
Software Quality

Lecture 5 – Design, Refactoring, Smells,

 Metrics and Reviews

Thomas Fritz

Martin Glinz

Institut für Informatik

For next lecture (required):

 Information Needs in Collocated Software

Development Teams.
 A. Ko, R. DeLine and G. Venolia. In Proc. of ICSE’07.

 http://dl.acm.org/citation.cfm?id=1248867

 Code Bubbles: Rethinking the User Interface

Paradigm of Integrated Development Environments.
A. Bragdon et al. In Proc. of ICSE’10.

http://dl.acm.org/citation.cfm?id=1806866

 2

Reading!

http://dl.acm.org/citation.cfm?id=1248867
http://dl.acm.org/citation.cfm?id=1248867
http://dl.acm.org/citation.cfm?id=1806866
http://dl.acm.org/citation.cfm?id=1806866
http://dl.acm.org/citation.cfm?id=1806866

Lecture will be a group discussion, think about

the following questions while reading:

 What are the major contributions/points of the paper?

 What do you like about the paper/approach?

 What do you not like about the paper/approach?

 How does the paper/approach relate to Software

Quality?

3

Reading!

 Introduction to design

 Modular Design & Design Principles

 Refactoring & Code Smells

 Metrics to Detect Code Smells

 Code Reviews

4

Overview

 Describe the context (goals and constraints) of the activity

of software design and explain why it’s important

 Explain the goal of a good modular design, why it is

important and what you can do to achieve it

 Create a good design for a given system

 Explain the benefits of refactoring

 Given code, be able to identify code smells and apply

appropriate refactorings

 Understand the use of metrics for identifying code smells

 Given a code smell, determine a detection strategy using

metrics

 Explain the benefits of code reviews

 5

Learning Goals

6

Some software failures in 2011

Source: SQS Software Quality Systems (AIM:SQS.L),
http://www.engineeringnews.co.za/article/company-announcement-sqs-annual-software-bugs-survey-results-2012-01-09

 22 people wrongly arrested in Australia due to

failures in new NZ $54.5 million courts

computer system

 50,500 cars recalled after airbag-related glitch

in software design and testing approach

 Sydney cash machine glitch gives customers

extra money

 Is a program doing what it is supposed to do or

does it have bugs?

 Model Checking, Testing

 How to locate bugs?

 Debugging

 Why not just build a high-quality product

 from the start?

7

So far…

 Essential Tasks

“Fashioning of the complex conceptual structures

that compose the abstract software entity”

 Accidental Tasks

“Representation of these abstract entities in

programming languages and the mapping of

these onto machine languages within space and

speed constraints”

8

Software Construction / Design
[No Silver Bullet, Fred Brooks, 1987]

 Accidental Complexity:

 representing constructs in the language

 mismatch of paradigms, methodologies and/or tools

 Essential Complexity:

 difficulties inherent in the nature of software

 Software entities are more complex for their size than

perhaps any other human construct because no two

parts are alike

 Software is intangible and invisible

 Software is constantly being changed and used in

ways it wasn’t intended for

9

Why is it so difficult to build software?
[No Silver Bullet, Fred Brooks, 1987]

 Reuse to avoid constructing what can be bought

 Rapid Prototyping as part of establishing

requirements

 Grow software incrementally (organically)

 Identify and develop the great conceptual

designers

10

Brooks suggests:

 Any ideas?

11

How to best design a system?

 Why might a designer

decide to design such

a jacket?

 What might have

influenced the

designer?

12

What is Clothing Design?

Picture from www.arcteryx.com

from G. Murphy

 Münchner Allianz Arena,

built for FC Bayern and

TSV1860 (2002-2005)

 Inputs?

 Constraints?

13

What is Building Design?

Picture from http://de.academic.ru/pictures/dewiki/65/Allianzarenacombo.jpg and www.faz.net

What is design? What makes something a design

problem? It’s where you stand with a foot in two

worlds – the world of technology and the world of

people and human purposes – and you try to bring

the two together.

- Mitchel Kapor, A Software Design Manifesto (1991)

14

What is design?

from G. Murphy

Design disciplines are concerned with making

artifacts for human use. Architects work in the

medium of buildings, graphic designers work in

paper and other print media, industrial designers

on mass-produced manufactured goods, and

software designers on software. The software

designer should be the person with overall

responsibility for the conception and realization of

the program.

15

Kapor goes on to say…

from G. Murphy

 Software design is not user interface design

 Software designer is concerned with the overall

product conception

 Software designers should have strong technical

grounding

 Software designer works in conjunction with

developers

16

Kapor’s Vision of Software

Design

from G. Murphy

17

Design to Bridge the Gap

Requirements

Code

DESIGN
- Architectural
- Detailed

 The design consists of multiple views of the

software

 Static view (e.g. class diagram) shows decomposition

of problem into parts and relationships

 Dynamic view (e.g. sequence diagram) shows how

parts interact to solve the problem

 Views have varying levels of granularity

 We can analyze these views to see if they

support the requirements?

 Modifiable (i.e. adding new view)?

 …

18

What is the Software Design?

 Facilitates communication

 Eases system understanding

 Eases implementation

 Helps discover problems early

 Increases product quality

 Reduces maintenance costs

 Facilitates product upgrade

19

Why Design?

20

Cost of not planning…

 “Treat design as a wicked, sloppy, heuristic

process.”

 Pen & Paper, Whiteboard

 “Don’t settle for the first design that occurs to you.”

 Scribble, Scratch, Thrash

 “Collaborate”

 Brainstorm, Discuss, Argue

 “Strive for simplicity”

 Reduce, Clean-up (with UML tools)

 “Iterate, iterate and iterate again.”

 Iterate!

21

How to Design? [S. McConnell, Code Complete]

 Start global
 Architectural Design

 Global concepts: components & connectors

 Subdivide
 Detailed Design

 Mid-level: classes and relationships

 Low-level: how operations are carried out – what
messages are sent and when

 Iterate
 Are these the right subsystems? Update!

 Are these the right classes? Update!

22

How to Design?

 Vote: Which of these two diagrams is more useful to

software developers?

23

Class Activity – Design Diagrams

Cherubini, Venolia, Ko, DeLine

 Diagrams are a communication tool
 End product is important, but discussion just as important

 Quality of communication = Quality of design
 Hence, quality of end product

 Tip for efficient communication:
 Start light-weight and flexible

 Then move on to details and more focused

 In terms of diagrams:
 Start with draft, hand-written diagrams that can change

 Towards the end, clean-up and make more readable

 Use a mutually understood language (a standard: UML)

24

Diagrams in Software Design

25

UML Class Diagrams

Class Activity

 In teams of 2, draw a class diagram for a Course

News Group (UML class diagram)

 Users can subscribe to a news group and will be notified

if new items are posted onto the group. Users can

browse a list of the items in the news group and can

open specific items to read them. Users can respond to

items on the news group as well as create new posts.

Users can also retrieve a list of all members of the news

group and check the profile of other members. Users can

be students, TAs or instructors. TAs and instructors are

allowed to delete news items.

 Ask questions if needed!

27

Design – Diagrams

 Diagrams are tools

 Helpful

 Not necessary

 Don’t tell you how to get to a “good” design

28

Reducing Complexity – Modularity

29

The goal of all software design techniques is to

break a complicated problem into simple

pieces.

Modular Design

30

31

Why Modularity?

32

 Minimize Complexity

 Reusability

 Extensibility

 Portability

 Maintainability

 …

Why Modularity?

33

 There is no “right answer” with design

 Applying heuristics/principles can provide

insights and lead to a good design

What is a good modular Design?

34

Principles & Heuristics for modular

Design

 High Cohesion

 Loose Coupling

 Information Hiding

 Open/Closed Principle

 Liskov Substitution Principle

 Law of Demeter

 ….

35

36

Design
Principles

36

High Cohesion

 Cohesion refers to how closely the functions

in a module are related

 Modules should contain functions that

logically belong together

 Group functions that work on the same data

 No schizophrenic classes!

37

High or low cohesion?

public class EmailMessage {

 …

 public void sendMessage() {…}

 public void setSubject(String subj) {…}

 public void setSender(Sender sender) {…}

 public void login(String user, String passw) {…}

 ….

}

38

Loose Coupling

 Coupling assesses how tightly a module is

related to other modules

 Goal is loose coupling:

 modules should depend on as few

 modules as possible

 Changes in modules should not impact other

modules; easier to work with them separately
39

Tightly or loosely coupled?

40 from Alverson (UW)

Information Hiding

41 from CodeComplete by Steve McConnell

A good class is a lot
like an iceberg: seven-
eights is under water,
and you can see only
the one-eight that’s
above the surface.

Information Hiding

 Only expose necessary

functions

 Abstraction hides complexity

by emphasizing on essential

characteristics and

suppressing detail

 Caller should not assume

anything about how the

interface is implemented

 Effects of internal changes

are localized

42

Information Hiding: Example 1

The chief scientist of the elementary particle research
lab asks the new intern about his latest results: “So
what is the average momentum of these neutral
particles?”

a) 42

b) Hmmm. Take this pile of sheet with my
observations, here is the textbook that explains how to
calculate momentum, also you will need to search
online for the latest reference tables. Oh, and don’t
forget to correct for multiplicity!

Which answer is the most likely to get the intern fired?

43

Information Hiding: Example 2
 Class DentistScheduler has

 A public method automaticallySchedule()

 Private methods:

 whoToScheduleNext()

 whoToGiveBadHour()

 isHourBad()

 To use DentistScheduler, just call

automaticallySchedule()

 Don’t have to know how it’s done internally

 Could use a different scheduling technique: no

problem!

44

Class Activity – Modular Design

 Go back to your News Group design

 Is there anything you can do to make it more

modular or is it already a good modular

design?

 Be able to articulate which principles you

used and why!

 45

Design Challenges

 Designing software with good modularity is

hard!

 Designs often emerge from a lot of trial and

error

 Are there solutions to common recurring

 problems?

46

Design Patterns

In software engineering, a design pattern is a

general repeatable solution to a commonly

occurring problem in software design.

 A design pattern is a description or template for how to

solve a problem

 Not a finished design

 Patterns capture design expertise and allow that expertise

to be transferred and reused

 Patterns provide common design vocabulary, improving

communication, easing implementation & documentation

47

Updates – Observer Design Pattern

Name: Observer

Intent: Ensure that, when an object changes state, all its
dependents are notified and updated automatically.

Participants & Structure:

48

Design over time

 It will be difficult to get a design right the first time

 As a program’s requirements change, the design

may need to change

 Design / Code decays

 collaboration, rework, external conditions, …

49

Design over time

50

Refactoring

51

Any fool can write code that a computer can

understand. Good programmers write code

that humans can understand.

52

What is Refactoring?

“[Refactoring is] the process of changing a software system

in such a way that it does not alter the external behavior of

the code yet improves its internal structure” – Martin Fowler

“Improving the design after it has been written.”

Changes made to a system that:

 Do not change observable behavior

 Remove duplication or needless complexity

 Enhance software quality

 Make the code easier and simpler to understand

 Make the code more flexible

 Make the code easier to change

53

54

What is Refactoring?

class Gorilla{
int paws(){
return 4;
}}

class Gorilla{
int paws(){
int pawCount = 4;
return pawCount;
}}

class Gorilla implements Primate{
int paws(){
int pawCount = 4;
return pawCount;
}}
…

interface Primate{
abstract int paws();
}

class Gorilla implements Primate{
int feet(){
int pawCount = 4;
return pawCount;
}}
…

interface Primate{
abstract int feet();
}

INTRODUCE EXPLAINING
VARIABLE

EXTRACT
INTERFACE

RENAME METHOD
72
refactorings
named by
Fowler*

from Emerson Murphy-Hill (NCSU)

Why Refactor?

 Long-term investment in the quality of the code

and its structure

 No refactoring may save costs / time in the short

term but incurs a huge penalty in the long run

 Why fix it ain’t broken?

Every module has three functions:
 To execute according to its purpose

 To afford change

 To communicate to its readers

If it does not do one or more of these, it is broken.

55 From Razmov’s slides

When to Refactor?

 Do it as you develop!

 When you add a function

 Before, to start clean and/or

 After, to clean-up

 When you fix a bug

 When you code review

 You can use The Rule of Three

 Three strikes and you refactor

 refers to duplication of code

56

How to Refactor?

 Make sure all your tests pass

 Identify the code smell

 Determine how to refactor this code

 Apply the refactoring

 Run tests to make sure you didn’t break

anything

 Repeat until the smell is gone

57

What is a Code Smell?

 A recognizable indicator that something

may be wrong in the code

 Can occur in the product code as well

as in the test code!

58

The smells/refactorings in the following slides are from Martin Fowler,
Refactoring, “Improving the design of existing code”.
For test code smells: van Deursen et al. “Refactoring Test Code”.

59

A few Bad Smells
Duplicated Code

•bad because you modify one
instance of duplicated code but
not the others; not all versions
fixed

Long Method
•long methods are more difficult
to understand; performance
concerns with respect to lots of
short methods are largely
obsolete

Message Chains
•a client asks an object for
another object and then asks that
object for another object etc.
•Bad because client depends on
the structure of the navigation

from Emerson Murphy-Hill (NCSU)

List of Smells

60

 Alternative Classes with
Different Interfaces

 Comments

 Data Class

 Data Clumps

 Divergent Change

 Duplicated Code

 Feature Envy

 Inappropriate Intimacy

 Incomplete Library Class

 Large Class

 Lazy Class

 Long Method

 Long Parameter List

 Message Chains

 Middle Man

 Parallel Inheritance
Hierarchies

 Primitive Obsession

 Refused Bequest

 Shotgun Surgery

 Speculative Generality

 Switch Statements

 Temporary Field

How to Deal with a Smell?

 First, determine if it is a bad smell!

 Some smells are always bad

 Others you can live with
 (My opinion: Some purists would disagree.)

 Then apply the appropriate refactoring(s)

61

What is a Refactoring?

 A refactoring = a refactoring technique

 A small, behaviour-preserving, source-to-

source transformation.

 Example:

62

int fa = 1;

for(int i=2; i<a; ++i) fa *= i;

int fb = 1;

for(int i=2; i<b; ++i) fb *= i;

int fact(int x) {

 return (x==1) ? 1 : fact(x-1)*x;

}

fa = fact(a);

fb = fact(b);

Partial List of Refactorings

 Add Parameter

 Change Bidirectional Association
to Unidirectional

 Change Reference to Value

 Change Unidirectional
Association to Bidirectional

 Change Value to Reference

 Collapse Hierarchy

 Consolidate Conditional
Expression

 Consolidate Duplicate Conditional
Fragments

 Convert Procedural Design to
Objects

 Decompose Conditional

 Duplicate Observed Data

63

 Encapsulate Collection

 Encapsulate Downcast

 Encapsulate Field

 Extract Class

 Extract Hierarchy

 Extract Interface

 Extract Method

 Extract Subclass

 Extract Superclass

 Form Template Method

 Hide Delegate

 Hide Method

 Inline Class

 Inline Method

 …

Online: http://www.refactoring.com/catalog

Refactoring and Smell Catalog

 Fowler maintains an online catalog of
refactorings

http://www.refactoring.com/catalog/index.html

 Some smells
http://www.soberit.hut.fi/mmantyla/BadCodeSmellsTaxonomy.htm

http://www.codinghorror.com/blog/2006/05/code-smells.html

 Smells & refactorings
http://wiki.java.net/bin/view/People/SmellsToRefactorings

http://sourcemaking.com/refactoring

64

http://www.refactoring.com/catalog/index.html
http://www.soberit.hut.fi/mmantyla/BadCodeSmellsTaxonomy.htm
http://www.soberit.hut.fi/mmantyla/BadCodeSmellsTaxonomy.htm
http://www.soberit.hut.fi/mmantyla/BadCodeSmellsTaxonomy.htm
http://www.codinghorror.com/blog/2006/05/code-smells.html
http://www.codinghorror.com/blog/2006/05/code-smells.html
http://www.codinghorror.com/blog/2006/05/code-smells.html
http://www.codinghorror.com/blog/2006/05/code-smells.html
http://wiki.java.net/bin/view/People/SmellsToRefactorings
http://wiki.java.net/bin/view/People/SmellsToRefactorings
http://wiki.java.net/bin/view/People/SmellsToRefactorings
http://sourcemaking.com/refactoring

Remember!

 A refactoring is not a smell

 Just because a refactoring exists doesn’t mean

you should apply it

 Some refactorings are opposites one of another

 First smell, then refactor

65

Example Refactoring: Pull Up

Method
Smell: duplicate code

Refactoring: Pull up method - If there are

identical methods in more than one subclass,

move it to the superclass

eg.

http://www.refactoring.com/catalog/pullUpMethod.html 66

One Smell – Multiple

Refactorings
Duplicated Code (Smell):

 Code repeated in multiple places

 Multiple possible refactorings

 Extract Method

 Extract Class

 Pull Up Method

 Form Template Method

 Choose appropriate one

67

class Account {

 float principal, rate;

 int daysActive, accountType;

 public static final int STANDARD = 0;

 public static final int BUDGET = 1;

 public static final int PREMIUM = 2;

 public static final int PREMIUM_PLUS = 3;

}

class Customer {

 public float calculateFee(Account accounts[]) {

 float totalFee = 0;

 Account account;

 for (int i=0; i<accounts length; i++)

 if (account.accountType == Account.PREMIUM ||

 account.accountType == Account.PREMIUM_PLUS) {

 totalFee += .0125 * (account.principal

 * Math.exp(account.rate * (account.daysActive/365.25))

 - account.principal);

 } } }

 return totalFee;

}

68

Activity: What needs to be

refactored? How would you

improve the code?

From Razmov’s slides

private float interestEarned() {

 float years = daysActive / (float) 365.25;

 float compoundInterest = principal * (float) Math.exp(rate * years);

 return (compoundInterest – principal);

}

private float isPremium() {

 if (accountType == Account.PREMIUM || accountType == Account.PREMIUM_PLUS)

 return true;

 else return false;

}

public float calculateFee(Account accounts[]) {

 float totalFee = 0;

 Account account;

 for (int i=0; i<accounts.length; i++) {

 account = accounts[i];

 if (account isPremium())

 totalFee += BROKER_FEE_PERCENT * account.interestEarned();

 }

 return totalFee;;

}

static final double BROKER_FEE_PERCENT = 0.0125;

69

Which Refactorings

are being used?

From Razmov’s slides

How to refactor?

Using IDE support is the best option. You are least

likely to make mistakes using this approach.

For example, see this IBM Developer Works article

about Eclipse’s refactoring support

70 http://www.ibm.com/developerworks/opensource/library/os-eclipse-refactoring/?ca=dgr-

lnxw97Refractoringdth-OS&S_TACT=105AGX59&S_CMP=grlnxw97

http://www.ibm.com/developerworks/opensource/library/os-eclipse-refactoring/?ca=dgr-lnxw97Refractoringdth-OS&S_TACT=105AGX59&S_CMP=grlnxw97

Refactoring Truths

 Most of the time your intuition is good

 Doing it by the book is hard

 Use IDE tools

 Unit tests are the key

 Run Unit tests

 Refactor

 Run Unit tests

71

Refactor Mercilessly!

 Improve the design of existing code without

changing functionality

 Simplify code

 Improve design

 Remove duplicate code

 The ability to refactor is your reward for

spending time writing unit tests

72

Resources
 “The” Book, by Martin Fowler

 Refactoring: Improving the design of existing code

 Smells to refactorings

 http://wiki.java.net/bin/view/People/SmellsToRefactorings

 Bad Smells
 http://sis36.berkeley.edu/projects/streek/agile/bad-smells-in-code.html

 List of refactorings

 http://www.refactoring.com/catalog

 A refactoring “cheat sheet”

 http://industriallogic.com/papers/smellstorefactorings.pdf

73

http://wiki.java.net/bin/view/People/SmellsToRefactorings
http://sis36.berkeley.edu/projects/streek/agile/bad-smells-in-code.html
http://sis36.berkeley.edu/projects/streek/agile/bad-smells-in-code.html
http://sis36.berkeley.edu/projects/streek/agile/bad-smells-in-code.html
http://sis36.berkeley.edu/projects/streek/agile/bad-smells-in-code.html
http://sis36.berkeley.edu/projects/streek/agile/bad-smells-in-code.html
http://sis36.berkeley.edu/projects/streek/agile/bad-smells-in-code.html
http://sis36.berkeley.edu/projects/streek/agile/bad-smells-in-code.html
http://www.refactoring.com/catalog
http://industriallogic.com/papers/smellstorefactorings.pdf

74

 Code heuristics

 Experience

Where to start?

76

Design Assessment

 Can give you a quick overview

 Can reveal symptoms

77

Metrics to assess quality of design

Your

Code

Grading

Machine
Grade

Example of a Quality Metrics

 Colour

 Clarity

 Carat

 Cut

78

Software metrics

 Concerned with deriving a numeric value for

an attribute of a software product or process

 Allows for software and software process to

be quantified

 Product metrics can be used for general

predictions or to identify anomalous

components

79

Software has Metrics too

 Source lines of code

 Cyclomatic Complexity

 Cohesion in Packages and Classes

 Coupling in Packages and Classes

 Performance Metrics
 Run times, Network delays…

 Security Metrics
 Number of vulnerabilities…

 Process related
 Number of person-days required to develop component…

 80

Software Metrics – Advantages

 Quick summary of some aspects of quality

 Easy to use at every level of management

 Can provide some index of maturity

 Otherwise almost impossible to get a complete picture of
the full system

81

Software Metrics – Drawbacks

 Misses some important areas
 Cannot be used alone

 Can reduce the value of a programmer to a number

 Could be “gamed” – writing code with the express purpose
of scoring a good metric

 Difficult to relate metric to desirable quality attributes

82

Overview Pyramid
[Lanza and Marinescu. Object-Oriented Metrics in Practice]

 Measures structural aspects not design

 Might be a good indicator

 When structure is bad, design might have a

problem

83

Inheritance

Size & Complexity Coupling

84

 Size and Complexity
 Number of Packages

 Number of Classes

 Number of Operations

 Lines of Code

 Cyclomatic Complexity

 Coupling
 Number of operation calls (Fan-In)

 Number of called classes (Fan-Out)

 Inheritance
 Average Number of Derived Classes

 Average Hierarchy Height

Overview Pyramid
[Lanza and Marinescu. Object-Oriented Metrics in Practice]

Cyclomatic complexity (McCabe)

 used to indicate the complexity of a program (the higher,

esp. > 9, the higher # of defects tends to be)

 tries to capture the number of paths through the code, and

thus the number of required test cases

 computed using the control flow graph of the program

 E = number of edges in the graph.

 N = number of nodes in the graph.

 (make sure to count last instruction: return, exit, etc.)

 Cyclomatic complexity = E - N + 2

85

Cyclomatic Complexity

86

public class Hello {

 public static void main(String[] args) {

 if(args.length == 0) {

 System.out.println("Hello, World!");

 } else {

 System.out.println("Hello" + args[0]

 + "!");

 }

 }

}

Class Activity: Individually

 What’s the cyclomatic complexity of:

87

public class Hello {

 public static void main(String[] args) {

 if(args.length == 0) {

 System.out.println("Hello, World!");

 } else if(args.length == 1){

 System.out.println("Hello, " + args[0] + "!");

 } else {

 System.out.println("Aargh, too many people!");

 }

 }

}

 Comparability

 What are good thresholds?

88

Overview Pyramid
[Lanza and Marinescu. Object-Oriented Metrics in Practice]

NOM / LOC

Copyright Lanza and Marinescu 89

Overview Pyramid
[Lanza and Marinescu. Object-Oriented Metrics in Practice]

Statistical Thresholds of 45 Java and 37 C++

systems

90

Polymetric Views
[Lanza and Marinescu. Object-Oriented Metrics in Practice]

Copyright Lanza and Marinescu

 Used to express in a quantitative manner deviations from

given set of rules of design harmonies

 Captures heuristic knowledge that reflects and preserves

experience and quality goals of developers

 Impossible to establish objective rand general set of rules

that automatically leads to high-quality design

 Metrics

 Detection Strategy [Logical Condition & Filters]

 Design Disharmony

91

Detection Strategies
[Lanza and Marinescu. Object-Oriented Metrics in Practice]

 Methods that have grown so large that they cannot be

effectively handled; hard to see what it’s doing

 Which metrics could you use to detect this smell?

92

Detection Strategies – Long Method
[Lanza and Marinescu. Object-Oriented Metrics in Practice]

 Methods that have grown so large that they cannot be

effectively handled; hard to see what it’s doing

93

Detection Strategies – Long Method
[Lanza and Marinescu. Object-Oriented Metrics in Practice]

Copyright Lanza and Marinescu

 Checkstyle, originally for layout issues, now

also class design problems, duplicate code

and more

http://checkstyle.sourceforge.net/config_metrics.html

 Eclipse Metrics

 …

94

Tools

http://checkstyle.sourceforge.net/config_metrics.html

 Ownership and expertise [Bird et al.]

 More minor contributors (less than 5% of the

commits to a component) means more failures

 Studying the Impact of Social Structures on

Software Quality [Bettenburg & Hassan]

 # of participants in bug discussion, role and

reputation of participants

…

95

Other ways to identify smells

“No set of metrics rivals informed human

intuition” [Fowler]

Code Review: systematic examination of existing code by

one or more people with the goal to find smells and

mistakes and to create recommendations for improvement.

96

Code Review

 New perspective

 Finding defects may be easier for people who haven't seen

the artifact before and don’t have preconceived ideas about

its correctness

 Knowledge sharing

 Regarding designs and specific software artifacts

 Regarding defect detection practices

 Find flaws early

 Can dramatically reduce cost of fixing them

 Reduce rework and testing effort

 Can reduce overall development effort

97

Code Review – Benefits

From Jonathan Aldrich (CMU)

Benefits of code review for

companies
 Jet Propulsion lab estimated a $7.5 million

from 300 inspections performed on software

for NASA

 Another company: savings of $2.5 million

based on costs of $146 to fix major defect

found by inspection and $2900 to fix one

found by customer

98

99 http://www.klocwork.com/

http://www.klocwork.com/

Summary

 Good design Good code

 Goal of design is to manage complexity by
decomposing problem into simple pieces

 Designing is an iterative refinement process

 Many principles/heuristics for modular design

 Design/Code decays for many reasons

 Collaboration, rework, external conditions, agility

100

Summary cont’d

 Refactoring improves existing code/design

 Does not change existing behaviour

 Refactoring improves maintainability and hence
productivity

 Refactor continuously

 Many smells, even more refactorings!

 Applying a refactoring

 Use your intuition, use tools, use references

 Test before, Test after

 Remember: First a smell, then a refactoring

101

