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Learning Objectives 

n  Become familiar with the primitive types of Java 
(numbers, characters, etc.) 

n  Learn how to assign values to variables 
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Data Types in Java 

Primitive types 
n  Atomic (non-decomposable) values 
n  Examples: different kinds of numbers, characters 

Class types 
n  Composed of primitive types (and other class types) 
n  Can have instance variables and methods 
n  Examples: strings, students, bank-accounts, 

application windows, files, etc. 
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Primitive Types 
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Floating Point Number vs Integer 

Integers can be stored as true binary values: 

 

Floating-point numbers are stored differently  
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Assignments 

Syntax: 
<var name> = <value>; 
 

Example: 
int a, b; 

a = 10; 

b = 15; 
int c_squared = a*a + b*b; 

double d = 0.00483; 

char firstInitial = ‘M’; 
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Shorthand Assignment Operators 

Assignment operators can be combined with arithmetic 
operators (including -, *, /, and %). 
 

 amount = amount + 5; 
 
can be written as 
 

 amount += 5; 
 

yielding the same results. 
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Increment and Decrement 
Operators 

A common situation is that of incrementing or 
decrementing an integer variable by one. 
 
Shorthand operators: 
i++; 

i--; 
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Assignment Compatibility 

Since Java is strongly typed, assignments are 
only possible if no loss of information occurs. 

double d = 100.5; 

int i = d; // error 

 

int i2 = 10; 

double d2 = i2; // ok 
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Assignment Compatibility Chart 
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byte short int 

char 

long 

float double 

... Automatic Conversion without loss of information 

... Automatic conversion with potential loss of information 
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Forced Conversion: Type Casting 

A type cast temporarily changes the value of a 
variable from the declared type to some other type. 
 
Warning: Any non-zero value to the right of the 
decimal point is truncated rather than rounded! 
 
Example: 
double distance = 9.5; 

int points = (int) distance; 
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Automatic Conversions in 
Expressions 

Arithmetic expressions can be formed using the 
+, -, *, and / operators together with variables 
or numbers referred to as operands 

n  When both operands are of the same type, the result is of 
that type. 

n  When one of the operands is a floating-point type and the 
other is an integer, the result is a floating point type. 

☛  if at least one of the operands is a floating-point type and 
the rest are integers, the result will be a floating point 
type. 
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The Division Operator 

n  The division operator (/) behaves as expected if one of 
the operands is a floating-point type. 

n  When both operands are integer types, the result is 
truncated, not rounded. 
n  Hence, 99/100 has a value of 0. 
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The mod Operator 

n  The mod (%) operator is used with operators of 
integer type to obtain the remainder after 
integer division 

n  14 divided by 4 is 3 with a remainder of 2 
n  Hence, 14 % 4 is equal to 2 

n  The mod operator has many uses, including 
n  determining if an integer is odd or even 
n  determining if one integer is evenly divisible by 

another integer 
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Parentheses and Precedence 

n  Parentheses can communicate the order in 
which arithmetic operations are performed 

n  examples: 
 (cost + tax) * discount 
 (cost + (tax * discount) 

n  Without parentheses, an expressions is 
evaluated according to the rules of precedence. 
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Precedence Rules 
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Precedence Rules, cont. 

n  The binary arithmetic operators *, /, and %, have lower 
precedence than the unary operators +, -, ++, --, and !, 
but have higher precedence than the binary arithmetic 
operators + and -. 

n  When binary operators have equal precedence, the 
operator on the left acts before the operator(s) on the 
right. 
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Precedence Rules, cont. 

n  When unary operators have equal precedence, 
the operator on the right acts before the 
operation(s) on the left. 

n  Even when parentheses are not needed, they 
can be used to make the code clearer. 
balance + (interestRate * balance) 

n  Spaces also make code clearer 
balance + interestRate*balance 

but spaces do not dictate precedence. 
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Sample Expressions 


