
2. Primitive Types

Prof. Dr. Harald Gall
Michael Würsch
Institut für Informatik
Universität Zürich
http://seal.ifi.uzh.ch/info1

2

Learning Objectives

n  Become familiar with the primitive types of Java
(numbers, characters, etc.)

n  Learn how to assign values to variables

© 2005 W. Savitch, Pearson Prentice Hall

3

Data Types in Java

Primitive types
n  Atomic (non-decomposable) values
n  Examples: different kinds of numbers, characters

Class types
n  Composed of primitive types (and other class types)
n  Can have instance variables and methods
n  Examples: strings, students, bank-accounts,

application windows, files, etc.

© 2005 W. Savitch, Pearson Prentice Hall

4

Primitive Types

© 2005 W. Savitch, Pearson Prentice Hall

5

Floating Point Number vs Integer

Integers can be stored as true binary values:

Floating-point numbers are stored differently

© 2005 W. Savitch, Pearson Prentice Hall

6

Assignments

Syntax:
<var name> = <value>;

Example:
int a, b;

a = 10;

b = 15;
int c_squared = a*a + b*b;

double d = 0.00483;

char firstInitial = ‘M’;

© 2005 W. Savitch, Pearson Prentice Hall

7 © 2005 W. Savitch, Pearson Prentice Hall

Shorthand Assignment Operators

Assignment operators can be combined with arithmetic
operators (including -, *, /, and %).

 amount = amount + 5;

can be written as

 amount += 5;

yielding the same results.

8

Increment and Decrement
Operators

A common situation is that of incrementing or
decrementing an integer variable by one.

Shorthand operators:
i++;

i--;

© 2005 W. Savitch, Pearson Prentice Hall

9

Assignment Compatibility

Since Java is strongly typed, assignments are
only possible if no loss of information occurs.

double d = 100.5;

int i = d; // error

int i2 = 10;

double d2 = i2; // ok

© 2005 W. Savitch, Pearson Prentice Hall

10

Assignment Compatibility Chart

© 2005 W. Savitch, Pearson Prentice Hall

byte short int

char

long

float double

... Automatic Conversion without loss of information

... Automatic conversion with potential loss of information

11

Forced Conversion: Type Casting

A type cast temporarily changes the value of a
variable from the declared type to some other type.

Warning: Any non-zero value to the right of the
decimal point is truncated rather than rounded!

Example:
double distance = 9.5;

int points = (int) distance;

© 2005 W. Savitch, Pearson Prentice Hall

12

Automatic Conversions in
Expressions

Arithmetic expressions can be formed using the
+, -, *, and / operators together with variables
or numbers referred to as operands

n  When both operands are of the same type, the result is of
that type.

n  When one of the operands is a floating-point type and the
other is an integer, the result is a floating point type.

☛  if at least one of the operands is a floating-point type and
the rest are integers, the result will be a floating point
type.

© 2005 W. Savitch, Pearson Prentice Hall

13 © 2005 W. Savitch, Pearson Prentice Hall

The Division Operator

n  The division operator (/) behaves as expected if one of
the operands is a floating-point type.

n  When both operands are integer types, the result is
truncated, not rounded.
n  Hence, 99/100 has a value of 0.

14 © 2005 W. Savitch, Pearson Prentice Hall

The mod Operator

n  The mod (%) operator is used with operators of
integer type to obtain the remainder after
integer division

n  14 divided by 4 is 3 with a remainder of 2
n  Hence, 14 % 4 is equal to 2

n  The mod operator has many uses, including
n  determining if an integer is odd or even
n  determining if one integer is evenly divisible by

another integer

15 © 2005 W. Savitch, Pearson Prentice Hall

Parentheses and Precedence

n  Parentheses can communicate the order in
which arithmetic operations are performed

n  examples:
 (cost + tax) * discount
 (cost + (tax * discount)

n  Without parentheses, an expressions is
evaluated according to the rules of precedence.

16 © 2005 W. Savitch, Pearson Prentice Hall

Precedence Rules

17 © 2005 W. Savitch, Pearson Prentice Hall

Precedence Rules, cont.

n  The binary arithmetic operators *, /, and %, have lower
precedence than the unary operators +, -, ++, --, and !,
but have higher precedence than the binary arithmetic
operators + and -.

n  When binary operators have equal precedence, the
operator on the left acts before the operator(s) on the
right.

18 © 2005 W. Savitch, Pearson Prentice Hall

Precedence Rules, cont.

n  When unary operators have equal precedence,
the operator on the right acts before the
operation(s) on the left.

n  Even when parentheses are not needed, they
can be used to make the code clearer.
balance + (interestRate * balance)

n  Spaces also make code clearer
balance + interestRate*balance

but spaces do not dictate precedence.

19 © 2005 W. Savitch, Pearson Prentice Hall

Sample Expressions

