A7) Universitat
% nzl) Zurich™

Institut fur Informatik

Software Quality

Lecture 5 — Design, Refactoring, Smells,
Metrics and Reviews

Thomas Fritz
Martin Glinz

‘ Reading!

For next lecture (required):

= Information Needs in Collocated Software

Development Teams.
A. Ko, R. DeLine and G. Venolia. In Proc. of ICSE’0O7.
http://dl.acm.org/citation.cim?1d=1248867

= Code Bubbles: Rethinking the User Interface

Paradigm of Integrated Development Environments.
A. Bragdon et al. In Proc. of ICSE’10.
http://dl.acm.org/citation.cfm?id=1806866

http://dl.acm.org/citation.cfm?id=1248867
http://dl.acm.org/citation.cfm?id=1248867
http://dl.acm.org/citation.cfm?id=1806866
http://dl.acm.org/citation.cfm?id=1806866
http://dl.acm.org/citation.cfm?id=1806866

‘ Reading!

Lecture will be a group discussion, think about
the following questions while reading:

= What are the major contributions/points of the paper?
= What do you like about the paper/approach?
= What do you not like about the paper/approach?

= How does the paper/approach relate to Software
Quality?

‘ Overview

= Introduction to design

= Modular Design & Design Principles
= Refactoring & Code Smells

= Metrics to Detect Code Smells

= Code Reviews

‘ Learning Goals

= Describe the context (goals and constraints) of the activity
of software design and explain why it's important

= Explain the goal of a good modular design, why it is
Important and what you can do to achieve it

= Create a good design for a given system
= Explain the benefits of refactoring

= Given code, be able to identify code smells and apply
appropriate refactorings

= Understand the use of metrics for identifying code smells

= Given a code smell, determine a detection strategy using
metrics

= Explain the benefits of code reviews

‘ Some software failures in 2011

= 22 people wrongly arrested in Australia due to
failures in new NZ $54.5 million courts
computer system

= 50,500 cars recalled after airbag-related glitch
In software design and testing approach

= Sydney cash machine glitch gives customers
extra money

Source: SQS Software Quality Systems (AIM:SQS.L),

http://www.engineeringnews.co.za/article/company-announcement-sqgs-annual-software-bugs-survey-results-2012-01-09

0

'So far...

= IS a program doing what it Is supposed to do or
does it have bugs?
o Model Checking, Testing

= How to locate bugs?
o Debugging

=) Why not just build a high-quality product
from the start?

'Software Construction / Design

[INo Silver Bullet, Fred Brooks, 1987]

= Essential Tasks

“Fashioning of the complex conceptual structures
that compose the abstract software entity”

= Accidental Tasks

“Representation of these abstract entities in
programming languages and the mapping of
these onto machine languages within space and
speed constraints”

‘Why IS It so difficult to build software?
[No Silver Bullet, Fred Brooks, 1987]

= Accidental Complexity:

Q

Q

representing constructs in the language
mismatch of paradigms, methodologies and/or tools

= Essential Complexity:

Q

Q

difficulties inherent in the nature of software

Software entities are more complex for their size than
perhaps any other human construct because no two
parts are alike

Software is intangible and invisible

Software is constantly being changed and used in
ways it wasn’t intended for

'Brooks suggests:

= Reuse to avoid constructing what can be bought

= Rapid Prototyping as part of establishing
requirements

= Grow software incrementally (organically)

= ldentify and develop the great conceptual
designers

10

'How to best design a system?

= Any ideas?

11

'What is Clothing Design?

= Why might a designer
decide to design such
a jacket?

= What might have
influenced the
designer?

Picture from www.arcteryx.com

from G. Murphy 12

‘What is Building Design?

= Munchner Allianz Arena,
built for FC Bayern and
TSV1860 (2002-2005)

= Inputs?
= Constraints?

Die Allianz-Arena in Miinchen

22l 7
7 y Vi
f -. b/ . - 7
a-)/ -

¢

FAZ-Grafik Kafvarusb: Aliont

Picture from http://de.academic.ru/pictures/dewiki/65/Allianzarenacombo.jpg and www.faz.net

13

‘What is design?

What is design? What makes something a design
problem? It’'s where you stand with a foot in two
worlds — the world of technology and the world of
people and human purposes — and you try to bring
the two together.

- Mitchel Kapor, A Software Design Manifesto (1991)

from G. Murphy 14

‘ Kapor goes on to say...

Design disciplines are concerned with making
artifacts for human use. Architects work in the
medium of buildings, graphic designers work in
paper and other print media, industrial designers
on mass-produced manufactured goods, and
software designers on software. The software
designer should be the person with overall
responsibility for the conception and realization of

the program.

from G. Murphy 15

‘ Kapor’s Vision of Software
Design

= Software design is not user interface design

= Software designer Is concerned with the overall
product conception

= Software designers should have strong technical
grounding

= Software designer works in conjunction with
developers

from G. Murphy 16

‘ Design to Bridge the Gap

DESIGN
- Architectural
Detailed

|

17

‘What is the Software Design?

= The design consists of multiple views of the
software

o Static view (e.g. class diagram) shows decomposition
of problem into parts and relationships

o Dynamic view (e.g. sequence diagram) shows how
parts interact to solve the problem

= Views have varying levels of granularity

= We can analyze these views to see If they
support the requirements?

o Modifiable (i.e. adding new view)?

a ...

18

‘ Why Design?

= Facilitates communication

= Eases system understanding
= Eases implementation

= Helps discover problems early
= Increases product quality

= Reduces maintenance costs

= Faclilitates product upgrade

19

‘ Cost of not planning...

20

HOW tO DeSi n? [S. McConnell, Code Complete]
\

= “Treat design as a wicked, sloppy, heuristic
process.”
o Pen & Paper, Whiteboard

= “Don't settle for the first design that occurs to you.”
o Scribble, Scratch, Thrash

= “Collaborate”
o Brainstorm, Discuss, Argue
= “Strive for simplicity”
o Reduce, Clean-up (with UML tools)

= “lterate, iterate and iterate again.”
o lterate!

21

‘ How to Design?

= Start global
o Architectural Design
o Global concepts: components & connectors

= Subdivide
o Detailed Design
o Mid-level: classes and relationships

o Low-level: how operations are carried out — what
messages are sent and when

= |terate
o Are these the right subsystems? Update!
o Are these the right classes? Update!

22

‘ Class Activity — Design Diagrams

= Vote: Which of these two diagrams is more useful to
software developers?

XML_Vocabulary |, ,, |Vocabulary| , . . Tem mmmammej
aaaaaaaaaaaaaaaaaaaaaa

UsSes
Constraint
.| Production f; , | Language

Cherubini, Venolia, Ko, DeLine 273

‘ Diagrams in Software Design

= Diagrams are a communication tool

o End product is important, but discussion just as important
= Quality of communication = Quality of design

o Hence, quality of end product
= Tip for efficient communication:

o Start light-weight and flexible

o Then move on to details and more focused

= In terms of diagrams:
o Start with draft, hand-written diagrams that can change
o Towards the end, clean-up and make more readable
o Use a mutually understood language (a standard: UML)

24

UML Class Diagrams

Flight

flighthNumber : Integer
departureTime : Date
flightDuration : Minutes
departingairport : String
arrivingairport : String

0.

*

assignedrPlane

Plane

delayFlight { numberOfinutes : Minutes)
getarrivalTime {) : Date

assignedFlights

0.1

Professor

salary : Dollars

airPlaneType : String
maximumSpeed : MPH
maximumDistance : Miles
tailld : String

«interface»
Person

Student

major : String

25

Class Activity

= In teams of 2, draw a class diagram for a Course
News Group (UML class diagram)

= Users can subscribe to a news group and will be notified
If new items are posted onto the group. Users can
browse a list of the items in the news group and can
open specific items to read them. Users can respond to
items on the news group as well as create new posts.
Users can also retrieve a list of all members of the news
group and check the profile of other members. Users can
be students, TAs or instructors. TAs and instructors are
allowed to delete news items.

= Ask guestions if needed!

27

‘ Design — Diagrams

= Diagrams are tools

o Helpful
o Not necessary

= Don't tell you how to get to a "good” design

28

‘ Reducing Complexity — Modularity

The goal of all software design techniques is to
break a complicated problem into simple
pieces.

29

\ Modular Design

\ "\\}:_.. X ‘

30

31

‘ Why Modularlty’>

32

‘ Why Modularity?

= Minimize Complexity
= Reusability

= Extensiblility

= Portabllity

= Maintainability

33

‘What is a good modular Design?

= There is no “right answer” with design

= Applying heuristics/principles can provide
Insights and lead to a good design

34

‘ Principles & Heuristics for modular
Design

= High Cohesion

= Loose Coupling

= Information Hiding

= Open/Closed Principle

= Liskov Substitution Principle
= Law of Demeter

35

Source: [Gamma et all, "Design Patterns: Elements of Reusable Object-Oriented Software®, Addison-Wesley, 1995]

* Program an Interface not an Implementation
& Favor Composition Versus Inheritance
¢ Find what varies and encapsulate it

Source: [R. Martin, "Agife Software Development, Principles, Patterns, and Practices”, Prentice-Hall, 2002

Dependency-Inversion Principle

Liskov Substitution Principle .

Open-Closed Principle D

Interface-Segregation Principle eS I g n
Reuse/Release Eguivalency Principle . .

Common Closure Principle P r I n C I p I eS
Common Reuse Principle

Acyclic Dependencies Principle

Stable Dependencies Principle
Stable Abstraction Principle

Source: [Larman, "Applying UML and Patterns : An Introduction to Object-Oriented Analysis and Design and Iterative Development®, Prentice-Hall, 2th

Design principles are codified in the GRASP Pattern

GRASP (Pattern of General Principles in Assigning Responsabilities)

Assign a responsibility to the information expert

Assign a responsability so that coupling remains low

Assign a responsability so that cohesion remains high

Assign responsabilities using polymorphic operations

Assign a highly cohesive set of responsabilities to an artificial class that does not represent anything in the problem domain (when you want to
Deon't talk to strangers (Law of Demeter)

Source: [Parnas, "On the Criteria To Be Used in Decomposing Systems into Modules”, Commununication of ACM, 1972

s Information Hiding
s Modularity

Source: [Hunt, Thomas, "The Pragmatic Programmer: From Journeyman to Master”, Addison-Wesley, 1999]

DRY - Don't Repeat yourself

Make it easy to reuse

Design for Orthogonality

Eliminate effects between unrelated things
Program close to the problem domain
Minimize Coupling between Modules
Design Using Services

Always Design for Concurrency
Abstractions Live Longer than details

Source: [Lieberherr,Holland, "Assuring Good Style for Object-Oriented Programs”, IEEE Software, September 1989

& | aw of Demeter

Crgirrar [Pawvermmamad "Aed aF T lmiv Deamaramimiima™ AdAaicam 1 acdavwe 72800371

36

‘ High Cohesion

= Cohesion refers to how closely the functions
In a module are related

= Modules should contain functions that
logically belong together

o Group functions that work on the same data

= No schizophrenic classes!

37

‘ High or low cohesion?

public class EmailMessage {

public void sendMessage() {...}

public void setSubject(String subj) {...}

public void setSender(Sender sender) {...}
public void login(String user, String passw) {...}

38

'Loose Coupling

= Coupling assesses how tightly a module Is
related to other modules

= Goal is loose coupling:

modules should depend on as few
modules as possible

= Changes in modules should not impact other
modules; easier to work with them separately

39

‘ Tightly or loosely coupled?

User Interface| _ |Graphics| ™
-End6
-End3 * * |
4.' E'Ml—-mb— |_ r‘ -End23
“endit « | Endos -~ | -End24
Ends Application Level Classes

Data Storage -—

-Eng13
-Endg — M A I
Endi2] end14 . -Ends
-End20
-End10 - -End15 "
Business Rules Enterprise Level Tools -

+ -End18 -End22

Endiy

from Alverson (UW)

' Information Hiding

A good class is a lot
like an iceberg: seven-
eights is under water,
and you can see only
the one-eight that’s
above the surface.

from CodeComplete by Steve McConnell 41

' Information Hiding

Only expose necessary

functions

ESSENTIAL
Abstraction hides complexity ‘”“'ifc‘:h CHARACTERISTICS
by emphasizing on essential
characteristics and
suppressing detall

UNESSENTIAL
DETAILS

Caller should not assume
anything about how the
Interface is implemented

IMPLEMENTATION

Effects of internal changes
are localized

42

' Information Hiding: Example 1

The chief scientist of the elementary particle research
lab asks the new intern about his latest results: “So
what Is the average momentum of these neutral
particles?”

42

Hmmm. Take this pile of sheet with my
observations, here is the textbook that explains how to
calculate momentum, also you will need to search
online for the latest reference tables. Oh, and don’t
forget to correct for multiplicity!

Which answer is the most likely to get the intern fired?

43

' Information Hiding: Example 2

= Class DentistScheduler has

2 A public method automaticallySchedule()

o Private methods:
= whoToScheduleNext()
= whoToGiveBadHour()
= IsHourBad()

= To use DentistScheduler, just call
automaticallySchedule()
o Don’t have to know how it's done internally

o Could use a different scheduling technique: no
problem!

44

Class Activity — Modular Design

= Go back to your News Group design

= Is there anything you can do to make it more
modular or is it already a good modular
design?

= Be able to articulate which principles you
used and why!

45

‘ Design Challenges

= Designing software with good modularity Is
hard!

= Designs often emerge from a lot of trial and
error

Are there solutions to common recurring
problems?

46

‘ Design Patterns

In software engineering, a design pattern is a
general repeatable solution to a commonly
occurring problem in software design.

= A design pattern is a description or template for how to
solve a problem

= Not a finished design

= Patterns capture design expertise and allow that expertise
to be transferred and reused

= Patterns provide common design vocabulary, improving
communication, easing implementation & documentation

47

‘ Updates — Observer Design Pattern

Name: Observer

Intent: Ensure that, when an object changes state, all its
dependents are notified and updated automatically.

Participants & Structure:

Subject observers .J Observer

Attach{Observer) Update()
Detach(Observer) .

for ali 0 in observers |
Notify() o-----1 --| o-=Update()

}

¢ ConcreteObserver
z subject : .,

ConcreteSubiect o--} - observerState =
oncreteSubjec l. Update{) subject->GetState()
GetState() ©O---1-1 o B B observerState
SetState() retum subjectState
subjectState

48

‘ Design over time

= [t will be difficult to get a design right the first time

= As a program’s requirements change, the design
may need to change

= Design / Code decays
collaboration, rework, external conditions, ...

49

\ Design over time

\ Refactoring

Any fool can write code that a computer can
understand. Good programmers write code
that humans can understand.

52

‘What is Refactoring?

‘[Refactoring is] the process of changing a software system
In such a way that it does not alter the external behavior of

the code yet improves its internal structure” — Martin Fowler

“Improving the design after it has been written.”

Changes made to a system that:

o O 0 0 O O

Do not change observable behavior

Remove duplication or needless complexity
Enhance software quality

Make the code easier and simpler to understand
Make the code more flexible

Make the code easier to change

53

‘What is Refactoring?

class Gorilla{ class Gorilla{
iInt paws(){ int paws(){
return 4;
1} return :
1}
class Gorilla { class Gorilla implements Primate{
iInt paws(){ int (4
int pawCount = 4; int pawCount = 4;
return pawCount; return pawCount;

1 1 72
.. - | refactorings
interface Primate{ named by

abstract int 0; Fowler*

}
from Emerson Murphy-Hill (NCSU) 54

‘ Why Refactor?

= Long-term investment in the quality of the code
and Its structure

= No refactoring may save costs / time in the short
term but incurs a huge penalty in the long run

= Why fix it ain’t broken?

Every module has three functions:

o To execute according to its purpose
o To afford change
o To communicate to its readers

If it does not do one or more of these, it is broken.

From Razmov’s slides 55

‘When to Refactor?

= Do it as you develop!

o When you add a function
= Before, to start clean and/or
= After, to clean-up

2 When you fix a bug
2 When you code review

o You can use The Rule of Three
= Three strikes and you refactor
= refers to duplication of code

56

‘ How to Refactor?

= Make sure all your tests pass

= |ldentify the code smell

= Determine how to refactor this code
= Apply the refactoring

= Run tests to make sure you didn’t break
anything
= Repeat until the smell is gone

57

‘ What is a Code Smell?

= A recognizable indicator that something

may be wrong in the code

= Can occur in the product code as well
as in the test code!

The smells/refactorings in the following slides are from Martin Fowler,
Refactoring, “Improving the design of existing code”.
For test code smells: van Deursen et al. “Refactoring Test Code”.

REractoriNg

IMPROVING THE DESIGN
oF ExistiNG Cobe

‘A few Bad Smells

Duplicated Code
*bad because you modify one
iInstance of duplicated code but
not the others; not all versions
fixed

Long Method
*long methods are more difficult
to understand,;

Message Chains
a client asks an object for
another object and then asks that
object for another object etc.
*Bad because client depends on
the structure of the navigation

from Emerson Murphy-Hill (NCSU) 59

‘ List of Smells

Alternative Classes with
Different Interfaces

Comments

Data Class

Data Clumps

Divergent Change
Duplicated Code
Feature Envy
Inappropriate Intimacy
Incomplete Library Class
Large Class

Lazy Class

Long Method

Long Parameter List
Message Chains
Middle Man

Parallel Inheritance
Hierarchies

Primitive Obsession
Refused Bequest
Shotgun Surgery
Speculative Generality
Switch Statements
Temporary Field

60

‘ How to Deal with a Smell?

= First, determine if it is a bad smell!
o Some smells are always bad
o Others you can live with

= (My opinion: Some purists would disagree.)

= Then apply the appropriate refactoring(s)

61

‘What is a Refactoring?

= A refactoring = a refactoring technique

= A small, behaviour-preserving, source-to-
source transformation.

= Example: int fa = 1;

for(int i=2; i<a; ++1i) fa *= 1i;

int fb = 1;
for(int i=2; i<b; ++i) fb *= i;

int fact(int x) {
return (x==1) ? 1 : fact(x-1)*x;

}

fa
fb

fact (a);
fact (b) ;

62

‘Partial List of Refactorings

Add Parameter

Change Bidirectional Association
to Unidirectional

Change Reference to Value

Change Unidirectional
Association to Bidirectional

Change Value to Reference
Collapse Hierarchy

Consolidate Conditional
Expression

Consolidate Duplicate Conditional
Fragments

Convert Procedural Design to
Objects

Decompose Conditional
Duplicate Observed Data

Encapsulate Collection
Encapsulate Downcast
Encapsulate Field
Extract Class

Extract Hierarchy
Extract Interface
Extract Method

Extract Subclass
Extract Superclass
Form Template Method
Hide Delegate

Hide Method

Inline Class

Inline Method

Online: http://www.refactoring.com/catalog

63

\ Refactoring and Smell Catalog

= Fowler maintains an online catalog of
refactorings

http://www.refactoring.com/catalog/index.html

= Some smells
http://www.soberit.hut.fi/mmantyla/BadCodeSmellsTaxonomy.htm
http://www.codinghorror.com/blog/2006/05/code-smells.html

= Smells & refactorings
http://wiki.java.net/bin/view/People/SmellsToRefactorings
http://sourcemaking.com/refactoring

64

http://www.refactoring.com/catalog/index.html
http://www.soberit.hut.fi/mmantyla/BadCodeSmellsTaxonomy.htm
http://www.soberit.hut.fi/mmantyla/BadCodeSmellsTaxonomy.htm
http://www.soberit.hut.fi/mmantyla/BadCodeSmellsTaxonomy.htm
http://www.codinghorror.com/blog/2006/05/code-smells.html
http://www.codinghorror.com/blog/2006/05/code-smells.html
http://www.codinghorror.com/blog/2006/05/code-smells.html
http://www.codinghorror.com/blog/2006/05/code-smells.html
http://wiki.java.net/bin/view/People/SmellsToRefactorings
http://wiki.java.net/bin/view/People/SmellsToRefactorings
http://wiki.java.net/bin/view/People/SmellsToRefactorings
http://sourcemaking.com/refactoring

‘ Remember!

= A refactoring Is not a smell

o Just because a refactoring exists doesn’'t mean
you should apply it

o Some refactorings are opposites one of another

= First smell, then refactor

65

‘ Example Refactoring: Pull Up

Sme Ih(gl)upllcate code

Refactoring: Pull up method - If there are
identical methods in more than one subclass,
move It to the superclass

Employee

e g . Employee
gethlame

- =

Salesman Engineer

http:/ /www.refactoring.com/catalog/pullUpMethod.html 66

'One Smell — Multiple

Refactorings
Duplicated Code (Smell):
= Code repeated in multiple places

= Multiple possible refactorings
o Extract Method
o Extract Class
o Pull Up Method
o Form Template Method

= Choose appropriate one

67

class Account {

float principal, rate; L
int daysActive, accountType; Activity: What needs to be

U refactored? How would you
public static final int STANDARD = 0;)
public static final int BUDGET = 1: Improve the code?

public static final int PREMIUM = 2;
public static final int PREMIUM_PLUS = 3;

}

class Customer {
public float calculateFee(Account accounts|]) {
float totalFee = O;
Account account;
for (int i=0; i<accounts length; i++)
if (account.accountType == Account.PREMIUM ||
account.accountType == Account.PREMIUM_PLUS) {
totalFee += .0125 * (. account.principal
* Math.exp(account.rate * (account.daysActive/365.25))
- account.principal);

}h}

return totalFee;

}

From Razmov’s slides 68

private float interestEarned() {
float years = daysActive / (float) 365.25;
float compoundiInterest = principal * (float) Math.exp(rate * years);
return (compoundIinterest — principal);

}

private float isPremium() {
if (accountType == Account.PREMIUM || accountType == Account.PREMIUM_PLUS)
return true;
else return false;

} Which Refactorings
public float calculateFee(Account accounts[]) { are being used?

float totalFee = 0;
Account account;
for (int i=0; i<accounts.length; i++) {
account = accountsi];
if (account isPremium())
totalFee += BROKER_FEE_PERCENT * account.interestEarned();
}

return totalFee:;

}

static final double BROKER FEE PERCENT = 0.0125;

From Razmov’s slides

69

‘ How to refactor?

Using IDE support Is the best option. You are least
likely to make mistakes using this approach.

For example, see this IBM Developer Works article
about Eclipse’s refactoring support

http://www.ibm.com/developerworks/opensource/library/os-eclipse-refactoring/?ca=dgr- 70
Inxw97Refractoringdth-OS&S TACT=105AGX59&S CMP=grinxw97

http://www.ibm.com/developerworks/opensource/library/os-eclipse-refactoring/?ca=dgr-lnxw97Refractoringdth-OS&S_TACT=105AGX59&S_CMP=grlnxw97

‘ Refactoring Truths

= Most of the time your intuition is good

= Doing it by the book is hard
o Use IDE tools

= Unit tests are the key
o Run Unit tests

o Refactor
o Run Unit tests

71

'Refactor Mercilessly!

= Improve the design of existing code without
changing functionality
o Simplify code
o Improve design
o Remove duplicate code

= The abillity to refactor is your reward for
spending time writing unit tests

72

' Resources
= “The” Book, by Martin Fowler

o Refactoring: Improving the design of existing code

Smells to refactorings
o http://wiki.java.net/bin/view/People/SmellsToRefactorings

Bad Smells

o http://sis36.berkeley.edu/projects/streek/agile/bad-smells-in-code.html

List of refactorings
o http://www.refactoring.com/catalog

A refactoring “cheat sheet”
o http://industriallogic.com/papers/smellstorefactorings.pdf

73

http://wiki.java.net/bin/view/People/SmellsToRefactorings
http://sis36.berkeley.edu/projects/streek/agile/bad-smells-in-code.html
http://sis36.berkeley.edu/projects/streek/agile/bad-smells-in-code.html
http://sis36.berkeley.edu/projects/streek/agile/bad-smells-in-code.html
http://sis36.berkeley.edu/projects/streek/agile/bad-smells-in-code.html
http://sis36.berkeley.edu/projects/streek/agile/bad-smells-in-code.html
http://sis36.berkeley.edu/projects/streek/agile/bad-smells-in-code.html
http://sis36.berkeley.edu/projects/streek/agile/bad-smells-in-code.html
http://www.refactoring.com/catalog
http://industriallogic.com/papers/smellstorefactorings.pdf

public void seek({float posValue) {
fAf fading, ignore
if (bFading){
return;
}
ffsave current position
float fCurrentPos = fPos;
A/Do not seek to o position too near from the end @ 1t can couse freeze. MAX=98%
if (posValue=@8.98f){
posVaolue = @.98F;
}
A4 leave 1f olready seeking
if (player != null && getState() == BasicPlayer.SEEKING) {
Log.warn("Already seeking, leaving"); //3NON-NLS-1%
return;
}
if (mPlayingData.contoinsKey("audio.type”) && player != null) { //3NON-NL5-1%
Type type = TypeManager.getInstance()}.getTypeByTechDesc{{5tring)} mPlayingData. gs
A4 Seel support for MP3. and WAVE
if (type.getBooleanValue(XML_TYPE_SEEK_SUPPORTED)

&% mPlayingDatao.containsKey("audio.length.bytes")) { //INON-NL5-1% //EN{
int 1Audioclength = ({Integer) mPlayingDota.get{"audic.length.bytes")).intVal
long skipBytes = (long) Math.round(iAudioLength * posValue); //3NON-NLS-1%
try {

player.seek(skipBytes);

setVolumel fVolume?; S/ need this becouse a seek reset volume
} cotch (Exception e} {

Log. error(e);

return;

}

} else {
Messages. showErrorMessage("126"); //INON-NLS-1%
return;

74

‘ Design Assessment

= Code heuristics

= EXperience

Where to start?

76

' Metrics to assess guality of design

= Can give you a quick overview

= Can reveal symptoms

/Grading /

Machine

[
>

77

\ Example of a Quality Metrics

= Colour
= Clarity
= Carat
s Cut

78

‘ Software metrics

= Concerned with deriving a numeric value for
an attribute of a software product or process

= Allows for software and software process to
be quantified

= Product metrics can be used for general
predictions or to identify anomalous
components

79

‘ Software has Metrics too

= Source lines of code

= Cyclomatic Complexity

= Cohesion in Packages and Classes
= Coupling in Packages and Classes

= Performance Metrics
o Run times, Network delays...

= Security Metrics
o Number of vulnerabilities...

= Process related
o Number of person-days required to develop component...

80

'Software Metrics — Advantages

= Quick summary of some aspects of quality
= Easy to use at every level of management
= Can provide some index of maturity

= Otherwise almost impossible to get a complete picture of
the full system

81

‘ Software Metrics — Drawbacks

= Misses some important areas
o Cannot be used alone

= Can reduce the value of a programmer to a number

= Could be “gamed” — writing code with the express purpose
of scoring a good metric

= Difficult to relate metric to desirable quality attributes

82

‘Overview Pyramid

[Lanza and Marinescu. Object-Oriented Metrics in Practice]

Inheritance

Size & Complexity Coupling

= Measures structural aspects not design

= Might be a good indicator

2 When structure is bad, design might have a
problem

'Overview Pyramid

[Lanza and Marinescu. Object-Oriented Metrics in Practice]
= Size and Complexity

2 Number of Packages

o Number of Classes

2 Number of Operations

o Lines of Code

o Cyclomatic Complexity
= Coupling

2 Number of operation calls (Fan-In)

2 Number of called classes (Fan-Out)

= Inheritance
o Average Number of Derived Classes
o Average Hierarchy Height

84

‘ Cyclomatic complexity (McCabe)

used to indicate the complexity of a program (the higher,
esp. > 9, the higher # of defects tends to be)

tries to capture the number of paths through the code, and
thus the number of required test cases

computed using the control flow graph of the program
E = number of edges in the graph.
N = number of nodes in the graph.
(make sure to count last instruction: return, exit, etc.)

Cyclomatic complexity =E - N + 2

85

‘ Cyclomatic Complexity

public class Hello {
public static void main (String|[] args) {
if (args.length == 0) {
System.out.println("Hello, World!");
} else |
System.out.println("Hello" + args[0]
HomIn)

86

‘Class Activity: Individually

= What's the cyclomatic complexity of:

public class Hello {
public static void main (String[] args)
if (args.length == 0) {
System.out.println ("Hello, World!");
} else if(args.length == 1) {
System.out.println ("Hello, " + args[O0] + "!");
} else {
System.out.println ("Aargh, too many people!");
}
}
}

87

‘Overview Pyramid

[Lanza and Marinescu. Object-Oriented Metrics in Practice]

NOM / LOC ANDC 0,31
AHH 0,12
20,21 NOP 19

4,18
15128 CALLS 0,56
8590 FANOUT

0,45 LOC
CYCLO

= Comparability
= What are good thresholds?

33

‘Overview Pyramid

[Lanza and Marinescu. Object-Oriented Metrics in Practice]

Java C++

Metric Low Average |High Low Average [High
CYCLO/Line of code 0.16 0.20 0.24 0.20 0.25 0.30
LOC/Operation 7 10 13 5 10 16
NOM/Class 4 7 10 4 9 15
NOC /Package 6 17 26 3 19 35
CALLS/Operation 2.01 2.62 3.2 1.17 1.58 2
FANOUT /Call 0.56 0.62 0.68 0.20 0.34 0.48
ANDC 0.25 0.41 0.57 0.19 0.28 0.37
AHH 0.09 0.21 0.32 0.05 0.13 0.21

Statistical Thresholds of 45 Java and 37 C++

systems

Copyright Lanza and Marinescu

89

‘ Polymetric Views

[Lanza and Marinescu. Object-Oriented Metrics in Practicel

Position <«—— Width Metric —>
Metrics —>
%y T
Color Metric He|g_ht
—> Metric
Edge Width

i in —> <
Relationship & Color Metrics

Entities —

mﬁﬁﬁﬁﬁ;nﬁ]\%ﬁ'iug ' I| Ill I Wil

Copyright Lanza and Marinescu

90

Detection Strategies

[Lanza and Marinescu. Object-Oriented Metrics in Practice]

= Used to express in a quantitative manner deviations from
given set of rules of design harmonies

= Captures heuristic knowledge that reflects and preserves
experience and quality goals of developers

= Impossible to establish objective rand general set of rules
that automatically leads to high-quality design

= Metrics 2
Detection Strategy [Logical Condition & Filters] -
Design Disharmony

91

Detection Strategies — Long Method

[Lanza and Marinescu. Object-Oriented Metrics in Practice]

= Methods that have grown so large that they cannot be
effectively handled; hard to see what it's doing

= Which metrics could you use to detect this smell?

92

Detection Strategies — Long Method

[Lanza and Marinescu. Object-Oriented Metrics in Practice]

= Methods that have grown so large that they cannot be
effectively handled; hard to see what it's doing

\
Method is excessively large

(LOC > HIGH (Class) / 2 J
_ _J

<
Method has many

conditional branches

(CYCLO = HIGH]
J
> S AND Brain Method J

Method has deep nesting

(MAXNESTING = SEVEF{AL]
_ J

- N
Method uses many
variables
(NOAV > MANY J
A J

Copyright Lanza and Marinescu

‘ Tools

= Checkstyle, originally for layout issues, now

also class design problems, duplicate code
and more

http://checkstyle.sourceforge.net/config_metrics.html
= Eclipse Metrics

94

http://checkstyle.sourceforge.net/config_metrics.html

Other ways to identify smells

= Ownership and expertise [Bird et al.]

o More minor contributors (less than 5% of the
commits to a component) means more failures

= Studying the Impact of Social Structures on
Software Quality [Bettenburg & Hassan]

o # of participants in bug discussion, role and
reputation of participants

95

‘ Code Review

“No set of metrics rivals informed human
intuition” [Fowler]

Code Review: systematic examination of existing code by
one or more people with the goal to find smells and
mistakes and to create recommendations for improvement.

96

‘ Code Review — Benefits

= New perspective
o Finding defects may be easier for people who haven't seen
the artifact before and don’t have preconceived ideas about
Its correctness
= Knowledge sharing
o Regarding designs and specific software artifacts
o Regarding defect detection practices
= Find flaws early
o Can dramatically reduce cost of fixing them
= Reduce rework and testing effort
o Can reduce overall development effort

From Jonathan Aldrich (CMU) 97

‘ Benefits of code review for

companies

= Jet Propulsion lab estimated a $7.5 million
from 300 inspections performed on software
for NASA

= Another company: savings of $2.5 million
based on costs of $146 to fix major defect
found by inspection and $2900 to fix one
found by customer

98

prev change | next thangs

Strunk/Tempy/ovs-1.12.11/sr¢/dient.c [runk/Tempy/cvs-1.12.11/src/dhent.c (pre-checkn code teven)
4585 /o 1C ehiy dizectory has anm 3 e s 804 this flle to it */ §4983 /o Af TRl direct 1isT, add chis
4488 if (ignlist) 4428 if (ignlist)
4487 { 4487 1
q408 Node *p: 4400 Node *p:
1429 1459
Add comment
Not sure sbout this code, looks like you missed something.|
(Son | Cor
4590 p'= getnode(): 4490 char *bakname:
nwmsmmme.mmnmdwu; o
nmwm.umuu'
uwnmnm"
1491 bakname = backup_file (filename, vers->wvn
4432 /* This tebavicr 4s sufficd iy umexpecs:
4433 Justify agverinforsacivenszs, I chink. ¢/
4404 if (! really quiet)
4435 prinsf (" (looally modified 4x moved o
4§436 filename, Dakname):
" free (baknaxe):?
44538
[Done: | Handry to azukich: fox Kocwork bug ke te
4451 p->type = FILES: 4459 p->type = FILES:
| Asayze ~ UNINIT.STACKMUST: i ths functen. (7) Qe
q4%2 p=>key = xscrdup (finfo->file): 43500 prokey = xstrdup (finfo->file):
1493 (void) addnode (ignlist, p)J 4501 {void) addncde (igniist, p)J
4434] 4502)
4493 4503
11%¢6 freevers_ts (ivers): 4504 freevers_ts (Lvers):
4457 retarn 0; 4505 return 0;
45520) 4506)
“H 4507
450 4508
4501 $509
4407 static void 4510 static void
4503 send_ignproc (oonst char *file, const char *dir) 41518 send_ignproc (const char *file, const char *dir)
4504 { 4512 (
5505 1f (1gn_inhibit_sexver || ‘supported request ("Questionable”)) 4533 1€ (i1gn_inhidit server || !sgpported request ("Qu
4508 { 4514 & t
4507 1t (gix(0] != *\0o*) 4518 12 (aix[0] != '\0")
4508 (void) princf ("7 %s/&s\n", diz, file): 4536 {void) printf (*7 €s/es\n*, diy, file):
4509 else 4527 else

http://www.klocwork.com/

99

http://www.klocwork.com/

‘ Summary

= Good design = Good code

= Goal of design is to manage complexity by
decomposing problem into simple pieces

= Designing is an iterative refinement process
= Many principles/heuristics for modular design

= Design/Code decays for many reasons
o Collaboration, rework, external conditions, agility

100

‘ Summary cont'd

= Refactoring improves existing code/design
o Does not change existing behaviour

= Refactoring improves maintainability and hence
oroductivity

= Refactor continuously

= Many smells, even more refactorings!

= Applying a refactoring
o Use your intuition, use tools, use references
o Test before, Test after

= Remember: First a smell, then a refactoring

101

