
Multi-Stage Builds for Quality Assurance

Continuous
Integration

Dr. Beat Fluri
Comerge AG

www.comerge.net

ABOUT
MSc ETH in Computer Science
Dr. Inform. UZH, s.e.a.l. group
Over 8 years of experience in object-oriented
software engineering with Java
Special focus on Java EE 6

2

www.comerge.net

> V-Model

> Continuous Integration

> Example JEE RESTful application

> Multistage Builds for V-Model

3

Roadmap

www.comerge.net

V-Model

4

User
needs

System Spec

Subsystem
Design/Spec

Unit
Design/Spec

Unit

Subsystem

System

Delivery

Specification Implementation

Unit Test

Integration Test

Acceptance Test

System Test

www.comerge.net

WHAT

Continuous Integration

5

... is a software development practice where members of a team integrate
their work frequently, usually each person integrates at least daily - leading
to multiple integrations per day. Each integration is verified by an automated
build (including test) to detect integration errors as quickly as possible.
Many teams find that this approach leads to significantly reduced
integration problems and allows a team to develop cohesive software more
rapidly.

Martin Fowler, http://martinfowler.com/articles/continuousIntegration.html

www.comerge.net

HOW
Continuous Integration

6

unit tests

integration tests

quality assurance

deployment

commit

changes

commit

changes

commit

changes

triggers

build

multi-stage

builds

www.comerge.net

HOW

Continuous Integration

7

> Version control repository: CVS, Subversion,
Git, Mercurial, etc.

> Build tools: Ant, Maven, Make, Gant, Grails,
Rake, etc.

> Continuous integration environment (server):
CruiseControl, Continuum, Hudson/Jenkins

www.comerge.net

WHY

Continuous Integration

8

> Reduce risks
> Defects are detected when they are introduced
> Measure the health of a software
> Environment always the same and build starts clean => no

assumptions

Source: Paul M. Duval. Continuous Integration. Pearson Education, Inc., 2007

www.comerge.net

WHY

Continuous Integration

9

> Reduce repetitive manual processes (safe
time and costs)

> Process runs the same every time
> Ordered process: compile, unit tests, integration tests, qa, etc.

Source: Paul M. Duval. Continuous Integration. Pearson Education, Inc., 2007

www.comerge.net

WHY

Continuous Integration

10

> Generate deployable software at any time
and at any place

> Going back in the build history to deploy older, maybe stable, builds

Source: Paul M. Duval. Continuous Integration. Pearson Education, Inc., 2007

www.comerge.net

WHY

Continuous Integration

11

> Enable better project visibility
> Decisions on quality improvements and tests are shown immediately
> Ability to notice trends in various quality metrics (# bugs; # checkstyle,

findbugs, pmd violations; code coverage of test cases)

Source: Paul M. Duval. Continuous Integration. Pearson Education, Inc., 2007

www.comerge.net

WHY

Continuous Integration

12

> Establish greater confidence in the software
product from the development team

> Making progress is visible and encourages developers
> Confidence increases if the increase of overall product quality is visible

Source: Paul M. Duval. Continuous Integration. Pearson Education, Inc., 2007

www.comerge.net

WHY

Continuous Integration

13

> Same code basis for every developer:
reduces communication overhead

> Go to build #x, do you see...

Source: Paul M. Duval. Continuous Integration. Pearson Education, Inc., 2007

www.comerge.net

MEET
JENKINS

Continuous Integration

14

www.comerge.net

GIT

Version Control

15

> Version control is the management of
changes to documents, programs, and other
information stored as computer files.

> History of changes to a file visible at any time.

> Maintain a master repository on a server and
all developers get a consolidated copy of the
project

www.comerge.net

GIT

Version Control

16

> Create a repository
> $ mkdir project
> $ cd project
> $ git init

> Create a Java class with an empty method

www.comerge.net

GIT

Version Control

17

> Add the file to the repository and commit
> $ git add SimpleClass.java
> $ git commit

> Make a change to the method

www.comerge.net

BUILD
AUTOMATION

Maven

> Maven is a build and software project
management tool

> Maven works with Project Object Models
(pom.xml) files to specify project settings

> Plugin architecture to include tools into the
build cycle

18

www.comerge.net

MAIN
PRINCIPLE

Maven

> Convention over configuration
> ./src/main/java
> ./src/main/resources
> ./src/test/java
> ./src/test/resources
> ./target/classes
> ./target/* (*.jar, reports, etc.)

19

www.comerge.net

BUILD
LIFECYCLE

Maven

> compile
> test
> package
> integration-test
> verify
> install
> deploy
> $ mvn <phase>

20

www.comerge.net

DEPENDENCY
MANAGEMENT

Maven

> Maven works with repositories where a huge
number of jars are stored

> Specify a dependency in the POM file
> maven downloads the necessary jar file

21

www.comerge.net

DEPENDENCY
MANAGEMENT

Maven

22

<dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.8</version>
 <scope>test</scope>
 </dependency>
</dependencies>

www.comerge.net

EXAMPLE

Sports Ground

> Java Enterprise Edition 6 (JEE 6)
> RESTful API

> REpresentation State Transfer (JAX-RS)

> JBoss Application Server 7.1
> https://github.com/kraftan/ci-showcase

23

www.comerge.net

V-Model

24

User
needs

System Spec

Subsystem
Design/Spec

Unit
Design/Spec

Unit

Subsystem

System

Delivery

Specification Implementation

Unit Test

Unit test are F.I.R.S.T.
Fast
Isolated
Repeatable
Self-Verifying
Timely (reflect specification)

www.comerge.net

V-Model

25

User
needs

System Spec

Subsystem
Design/Spec

Unit
Design/Spec

Unit

Subsystem

System

Delivery

Specification Implementation

Unit Test

Integration tests
Break up isolation to components
Use framework
Need run-time environment
Are slower than unit tests

Integration Test

www.comerge.net

V-Model

26

User
needs

System Spec

Subsystem
Design/Spec

Unit
Design/Spec

Unit

Subsystem

System

Delivery

Specification Implementation

Unit Test

System tests
Run against the fully deployed (or
installed) application
Simulate user interaction

Integration Test

System Test

www.comerge.net

EFFICIENCY
Non-Functional Req

27

> Performance testing
> Which component have a long response time?
> For instance, certain DB query may take noticeably longer than others

> Load testing
> How does the system work under heavy load?
> How long does it take to complete a request if specific number of

persons interact with the system

> Stress testing
> How does the system react if it is overloaded?

www.comerge.net

Used Tools

28

> Git - Version Control
> Maven - Build Automation
> Jenkins - Continuous Integration
> Java EE 6 on JBoss AS 7 (Example on github)
> JUnit - Unit testing
> mockito - Unit testing in isolation
> Arquillian - In-container integration testing
> Sonar - Quality Assurance
> JMeter - Load testing

www.comerge.net

Design to Test
Use CI to Check

Wrap Up

29

