 Karin: 81

ernard: 40 Marie: 39

Anton: 55 Andrea: 39

‘ Susanne: 22 i- 01 Thomas: 24 \
‘ Cyril: 1 \

© 2005 W. Savitch, Pearson Prentice Hall 20

Summary

To avoid infinite recursion recursive method
should contain two kinds of cases

A recursive call
A base (stopping) case with no recursive call

Good examples of recursive algorithms
Binary search algorithm
Merge sort algorithm
Operations in tree structures

21

