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V-Model
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WHAT

Continuous Integration
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... is a software development practice where members of a team integrate 
their work frequently, usually each person integrates at least daily - leading 
to multiple integrations per day. Each integration is verified by an automated 
build (including test) to detect integration errors as quickly as possible. 
Many teams find that this approach leads to significantly reduced 
integration problems and allows a team to develop cohesive software more 
rapidly.

Martin Fowler, http://martinfowler.com/articles/continuousIntegration.html
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HOW
Continuous Integration

6

unit tests

integration tests

quality assurance

deployment

commit

changes

commit

changes

commit

changes

triggers

build

multi-stage

builds



www.comerge.net

HOW

Continuous Integration
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> Version control repository: CVS, Subversion, 
Git, Mercurial, etc.

> Build tools: Ant, Maven, Make, Gant, Grails, 
Rake, etc.

> Continuous integration environment (server): 
CruiseControl, Continuum, Hudson/Jenkins
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WHY

Continuous Integration
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> Reduce risks
> Defects are detected when they are introduced
> Measure the health of a software
> Environment always the same and build starts clean => no 

assumptions

Source: Paul M. Duval. Continuous Integration. Pearson Education, Inc., 2007
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WHY

Continuous Integration
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> Reduce repetitive manual processes (safe 
time and costs)

> Process runs the same every time
> Ordered process: compile, unit tests, integration tests, qa, etc.

Source: Paul M. Duval. Continuous Integration. Pearson Education, Inc., 2007



www.comerge.net

WHY

Continuous Integration
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> Generate deployable software at any time 
and at any place

> Going back in the build history to deploy older, maybe stable, builds

Source: Paul M. Duval. Continuous Integration. Pearson Education, Inc., 2007
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WHY

Continuous Integration
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> Enable better project visibility
> Decisions on quality improvements and tests are shown immediately
> Ability to notice trends in various quality metrics (# bugs; # checkstyle, 

findbugs, pmd violations; code coverage of test cases)

Source: Paul M. Duval. Continuous Integration. Pearson Education, Inc., 2007
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WHY

Continuous Integration
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> Establish greater confidence in the software 
product from the development team

> Making progress is visible and encourages developers
> Confidence increases if the increase of overall product quality is visible

Source: Paul M. Duval. Continuous Integration. Pearson Education, Inc., 2007
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WHY

Continuous Integration
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> Same code basis for every developer: 
reduces communication overhead

> Go to build #x, do you see...

Source: Paul M. Duval. Continuous Integration. Pearson Education, Inc., 2007
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MEET
JENKINS

Continuous Integration

14



www.comerge.net

GIT

Version Control
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> Version control is the management of 
changes to documents, programs, and other 
information stored as computer files.

> History of changes to a file visible at any time.

> Maintain a master repository on a server and 
all developers get a consolidated copy of the 
project
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GIT

Version Control
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> Create a repository
> $ mkdir project
> $ cd project
> $ git init

> Create a Java class with an empty method
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GIT

Version Control
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> Add the file to the repository and commit
> $ git add SimpleClass.java
> $ git commit

> Make a change to the method
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BUILD
AUTOMATION

Maven

> Maven is a build and software project 
management tool

> Maven works with Project Object Models 
(pom.xml) files to specify project settings

> Plugin architecture to include tools into the 
build cycle
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MAIN
PRINCIPLE

Maven

> Convention over configuration
> ./src/main/java
> ./src/main/resources
> ./src/test/java
> ./src/test/resources
> ./target/classes
> ./target/* (*.jar, reports, etc.)
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BUILD
LIFECYCLE

Maven

> compile
> test
> package
> integration-test
> verify
> install
> deploy
> $ mvn <phase>
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DEPENDENCY
MANAGEMENT

Maven

> Maven works with repositories where a huge 
number of jars are stored

> Specify a dependency in the POM file
> maven downloads the necessary jar file
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DEPENDENCY
MANAGEMENT

Maven
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<dependencies>
    <dependency>
        <groupId>junit</groupId>
        <artifactId>junit</artifactId>
        <version>4.8</version>
        <scope>test</scope>
    </dependency>
</dependencies>
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EXAMPLE

Sports Ground

> Java Enterprise Edition 6 (JEE 6)
> RESTful API

> REpresentation State Transfer (JAX-RS)

> JBoss Application Server 7.1
> https://github.com/kraftan/ci-showcase
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V-Model
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V-Model
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V-Model
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EFFICIENCY
Non-Functional Req
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> Performance testing
> Which component have a long response time?
> For instance, certain DB query may take noticeably longer than others

> Load testing
> How does the system work under heavy load?
> How long does it take to complete a request if specific number of 

persons interact with the system

> Stress testing
> How does the system react if it is overloaded?
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Used Tools
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> Git - Version Control
> Maven - Build Automation
> Jenkins - Continuous Integration
> Java EE 6 on JBoss AS 7 (Example on github)
> JUnit - Unit testing
> mockito - Unit testing in isolation
> Arquillian - In-container integration testing
> Sonar - Quality Assurance
> JMeter - Load testing
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Design to Test
Use CI to Check

Wrap Up
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