
Software Quality

Lecture 5 – Design, Refactoring, Smells,

 Metrics and Reviews

Thomas Fritz

Martin Glinz

Institut für Informatik

For next lecture (required):

 Information Needs in Collocated Software

Development Teams.
 A. Ko, R. DeLine and G. Venolia. In Proc. of ICSE’07.

 http://dl.acm.org/citation.cfm?id=1248867

 Code Bubbles: Rethinking the User Interface

Paradigm of Integrated Development Environments.
A. Bragdon et al. In Proc. of ICSE’10.

http://dl.acm.org/citation.cfm?id=1806866

 2

Reading!

http://dl.acm.org/citation.cfm?id=1248867
http://dl.acm.org/citation.cfm?id=1248867
http://dl.acm.org/citation.cfm?id=1806866
http://dl.acm.org/citation.cfm?id=1806866
http://dl.acm.org/citation.cfm?id=1806866

Lecture will be a group discussion, think about

the following questions while reading:

 What are the major contributions/points of the paper?

 What do you like about the paper/approach?

 What do you not like about the paper/approach?

 How does the paper/approach relate to Software

Quality?

3

Reading!

 Introduction to design

 Modular Design & Design Principles

 Refactoring & Code Smells

 Metrics to Detect Code Smells

 Code Reviews

4

Overview

 Describe the context (goals and constraints) of the activity

of software design and explain why it’s important

 Explain the goal of a good modular design, why it is

important and what you can do to achieve it

 Create a good design for a given system

 Explain the benefits of refactoring

 Given code, be able to identify code smells and apply

appropriate refactorings

 Understand the use of metrics for identifying code smells

 Given a code smell, determine a detection strategy using

metrics

 Explain the benefits of code reviews

 5

Learning Goals

6

Some software failures in 2011

Source: SQS Software Quality Systems (AIM:SQS.L),
http://www.engineeringnews.co.za/article/company-announcement-sqs-annual-software-bugs-survey-results-2012-01-09

 22 people wrongly arrested in Australia due to

failures in new NZ $54.5 million courts

computer system

 50,500 cars recalled after airbag-related glitch

in software design and testing approach

 Sydney cash machine glitch gives customers

extra money

 Is a program doing what it is supposed to do or

does it have bugs?

 Model Checking, Testing

 How to locate bugs?

 Debugging

 Why not just build a high-quality product

 from the start?

7

So far…

 Essential Tasks

“Fashioning of the complex conceptual structures

that compose the abstract software entity”

 Accidental Tasks

“Representation of these abstract entities in

programming languages and the mapping of

these onto machine languages within space and

speed constraints”

8

Software Construction / Design
[No Silver Bullet, Fred Brooks, 1987]

 Accidental Complexity:

 representing constructs in the language

 mismatch of paradigms, methodologies and/or tools

 Essential Complexity:

 difficulties inherent in the nature of software

 Software entities are more complex for their size than

perhaps any other human construct because no two

parts are alike

 Software is intangible and invisible

 Software is constantly being changed and used in

ways it wasn’t intended for

9

Why is it so difficult to build software?
[No Silver Bullet, Fred Brooks, 1987]

 Reuse to avoid constructing what can be bought

 Rapid Prototyping as part of establishing

requirements

 Grow software incrementally (organically)

 Identify and develop the great conceptual

designers

10

Brooks suggests:

 Any ideas?

11

How to best design a system?

 Why might a designer

decide to design such

a jacket?

 What might have

influenced the

designer?

12

What is Clothing Design?

Picture from www.arcteryx.com

from G. Murphy

 Münchner Allianz Arena,

built for FC Bayern and

TSV1860 (2002-2005)

 Inputs?

 Constraints?

13

What is Building Design?

Picture from http://de.academic.ru/pictures/dewiki/65/Allianzarenacombo.jpg and www.faz.net

What is design? What makes something a design

problem? It’s where you stand with a foot in two

worlds – the world of technology and the world of

people and human purposes – and you try to bring

the two together.

- Mitchel Kapor, A Software Design Manifesto (1991)

14

What is design?

from G. Murphy

Design disciplines are concerned with making

artifacts for human use. Architects work in the

medium of buildings, graphic designers work in

paper and other print media, industrial designers

on mass-produced manufactured goods, and

software designers on software. The software

designer should be the person with overall

responsibility for the conception and realization of

the program.

15

Kapor goes on to say…

from G. Murphy

 Software design is not user interface design

 Software designer is concerned with the overall

product conception

 Software designers should have strong technical

grounding

 Software designer works in conjunction with

developers

16

Kapor’s Vision of Software

Design

from G. Murphy

17

Design to Bridge the Gap

Requirements

Code

DESIGN
- Architectural
- Detailed

 The design consists of multiple views of the

software

 Static view (e.g. class diagram) shows decomposition

of problem into parts and relationships

 Dynamic view (e.g. sequence diagram) shows how

parts interact to solve the problem

 Views have varying levels of granularity

 We can analyze these views to see if they

support the requirements?

 Modifiable (i.e. adding new view)?

 …

18

What is the Software Design?

 Facilitates communication

 Eases system understanding

 Eases implementation

 Helps discover problems early

 Increases product quality

 Reduces maintenance costs

 Facilitates product upgrade

19

Why Design?

20

Cost of not planning…

 “Treat design as a wicked, sloppy, heuristic

process.”

 Pen & Paper, Whiteboard

 “Don’t settle for the first design that occurs to you.”

 Scribble, Scratch, Thrash

 “Collaborate”

 Brainstorm, Discuss, Argue

 “Strive for simplicity”

 Reduce, Clean-up (with UML tools)

 “Iterate, iterate and iterate again.”

 Iterate!

21

How to Design? [S. McConnell, Code Complete]

 Start global
 Architectural Design

 Global concepts: components & connectors

 Subdivide
 Detailed Design

 Mid-level: classes and relationships

 Low-level: how operations are carried out – what
messages are sent and when

 Iterate
 Are these the right subsystems? Update!

 Are these the right classes? Update!

22

How to Design?

 Vote: Which of these two diagrams is more useful to

software developers?

23

Class Activity – Design Diagrams

Cherubini, Venolia, Ko, DeLine

 Diagrams are a communication tool
 End product is important, but discussion just as important

 Quality of communication = Quality of design
 Hence, quality of end product

 Tip for efficient communication:
 Start light-weight and flexible

 Then move on to details and more focused

 In terms of diagrams:
 Start with draft, hand-written diagrams that can change

 Towards the end, clean-up and make more readable

 Use a mutually understood language (a standard: UML)

24

Diagrams in Software Design

25

UML Class Diagrams

Class Activity

 In teams of 2, draw a class diagram for a Course

News Group (UML class diagram)

 Users can subscribe to a news group and will be notified

if new items are posted onto the group. Users can

browse a list of the items in the news group and can

open specific items to read them. Users can respond to

items on the news group as well as create new posts.

Users can also retrieve a list of all members of the news

group and check the profile of other members. Users can

be students, TAs or instructors. TAs and instructors are

allowed to delete news items.

 Ask questions if needed!

27

Design – Diagrams

 Diagrams are tools

 Helpful

 Not necessary

 Don’t tell you how to get to a “good” design

28

Reducing Complexity – Modularity

29

The goal of all software design techniques is to

break a complicated problem into simple

pieces.

Modular Design

30

31

Why Modularity?

32

 Minimize Complexity

 Reusability

 Extensibility

 Portability

 Maintainability

 …

Why Modularity?

33

 There is no “right answer” with design

 Applying heuristics/principles can provide

insights and lead to a good design

What is a good modular Design?

34

Principles & Heuristics for modular

Design

 High Cohesion

 Loose Coupling

 Information Hiding

 Open/Closed Principle

 Liskov Substitution Principle

 Law of Demeter

 ….

35

36

Design
Principles

36

High Cohesion

 Cohesion refers to how closely the functions

in a module are related

 Modules should contain functions that

logically belong together

 Group functions that work on the same data

 No schizophrenic classes!

37

High or low cohesion?

public class EmailMessage {

 …

 public void sendMessage() {…}

 public void setSubject(String subj) {…}

 public void setSender(Sender sender) {…}

 public void login(String user, String passw) {…}

 ….

}

38

Loose Coupling

 Coupling assesses how tightly a module is

related to other modules

 Goal is loose coupling:

 modules should depend on as few

 modules as possible

 Changes in modules should not impact other

modules; easier to work with them separately
39

Tightly or loosely coupled?

40 from Alverson (UW)

Information Hiding

41 from CodeComplete by Steve McConnell

A good class is a lot
like an iceberg: seven-
eights is under water,
and you can see only
the one-eight that’s
above the surface.

Information Hiding

 Only expose necessary

functions

 Abstraction hides complexity

by emphasizing on essential

characteristics and

suppressing detail

 Caller should not assume

anything about how the

interface is implemented

 Effects of internal changes

are localized

42

Information Hiding: Example 1

The chief scientist of the elementary particle research
lab asks the new intern about his latest results: “So
what is the average momentum of these neutral
particles?”

a) 42

b) Hmmm. Take this pile of sheet with my
observations, here is the textbook that explains how to
calculate momentum, also you will need to search
online for the latest reference tables. Oh, and don’t
forget to correct for multiplicity!

Which answer is the most likely to get the intern fired?

43

Information Hiding: Example 2
 Class DentistScheduler has

 A public method automaticallySchedule()

 Private methods:

 whoToScheduleNext()

 whoToGiveBadHour()

 isHourBad()

 To use DentistScheduler, just call

automaticallySchedule()

 Don’t have to know how it’s done internally

 Could use a different scheduling technique: no

problem!

44

Class Activity – Modular Design

 Go back to your News Group design

 Is there anything you can do to make it more

modular or is it already a good modular

design?

 Be able to articulate which principles you

used and why!

 45

Design Challenges

 Designing software with good modularity is

hard!

 Designs often emerge from a lot of trial and

error

 Are there solutions to common recurring

 problems?

46

Design Patterns

In software engineering, a design pattern is a

general repeatable solution to a commonly

occurring problem in software design.

 A design pattern is a description or template for how to

solve a problem

 Not a finished design

 Patterns capture design expertise and allow that expertise

to be transferred and reused

 Patterns provide common design vocabulary, improving

communication, easing implementation & documentation

47

Updates – Observer Design Pattern

Name: Observer

Intent: Ensure that, when an object changes state, all its
dependents are notified and updated automatically.

Participants & Structure:

48

Design over time

 It will be difficult to get a design right the first time

 As a program’s requirements change, the design

may need to change

 Design / Code decays

 collaboration, rework, external conditions, …

49

Design over time

50

Refactoring

51

Any fool can write code that a computer can

understand. Good programmers write code

that humans can understand.

52

What is Refactoring?

“[Refactoring is] the process of changing a software system

in such a way that it does not alter the external behavior of

the code yet improves its internal structure” – Martin Fowler

“Improving the design after it has been written.”

Changes made to a system that:

 Do not change observable behavior

 Remove duplication or needless complexity

 Enhance software quality

 Make the code easier and simpler to understand

 Make the code more flexible

 Make the code easier to change

53

54

What is Refactoring?

class Gorilla{
int paws(){
return 4;
}}

class Gorilla{
int paws(){
int pawCount = 4;
return pawCount;
}}

class Gorilla implements Primate{
int paws(){
int pawCount = 4;
return pawCount;
}}
…

interface Primate{
abstract int paws();
}

class Gorilla implements Primate{
int feet(){
int pawCount = 4;
return pawCount;
}}
…

interface Primate{
abstract int feet();
}

INTRODUCE EXPLAINING
VARIABLE

EXTRACT
INTERFACE

RENAME METHOD
72
refactorings
named by
Fowler*

from Emerson Murphy-Hill (NCSU)

Why Refactor?

 Long-term investment in the quality of the code

and its structure

 No refactoring may save costs / time in the short

term but incurs a huge penalty in the long run

 Why fix it ain’t broken?

Every module has three functions:
 To execute according to its purpose

 To afford change

 To communicate to its readers

If it does not do one or more of these, it is broken.

55 From Razmov’s slides

When to Refactor?

 Do it as you develop!

 When you add a function

 Before, to start clean and/or

 After, to clean-up

 When you fix a bug

 When you code review

 You can use The Rule of Three

 Three strikes and you refactor

 refers to duplication of code

56

How to Refactor?

 Make sure all your tests pass

 Identify the code smell

 Determine how to refactor this code

 Apply the refactoring

 Run tests to make sure you didn’t break

anything

 Repeat until the smell is gone

57

What is a Code Smell?

 A recognizable indicator that something

may be wrong in the code

 Can occur in the product code as well

as in the test code!

58

The smells/refactorings in the following slides are from Martin Fowler,
Refactoring, “Improving the design of existing code”.
For test code smells: van Deursen et al. “Refactoring Test Code”.

59

A few Bad Smells
Duplicated Code

•bad because you modify one
instance of duplicated code but
not the others; not all versions
fixed

Long Method
•long methods are more difficult
to understand; performance
concerns with respect to lots of
short methods are largely
obsolete

Message Chains
•a client asks an object for
another object and then asks that
object for another object etc.
•Bad because client depends on
the structure of the navigation

from Emerson Murphy-Hill (NCSU)

List of Smells

60

 Alternative Classes with
Different Interfaces

 Comments

 Data Class

 Data Clumps

 Divergent Change

 Duplicated Code

 Feature Envy

 Inappropriate Intimacy

 Incomplete Library Class

 Large Class

 Lazy Class

 Long Method

 Long Parameter List

 Message Chains

 Middle Man

 Parallel Inheritance
Hierarchies

 Primitive Obsession

 Refused Bequest

 Shotgun Surgery

 Speculative Generality

 Switch Statements

 Temporary Field

How to Deal with a Smell?

 First, determine if it is a bad smell!

 Some smells are always bad

 Others you can live with
 (My opinion: Some purists would disagree.)

 Then apply the appropriate refactoring(s)

61

What is a Refactoring?

 A refactoring = a refactoring technique

 A small, behaviour-preserving, source-to-

source transformation.

 Example:

62

int fa = 1;

for(int i=2; i<a; ++i) fa *= i;

int fb = 1;

for(int i=2; i<b; ++i) fb *= i;

int fact(int x) {

 return (x==1) ? 1 : fact(x-1)*x;

}

fa = fact(a);

fb = fact(b);

Partial List of Refactorings

 Add Parameter

 Change Bidirectional Association
to Unidirectional

 Change Reference to Value

 Change Unidirectional
Association to Bidirectional

 Change Value to Reference

 Collapse Hierarchy

 Consolidate Conditional
Expression

 Consolidate Duplicate Conditional
Fragments

 Convert Procedural Design to
Objects

 Decompose Conditional

 Duplicate Observed Data

63

 Encapsulate Collection

 Encapsulate Downcast

 Encapsulate Field

 Extract Class

 Extract Hierarchy

 Extract Interface

 Extract Method

 Extract Subclass

 Extract Superclass

 Form Template Method

 Hide Delegate

 Hide Method

 Inline Class

 Inline Method

 …

Online: http://www.refactoring.com/catalog

Refactoring and Smell Catalog

 Fowler maintains an online catalog of
refactorings

http://www.refactoring.com/catalog/index.html

 Some smells
http://www.soberit.hut.fi/mmantyla/BadCodeSmellsTaxonomy.htm

http://www.codinghorror.com/blog/2006/05/code-smells.html

 Smells & refactorings
http://wiki.java.net/bin/view/People/SmellsToRefactorings

http://sourcemaking.com/refactoring

64

http://www.refactoring.com/catalog/index.html
http://www.soberit.hut.fi/mmantyla/BadCodeSmellsTaxonomy.htm
http://www.soberit.hut.fi/mmantyla/BadCodeSmellsTaxonomy.htm
http://www.soberit.hut.fi/mmantyla/BadCodeSmellsTaxonomy.htm
http://www.codinghorror.com/blog/2006/05/code-smells.html
http://www.codinghorror.com/blog/2006/05/code-smells.html
http://www.codinghorror.com/blog/2006/05/code-smells.html
http://www.codinghorror.com/blog/2006/05/code-smells.html
http://wiki.java.net/bin/view/People/SmellsToRefactorings
http://wiki.java.net/bin/view/People/SmellsToRefactorings
http://wiki.java.net/bin/view/People/SmellsToRefactorings
http://sourcemaking.com/refactoring

Remember!

 A refactoring is not a smell

 Just because a refactoring exists doesn’t mean

you should apply it

 Some refactorings are opposites one of another

 First smell, then refactor

65

Example Refactoring: Pull Up

Method
Smell: duplicate code

Refactoring: Pull up method - If there are

identical methods in more than one subclass,

move it to the superclass

eg.

http://www.refactoring.com/catalog/pullUpMethod.html 66

One Smell – Multiple

Refactorings
Duplicated Code (Smell):

 Code repeated in multiple places

 Multiple possible refactorings

 Extract Method

 Extract Class

 Pull Up Method

 Form Template Method

 Choose appropriate one

67

class Account {

 float principal, rate;

 int daysActive, accountType;

 public static final int STANDARD = 0;

 public static final int BUDGET = 1;

 public static final int PREMIUM = 2;

 public static final int PREMIUM_PLUS = 3;

}

class Customer {

 public float calculateFee(Account accounts[]) {

 float totalFee = 0;

 Account account;

 for (int i=0; i<accounts length; i++)

 if (account.accountType == Account.PREMIUM ||

 account.accountType == Account.PREMIUM_PLUS) {

 totalFee += .0125 * (account.principal

 * Math.exp(account.rate * (account.daysActive/365.25))

 - account.principal);

 } } }

 return totalFee;

}

68

Activity: What needs to be

refactored? How would you

improve the code?

From Razmov’s slides

private float interestEarned() {

 float years = daysActive / (float) 365.25;

 float compoundInterest = principal * (float) Math.exp(rate * years);

 return (compoundInterest – principal);

}

private float isPremium() {

 if (accountType == Account.PREMIUM || accountType == Account.PREMIUM_PLUS)

 return true;

 else return false;

}

public float calculateFee(Account accounts[]) {

 float totalFee = 0;

 Account account;

 for (int i=0; i<accounts.length; i++) {

 account = accounts[i];

 if (account isPremium())

 totalFee += BROKER_FEE_PERCENT * account.interestEarned();

 }

 return totalFee;;

}

static final double BROKER_FEE_PERCENT = 0.0125;

69

Which Refactorings

are being used?

From Razmov’s slides

How to refactor?

Using IDE support is the best option. You are least

likely to make mistakes using this approach.

For example, see this IBM Developer Works article

about Eclipse’s refactoring support

70 http://www.ibm.com/developerworks/opensource/library/os-eclipse-refactoring/?ca=dgr-

lnxw97Refractoringdth-OS&S_TACT=105AGX59&S_CMP=grlnxw97

http://www.ibm.com/developerworks/opensource/library/os-eclipse-refactoring/?ca=dgr-lnxw97Refractoringdth-OS&S_TACT=105AGX59&S_CMP=grlnxw97

Refactoring Truths

 Most of the time your intuition is good

 Doing it by the book is hard

 Use IDE tools

 Unit tests are the key

 Run Unit tests

 Refactor

 Run Unit tests

71

Refactor Mercilessly!

 Improve the design of existing code without

changing functionality

 Simplify code

 Improve design

 Remove duplicate code

 The ability to refactor is your reward for

spending time writing unit tests

72

Resources
 “The” Book, by Martin Fowler

 Refactoring: Improving the design of existing code

 Smells to refactorings

 http://wiki.java.net/bin/view/People/SmellsToRefactorings

 Bad Smells
 http://sis36.berkeley.edu/projects/streek/agile/bad-smells-in-code.html

 List of refactorings

 http://www.refactoring.com/catalog

 A refactoring “cheat sheet”

 http://industriallogic.com/papers/smellstorefactorings.pdf

73

http://wiki.java.net/bin/view/People/SmellsToRefactorings
http://sis36.berkeley.edu/projects/streek/agile/bad-smells-in-code.html
http://sis36.berkeley.edu/projects/streek/agile/bad-smells-in-code.html
http://sis36.berkeley.edu/projects/streek/agile/bad-smells-in-code.html
http://sis36.berkeley.edu/projects/streek/agile/bad-smells-in-code.html
http://sis36.berkeley.edu/projects/streek/agile/bad-smells-in-code.html
http://sis36.berkeley.edu/projects/streek/agile/bad-smells-in-code.html
http://sis36.berkeley.edu/projects/streek/agile/bad-smells-in-code.html
http://www.refactoring.com/catalog
http://industriallogic.com/papers/smellstorefactorings.pdf

74

 Code heuristics

 Experience

Where to start?

76

Design Assessment

 Can give you a quick overview

 Can reveal symptoms

77

Metrics to assess quality of design

Your

Code

Grading

Machine
Grade

Example of a Quality Metrics

 Colour

 Clarity

 Carat

 Cut

78

Software metrics

 Concerned with deriving a numeric value for

an attribute of a software product or process

 Allows for software and software process to

be quantified

 Product metrics can be used for general

predictions or to identify anomalous

components

79

Software has Metrics too

 Source lines of code

 Cyclomatic Complexity

 Cohesion in Packages and Classes

 Coupling in Packages and Classes

 Performance Metrics
 Run times, Network delays…

 Security Metrics
 Number of vulnerabilities…

 Process related
 Number of person-days required to develop component…

 80

Software Metrics – Advantages

 Quick summary of some aspects of quality

 Easy to use at every level of management

 Can provide some index of maturity

 Otherwise almost impossible to get a complete picture of
the full system

81

Software Metrics – Drawbacks

 Misses some important areas
 Cannot be used alone

 Can reduce the value of a programmer to a number

 Could be “gamed” – writing code with the express purpose
of scoring a good metric

 Difficult to relate metric to desirable quality attributes

82

Overview Pyramid
[Lanza and Marinescu. Object-Oriented Metrics in Practice]

 Measures structural aspects not design

 Might be a good indicator

 When structure is bad, design might have a

problem

83

Inheritance

Size & Complexity Coupling

84

 Size and Complexity
 Number of Packages

 Number of Classes

 Number of Operations

 Lines of Code

 Cyclomatic Complexity

 Coupling
 Number of operation calls (Fan-In)

 Number of called classes (Fan-Out)

 Inheritance
 Average Number of Derived Classes

 Average Hierarchy Height

Overview Pyramid
[Lanza and Marinescu. Object-Oriented Metrics in Practice]

Cyclomatic complexity (McCabe)

 used to indicate the complexity of a program (the higher,

esp. > 9, the higher # of defects tends to be)

 tries to capture the number of paths through the code, and

thus the number of required test cases

 computed using the control flow graph of the program

 E = number of edges in the graph.

 N = number of nodes in the graph.

 (make sure to count last instruction: return, exit, etc.)

 Cyclomatic complexity = E - N + 2

85

Cyclomatic Complexity

86

public class Hello {

 public static void main(String[] args) {

 if(args.length == 0) {

 System.out.println("Hello, World!");

 } else {

 System.out.println("Hello" + args[0]

 + "!");

 }

 }

}

Class Activity: Individually

 What’s the cyclomatic complexity of:

87

public class Hello {

 public static void main(String[] args) {

 if(args.length == 0) {

 System.out.println("Hello, World!");

 } else if(args.length == 1){

 System.out.println("Hello, " + args[0] + "!");

 } else {

 System.out.println("Aargh, too many people!");

 }

 }

}

 Comparability

 What are good thresholds?

88

Overview Pyramid
[Lanza and Marinescu. Object-Oriented Metrics in Practice]

NOM / LOC

Copyright Lanza and Marinescu 89

Overview Pyramid
[Lanza and Marinescu. Object-Oriented Metrics in Practice]

Statistical Thresholds of 45 Java and 37 C++

systems

90

Polymetric Views
[Lanza and Marinescu. Object-Oriented Metrics in Practice]

Copyright Lanza and Marinescu

 Used to express in a quantitative manner deviations from

given set of rules of design harmonies

 Captures heuristic knowledge that reflects and preserves

experience and quality goals of developers

 Impossible to establish objective rand general set of rules

that automatically leads to high-quality design

 Metrics 

 Detection Strategy [Logical Condition & Filters] 

 Design Disharmony

91

Detection Strategies
[Lanza and Marinescu. Object-Oriented Metrics in Practice]

 Methods that have grown so large that they cannot be

effectively handled; hard to see what it’s doing

 Which metrics could you use to detect this smell?

92

Detection Strategies – Long Method
[Lanza and Marinescu. Object-Oriented Metrics in Practice]

 Methods that have grown so large that they cannot be

effectively handled; hard to see what it’s doing

93

Detection Strategies – Long Method
[Lanza and Marinescu. Object-Oriented Metrics in Practice]

Copyright Lanza and Marinescu

 Checkstyle, originally for layout issues, now

also class design problems, duplicate code

and more

http://checkstyle.sourceforge.net/config_metrics.html

 Eclipse Metrics

 …

94

Tools

http://checkstyle.sourceforge.net/config_metrics.html

 Ownership and expertise [Bird et al.]

 More minor contributors (less than 5% of the

commits to a component) means more failures

 Studying the Impact of Social Structures on

Software Quality [Bettenburg & Hassan]

 # of participants in bug discussion, role and

reputation of participants

…

95

Other ways to identify smells

“No set of metrics rivals informed human

intuition” [Fowler]

Code Review: systematic examination of existing code by

one or more people with the goal to find smells and

mistakes and to create recommendations for improvement.

96

Code Review

 New perspective

 Finding defects may be easier for people who haven't seen

the artifact before and don’t have preconceived ideas about

its correctness

 Knowledge sharing

 Regarding designs and specific software artifacts

 Regarding defect detection practices

 Find flaws early

 Can dramatically reduce cost of fixing them

 Reduce rework and testing effort

 Can reduce overall development effort

97

Code Review – Benefits

From Jonathan Aldrich (CMU)

Benefits of code review for

companies
 Jet Propulsion lab estimated a $7.5 million

from 300 inspections performed on software

for NASA

 Another company: savings of $2.5 million

based on costs of $146 to fix major defect

found by inspection and $2900 to fix one

found by customer

98

99 http://www.klocwork.com/

http://www.klocwork.com/

Summary

 Good design  Good code

 Goal of design is to manage complexity by
decomposing problem into simple pieces

 Designing is an iterative refinement process

 Many principles/heuristics for modular design

 Design/Code decays for many reasons

 Collaboration, rework, external conditions, agility

100

Summary cont’d

 Refactoring improves existing code/design

 Does not change existing behaviour

 Refactoring improves maintainability and hence
productivity

 Refactor continuously

 Many smells, even more refactorings!

 Applying a refactoring

 Use your intuition, use tools, use references

 Test before, Test after

 Remember: First a smell, then a refactoring

101

