
1

8. Polymorphism and Inheritance

Harald Gall, Prof. Dr.
Institut für Informatik
Universität Zürich
http://seal.ifi.uzh.ch/info1

2 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Objectives

!  Describe polymorphism and inheritance in general
!  Define interfaces to specify methods
!  Describe dynamic binding
!  Define and use derived classes in Java

3 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Inheritance Basics

!  Derived Classes
!  Overriding Method Definitions
!  Overriding Versus Overloading
!  The final Modifier
!  Private Instance Variables and Private Methods of

a Base Class
!  UML Inheritance Diagrams

2

4 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Introduction to Inheritance

!  Inheritance allows us to define a general class
and then more specialized classes simply by
adding new details to the more general class
definition.

!  A more specialized class inherits the properties of
the more general class, so that only new features
need to be programmed.

5 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Introduction to Inheritance, cont.

!  Example
!  General class Vehicle might have instance variables

for weight and maximum occupancy.
!  More specialized class Automobile might add

instance variables for wheels, engine size, and license
plate number.

!  General class Vehicle might also be used to define
more specialized classes Boat and Airplane

6 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Derived Classes

!  Consider a university record-keeping system with
records about students, faculty and (non teaching)
staff.

3

7 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Inheritance Basics

!  Inheritance allows programmer to define a general
class

!  Later you define a more specific class
!  Adds new details to general definition

!  New class inherits all properties of initial, general
class

!  View example class, listing 8.4
class Person

8 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Example: A Base Class

9 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Derived Classes

!  Class Person used as a base class
!  Also called superclass

!  Now we declare derived class Student
!  Also called subclass
!  Inherits methods from the superclass

!  View derived class, listing 8.5
class Student extends Person

!  View demo program, listing 8.6
class InheritanceDemo

Sample
screen
output

4

10 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Derived Classes

!  A class hierarchy

11 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Overriding Method Definitions

!  Note method writeOutput in class Student
!  Class Person also has method with that name

!  Method in subclass with same signature overrides
method from base class
!  Overriding method is the one used for objects of the

derived class
!  Overriding method must return same type of value

12 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Overriding Versus Overloading

!  Do not confuse overriding with overloading
!  Overriding takes place in subclass – new method with

same signature

!  Overloading
!  New method in same class with different signature

5

13 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

The final Modifier

!  Possible to specify that a method cannot be
overridden in subclass

!  Add modifier final to the heading
public final void specialMethod()

!  An entire class may be declared final
!  Thus cannot be used as a base class to derive any

other class

14 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Private Instance Variables, Methods

!  Consider private instance variable in a base class
!  It is not inherited in subclass
!  It can be manipulated only by public accessor, modifier

methods
!  Similarly, private methods in a superclass are not

inherited by subclass

15 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

UML Inheritance Diagrams

!  A class
hierarchy in
UML notation

6

16 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

UML Inheritance Diagrams

!  Some details
of UML class
hierarchy

17 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Programming with Inheritance: Outline

!  Constructors in Derived Classes
!  The this Method – Again
!  Calling an Overidden Method
!  Derived Class of a Derived Class
!  Type Compatibility

18 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Programming with Inheritance: Outline

!  The class Object
!  A Better equals Method
!  Case Study: Character Graphics
!  Abstract Classes
!  Dynamic Binding and Inheritance

7

19 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Constructors in Derived Classes

!  A derived class does not inherit constructors
from base class
!  Constructor in a subclass must invoke constructor

from base class
!  Use the reserved word super

!  Must be first action in the constructor

20 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

The this Method – Again

!  Also possible to use the this keyword
!  Use to call any constructor in the class

!  When used in a constructor, this calls constructor
in same class
!  Contrast use of super which invokes constructor of

base class

21 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Calling an Overridden Method

!  Reserved word super can also be used to call
method in overridden method

!  Calls method by same name in base class

8

22 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Programming Example

!  A derived class of a derived class
!  View sample class, listing 8.7
class Undergraduate

!  Has all public members of both
!  Person
!  Student

!  This reuses the code in superclasses

23 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Programming Example

!  More details
of the UML
class
hierarchy

24 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Type Compatibility

!  In the class hierarchy
!  Each Undergraduate is also a Student
!  Each Student is also a Person

!  An object of a derived class can serve as an
object of the base class
!  Note this is not typecasting

!  An object of a class can be referenced by a
variable of an ancestor type

9

25 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Type Compatibility

!  Be aware of the "is-a" relationship
!  A Student is a Person

!  Another relationship is the "has-a"
!  A class can contain (as an instance variable) an object

of another type

!  If we specify a date of birth variable for Person – it
"has-a" Date object

26 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

The Class Object

!  Java has a class that is the ultimate ancestor of
every class
!  The class Object

!  Thus possible to write a method with parameter of
type Object
!  Actual parameter in the call can be object of any type

!  Example: method
println(Object theObject)

27 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

The Class Object

!  Class Object has some methods that every Java
class inherits

!  Examples
!  Method equals
!  Method toString

!  Method toString called when println
(theObject) invoked
!  Best to define your own toString to handle this

10

28 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

A Better equals Method

!  Programmer of a class should override method
equals from Object

!  View code of sample override, listing 8.8
public boolean equals
 (Object theObject)

29 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Case Study

!  Character Graphics
!  View interface for simple shapes,

listing 8.9 interface ShapeInterface
!  If we wish to create classes that draw rectangles

and triangles
!  We could create interfaces that extend
ShapeInterface

!  View interfaces, listing 8.10

30 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Case Study

!  Now view base class, listing 8.11 which uses
(implements) previous interfaces
class ShapeBasics

!  Note
!  Method drawAt calls drawHere
!  Derived classes must override drawHere
!  Modifier extends comes before implements

11

31 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Case Study

!  Figure 8.5 A sample rectangle and triangle

32 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Case Study
!  Note algorithm used by method drawHere to

draw a rectangle
1.  Draw the top line
2.  Draw the side lines
3.  Draw the bottom lines

!  Subtasks of drawHere are realized as private
methods

!  View class definition, listing 8.12
class Rectangle

33 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Case Study

!  View next class to be defined (and tested),
listing 8.13 class Triangle

!  It is a good practice to test the classes as we go
!  View demo program, listing 8.14
class TreeDemo

12

34 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Case Study

Sample
screen
output

35 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Abstract Classes

!  Class ShapeBasics is designed to be a base
class for other classes
!  Method drawHere will be redefined for each subclass
!  It should be declared abstract – a method that has no

body
!  This makes the class abstract
!  You cannot create an object of an abstract class –

thus its role as base class

36 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Abstract Classes

!  Not all methods of an abstract class are abstract
methods

!  Abstract class makes it easier to define a base
class
!  Specifies the obligation of designer to override the

abstract methods for each subclass

13

37 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Abstract Classes

!  Cannot have an instance of an abstract class
!  But OK to have a parameter of that type

!  View abstract version, listing 8.15
abstract class ShapeBase

38 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Dynamic Binding and Inheritance
!  Note how drawAt (in ShapeBasics) makes a

call to drawHere
!  Class Rectangle overrides method drawHere

!  How does drawAt know where to find the correct
drawHere?

!  Happens with dynamic or late binding
!  Address of correct code to be executed determined at

run time

39 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Dynamic Binding and Inheritance
!  When an overridden method invoked

!  Action matches method defined in class used to create
object using new

!  Not determined by type of variable naming the object

!  Variable of any ancestor class can reference
object of descendant class
!  Object always remembers which method actions to use

for each method name

14

40 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Interfaces

!  Class Interfaces
!  Java Interfaces
!  Implementing an Interface
!  An Interface as a Type
!  Extending an Interface

41 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Class Interfaces

!  Consider a set of behaviors for pets
!  Be named
!  Eat
!  Respond to a command

!  We could specify method headings for these
behaviors

!  These method headings can form a class
interface

42 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Class Interfaces

!  Now consider different classes that implement this
interface
!  They will each have the same behaviors
!  Nature of the behaviors will be different

!  Each of the classes implements the behaviors/
methods differently

15

43 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Java Interfaces

!  A program component that contains headings for
a number of public methods
!  Will include comments that describe the methods

!  Interface can also define public named constants
!  View example interface, listing 8.1

interface Measurable

44 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Java Interfaces

!  Interface name begins with uppercase letter
!  Stored in a file with suffix .java
!  Interface does not include

!  Declarations of constructors
!  Instance variables
!  Method bodies

45 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Implementing an Interface

!  To implement a method, a class must
!  Include the phrase

 implements Interface_name
!  Define each specified method

!  View sample class, listing 8.2
class Rectangle implements Measurable

!  View another class, listing 8.3 which also
implements Measurable
class Circle

16

46 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

An Inheritance as a Type

!  Possible to write a method that has a parameter
as an interface type
!  An interface is a reference type

!  Program invokes the method passing it an object
of any class which implements that interface

47 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

An Inheritance as a Type

!  The method can substitute one object for another
!  Called polymorphism

!  This is made possible by mechanism
!  Dynamic binding
!  Also known as late binding

48 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Extending an Interface

!  Possible to define a new interface which builds on
an existing interface
!  It is said to extend the existing interface

!  A class that implements the new interface must
implement all the methods of both interfaces

