
11. Recursion

Harald Gall, Prof. Dr.
Michael Würsch
Institut für Informatik
Universität Zürich
http://seal.ifi.uzh.ch/info1

2

Objectives

n  become familiar with the idea of recursion
n  learn to use recursion as a programming tool

3

Introduction to Recursion

n  A recursive algorithm will have one subtask that
is a small version of the entire algorithm's task

n  A Java method definition is recursive if it
contains an invocation of itself.

n  The method continues to call itself, with ever
simpler cases, until a base case is reached
which can be resolved without any subsequent
recursive calls.

4

Example: Exponent

xy = 1 * x * x * ... * x (y times)
n  if y == 0, then stop and return 1
n  if y > 0, then multiply x with the result of x(y-1)

private int power(int x, int y) {	
 // y>=0 returns x^y	
	
}	

5

Exponent /2

private int power(int x, int y) {	
 // y>=0 returns x**y	
 	
 if (y == 0) 	
 return 1;	
 else {	

	int assistantResult = power(x, y-1)	
	return x * assistantResult;	

 }	
}	

6

Activation records

n  f() calls power(3, 2):

n  activation record = memory block, with parameters, local
variables, and return address:

void f(..) {	
 ...	
 int q = power (3,2);	
 ...	
}	

7

Stack of Activation records /2

n  After power (3,1) has been called:	

8

Stack of Activation records /3

n  After power (3,0) has been called

9

Return

A return-Statement
n  evaluates the return value (e.g., 1)
n  deletes the current activation record
n  replaces the expression that called the method with the return

value
n  continues execution of the caller

10

Return /2

11

Return /3

12

Example: Digits to Words

n  Write a definition that accepts a single integer and
produces words representing its digits.

n  Example
n  input: 223
n  output: two two three

13

Digit to Words: Specification

If number has multiple digits, decompose algorithm
into two subtasks

n  Display all digits but the last as words
n  Display last digit as a word

First subtask is smaller version of original problem
n  Same as original task, one less digit

14

Recursion Guidelines

n  The definition of a recursive method typically includes an
if-else statement.
n  One branch represents a base case which can be

solved directly (without recursion).
n  Another branch includes a recursive call to the method,

but with a “simpler” or “smaller” set of arguments.
n  Ultimately, a base case must be reached (termination).

15

Termination

n  You need to have a return-statement that does not
make a recursive call

n  The return statement needs to be before the recursive
call

if (y == 0) 	
 return 1;	
else { ... 	
 // recursive call	
}	

16

Infinite Recursion

n  If the recursive invocation inside the method does not use
a “simpler” or “smaller” parameter, a base case may never
be reached.

n  Such a method continues to call itself forever (or at least
until the resources of the computer are exhausted as a
consequence of stack overflow)

n  This is called infinite recursion

17

Infinite Recursion

n  Suppose we leave out the stopping case

n  Nothing stops the method from repeatedly
invoking itself
n  Program will eventually crash when computer exhausts

its resources (stack overflow)

18

Recursive Versus Iterative

n  Any method including a recursive call can be
rewritten to do the same task without recursion

n  Recursive method
n  Uses more storage space than iterative version
n  Also runs slower

n  However in some programming tasks, recursion
is a better choice, a more elegant solution

19

Overloading is Not Recursion

n  If a method name is overloaded and one method calls
another method with the same name but with a different
parameter list, this is not recursion

n  Of course, if a method name is overloaded and the
method calls itself, this is recursion

n  Overloading and recursion are neither synonymous nor
mutually exclusive

20

Example: Family Tree

© 2005 W. Savitch, Pearson Prentice Hall

Aufgabe 3

Heinrich: 98

Hans: 70 Agnes: 72

Marie: 39Bernard: 40

Susanne: 22

Karin: 81

Anton: 55 Andrea: 39

Thomas: 24

Cyril: 1

Monday, January 4, 2010

21

Summary

n  To avoid infinite recursion recursive method
should contain two kinds of cases
n  A recursive call
n  A base (stopping) case with no recursive call

n  Good examples of recursive algorithms
n  Binary search algorithm
n  Merge sort algorithm
n  Operations in tree structures

