
Software Quality
[selected chapters]

Lecture 1 - Introduction
Thomas Fritz
Martin Glinz

Institut für Informatik

About the course
About me
Introduction to Software Quality
Product/Code Quality and Process Quality
Mechanisms for Improving Software Quality
Quality Management in Agile Processes

2

Overview

By the end of this class you should be able to:

Describe how to succeed in this course

Describe aspects that affect software quality
Explain the benefits of high software quality

with testing alone
Describe mechanisms for quality control and assurance
Given a method, write a test suite that provides
statement, branch or path coverage
Explain how process models, in particular the agile
process model, support quality management

3

Learning Goals

Basic knowledge of software quality from software
engineering course

Kapitel 2: Ziele und Qualität
Kapitel 7: Validierung und Verifikation
Kapitel 8: Testen von Software
Kapitel 9: Reviews
Kapitel 10: Messen von Software
Kapitel 11: Statische Analyse
Kapitel 19: Software-Qualitätsmanagement
Kapitel 20: Bewertung und Verbesserung von Prozessen und
Qualität

This basic knowledge is assumed; all chapters are
available at http://www.ifi.uzh.ch/rerg/courses/hs10/software_engineering

4

Software Quality Prerequisites

20.02 Introduction to Software Quality, Product & Process
 Quality

27.02 Model Checking I + II, Assignment 1

05.03 Advanced Testing Practices, Debugging I

12.03 Debugging II, Discussion Assignment 1, Assignment 2

19.03 Design, Metrics, Smells, Refactoring and Code Reviews

26.03 Human Aspects in Software Quality (Paper Based),
 Discussion Assignment 2, Assignment 3

02.04 Continuous Integration, UI Tests

07.05 Exam
 5

Software Quality Tentative Schedule

Attend lectures
Know the facts

Listen actively in class
Take notes
Do the readings seriously
Strive to identify factual information

Practice applying the facts
Assignments and in-class activities are good
for this

6

Keys to Success

Pass the assignments
 (in groups of two if stated)

Pass the exam

7

Passing the Course

Lecturers
Thomas Fritz fritz@ifi.uzh.ch
Martin Glinz glinz@ifi.uzh.ch

TA

Eya Ben Charrada charrada@ifi.uzh.ch

Website(s)

http://seal.ifi.uzh.ch/softwarequality/
http://www.ifi.uzh.ch/rerg/courses/fs12/swq.html

8

People & Resources

mailto:fritz@ifi.uzh.ch
mailto:glinz@ifi.uzh.ch
mailto:charrada@ifi.uzh.ch
http://seal.ifi.uzh.ch/softwarequality/
http://seal.ifi.uzh.ch/softwarequality/
http://www.ifi.uzh.ch/rerg/courses/fs12/swq.html

9

undergrad graduate

experience

education

Since Nov 2011: Assistant Professor at IFI

I'm available by appointment. Please just
ask if you need extra time or privacy!

Looking for students for bachelor and master
thesis projects. Talk to me!

10

11

Software
Quality

Therac-25
Computerized radiation therapy machine

Shallow tissue: direct electron beam
Deeper tissue: electron beam converted into X-ray photons

accidents occurred when high-energy electron-beam
was activated without target having been rotated into
place; machine's software did not detect this
First case in 1984: lawsuit but manufacturer refused to
believe in a malfunction of Therac-25

operator repeated 5 times; patient died 3 months later
Overall six accidents with ~100 times the intended does
between 1985 and 1987; 3 patients died

12 See more at http://courses.cs.vt.edu/cs3604/lib/Therac_25/Therac_1.html

Therac-25: some reasons

13

The design did not have any hardware interlocks to prevent the electron-
beam from operating in its high-energy mode without the target in place.
The engineer had reused software from older models. These models
had hardware interlocks and were therefore not as vulnerable to the
software defects.
The hardware provided no way for the software to verify that sensors
were working correctly.
The equipment control task did not properly synchronize with the
operator interface task, so that race conditions occurred if the operator
changed the setup too quickly. This was evidently missed during testing,
since it took some practice before operators were able to work quickly
enough for the problem to occur.
The software set a flag variable by incrementing it. Occasionally an
arithmetic overflow occurred, causing the software to bypass safety
checks.

taken from Stephen Dannelly

Therac-25
Many factors:

Programming errors / race conditions
No independent review of software
Inadequate risk assessment together with
overconfidence in software
Therac-25 software and hardware combination never
tested until assembled at the hospital
poor human computer interaction design
a lax culture of safety in the manufacturing organization
management inadequacies and lack of procedures for
following through on all reported incidents

14

Patriot Missile System

15
taken from Stephen Dannelly; see more at
http://www.fas.org/spp/starwars/gao/im92026.htm

On February 25, 1991, the Patriot missile battery at Dharan, Saudi
Arabia had been in operation for 100 hours, by which time the
system's internal clock had drifted by one third of a second. For a
target moving as fast as a Scud, this was equivalent to a position
error of 600 meters.
The radar system had successfully detected the Scud and predicted
where to look for it next, but because of the time error, looked in the
wrong part of the sky and found no missile. With no missile, the initial
detection was assumed to be a spurious track and the missile was
removed from the system. No interception was attempted, and the
missile impacted on a barracks killing 28 American soldiers.

http://www.fas.org/spp/starwars/gao/im92026.htm
http://images.google.com/imgres?imgurl=http://www.au.af.mil/au/awc/systems/dvic451.jpg&imgrefurl=http://www.au.af.mil/au/awc/systems/dvic451.htm&h=512&w=768&sz=42&hl=en&start=4&tbnid=eVmIq_jmAoEIlM:&tbnh=94&tbnw=141&prev=/images?q=patriot+missile&svnum=10&hl=en&lr=&safe=off

Software Quality Hazards

Ariane 5
Embedded software in cars

Poor software quality has become one of the most
expensive topics in human history > $150 billion per
year in U.S and > $500 billion per year world wide

Improving software quality is a key topic!

16

Industrial definition according to ISO 9000:2000
Quality of something is the degree to which a set of
inherent characteristics comply to a set of
requirements.

 An inherent characteristic exists in something or is a
permanent feature of something, while an assigned
characteristic is a feature that is attributed or attached
to something. (e.g., composition vs. price)

Quality is always relative to a set of requirements.

[ISO: International Organization for Standards] 17

What is Quality?

The ISO 9000 family of standards represents an
international consensus on good quality
management practices
8 basic principles of ISO 9000:2000 on Quality
Management Systems

Customer focus
Leadership
Involvement of people
Process approach
System approach to management
Continual improvement
Factual approach to decision making
Mutually beneficial supplier relationships

18

How to manage quality?

http://www.iso.org/iso/iso_catalogue/management_and_leadership_standa
rds/quality_management/qmp.htm

http://www.iso.org/iso/iso_catalogue/management_and_leadership_standards/quality_management/qmp.htm
http://www.iso.org/iso/iso_catalogue/management_and_leadership_standards/quality_management/qmp.htm

19

ISO 9000 Process-Based Quality
Management System

do check

act plan

Quality Planning
Setting quality objectives/requirements and specifying
processes and resources to achieve them

Quality Assurance
Set of activities to establish confidence that quality
requirements will be met (prevention driven)

Quality Control
Set of activities to ensure that quality requirements are met
(inspection driven)

Quality Improvement

requirements
20

Quality Management Process

http://praxiom.com/iso-definition.htm#Quality

http://praxiom.com/iso-definition.htm
http://praxiom.com/iso-definition.htm
http://praxiom.com/iso-definition.htm

Quality control activities are focused on the
product itself.

Quality assurance activities are focused on
the process used to create the deliverable.

21

QC vs QA

ISO 9001:2008 standard that provides a set of standardized
requirements for a quality management system,
regardless of what the user organization does, its size, or
whether it is in the private, or public sector.
It is the only standard in the family against which
organizations can be certified although certification is not
a compulsory requirement of the standard.
More than 1Mio companies are independently certified
Better performance attributed to companies complying to the
standard

22

Quality Management Standard

23

What is Software Quality?

According to IEEE
The degree to which a system, component or
process meets the specified requirements.
The degree to which a system, component or
process meets the customer or user needs and
expectations.

[IEEE: Institute for Electrical and Electronics Engineers]

24

25

What is Software Quality?

According to Roger Pressman
Conformance to explicitly stated functional and
performance requirements, explicitly
documented development standards, and
implicit characteristics that are expected of all
professionally developed software.

26

Class Activity
Individually, on paper:

What are the possible consequences of poor
software quality?
How can one assure/manage/improve/control
software quality?
Write down 2 scenarios.

27

Focus often on Code Quality

Requirements Design Code Test

Not the only element of
Software Quality

28

Software
Quality

Code
Quality

29

Other elements of Software Quality

Faulty definition of requirements
Client-developer communication failures
Deliberate deviations from software requirements
Logical design errors
Shortcomings of the testing process
Procedure errors
Time managements problems

Code Quality is Important

30

A single bug can cause
disastrous outcomes
The Ariane
guidance computer software
just threw an unchecked
exception.
Unmanned flight. Nobody
was killed, but somebody

31

An Example

Is there anything wrong with this code?

char b[2][10000],*s,*t=b,*d,*e=b+1,**p;;main(int c,char**v)
{int n=atoi(v[1]);;strcpy(b,v[2]);;while(n--){for(s=t,d=e;;*s;;
s++){for(p=v+3;;*p;;p++)if(**p==*s){strcpy(d,*p+2);;d+=strlen(
d);; goto x;;}*d++=*s;;x:}s=t;;t=e;;e=s;;*d++=0;;}puts(t);;}

32

Software Quality Attributes/Factors
Functionality: the ability of the system to do the
work for which it was intended.
Maintainability
Security
Usability
Modifiability
Reusability
Robustness
Understandability

33

ISO/IEC 9126

34

Process Quality influences Code Quality
Software is never perfect

We cannot ensure it is free of defects

So we need ways to assess the quality
Unfortunately, automatic methods to check code
quality are often impossible (Halting Problem)
We are forced to link code quality to the quality of the
overall code-writing process.

i.e. The Capability Maturity Model (CMM) assesses the quality
of a team/organization through their process.

We will therefore talk about the process (and
the mechanisms) more than the code
High code/product quality is still the final goal

35

Ensure High Software Quality

Things we can do to ensure we produce a high
quality (low defect) product.

Product: Add quality through removing bugs (testing),
 Prove correctness of program (verification
 techniques)

Process: Build in quality from start
 (documenting, quality audits, reviews,

36

Revisiting Testing & Coverage

care about testing!
Industry averages

30-85 errors per 1000 lines of code
0.5-3 errors per 1000 lines of code in product (ie, not
discovered before the product is delivered)

How to Test?

Different scope
Classes, Subsystems, System

Different purposes
No regression, suits the user

Different tactics
Black box, white box

37

Stopping Criteria (when to stop
testing)

Unit test for every method?
Number of tests?
Equivalence Partitioning?
Boundary Tests?
Coverage?

Each Statement?
Each Branch?
Each Path?

38

What is Coverage?

The more parts are executed,
the higher the chance that a
test uncovers a defect.

Parts can be nodes, edges,

Each lead to a different
definition of coverage.

39

Control Flow Patterns

40

Representing Control Flow -
Flowchart

 41

Start

End

Indicates the start of the control-‐flow

Indicates the end of the control-‐flow

Indicates a processing step, text in the
box is the code to execute

Indicates a conditional representing a yes/no
question or true/false test. Two arrows emanate
(one for yes/true and one for no/false) and must
be labeled. The yes/true arrow typically comes
out the bottom and the other out one of the sides.

Flowchart Example

 42

Start

End

returnValue = false

returnValue = true

returnValue = true

return returnValue

year mod 4 == 0
&&

year mod 400 == 0

false

false

true

true

boolean isALeapYear(int year) {
// Declare a variable for the return value
// of the function
 boolean returnValue = false;
 // If the year is divisable by 4 and
 // not by 100 it is a leap year
 if ((year mod 4 == 0) &&
 (year mod 100 != 0))
 returnValue = true;
 else if (year mod 400 == 0)
 returnValue = true;
 return returnValue;
}

Different Types of Coverage

Statement

Branch

Path
Each possible path through the code is covered
once

43

Class Activity

In groups of two, on paper
Write three test suites for the following code

1. Statement coverage (but not branch nor path)
2. Branch coverage (but not path)
3. Path coverage
A test suite is :

A set of tests
And associated expected results

44

Class Activity (continued)

45

1. int function(boolean a, boolean b){
2. int x;;
3. if(a)
4. x = 1;;

5. if(b)
6. x = 2;;
7. else
8. x = 3;;
9. return x;;
10. }

How good is coverage?

The adequacy of a coverage criterion can
only be defined intuitively

Path coverage quickly becomes infeasible
Try it on a while loop!

Coverage as a stopping criterion is good
But smart testing is always better!

46

47

More Examples of Mechanisms for
improving Code Quality

Frequent demonstration of working software to stakeholders
Pair programming
Coding standard
Code reviews (or requirements / design review)
External auditing

Refactoring

test-driven development
Component reuse
Team building activities
Clear division of responsibilities within the team
Realistic estimations and up-to-date scheduling

Examples of Mechanisms for a
Disaster

Ignore what the customers say they want the
developers surely must know better.
Put in all the features that could potentially ever be
useful.
Do not worry about quality aspects (and ignore
the related practices) until the deadline
approaches.
Do not waste time on design or documentation
after all, code is the most important thing and time is
already too short to do all that needs to be done.

48

Software is built by humans. Humans
Need to be able to understand the systems
Have a limit for cognitive load
Need to be aware of relevant information
Need to be able to find the necessary information
Need to have enough knowledge to complete tasks
Are affected by team and its distribution

QUESTION:
How can we help humans to build better software?
Do you know existing tools/approaches that can help?
 49

Human Aspect in Software Quality

50

Some of the Mechanisms for
Quality Assurance (QA)

Cultural mechanisms
Teamwork / Team-Building
Organizational Values

Human mechanisms
Code Reviews
Refactoring

Automatic mechanisms
Style checkers
Quality Metrics

51

Teamwork / Team Building

- Jerry Weinberg
Techniques

Ice-breaker
Personality test
Casual meetings
Inclusive teams

Open communication
Transparent decision making

Foosball?

52

Organizational Values
The structure of a computer program reflects the

-
Rigid hierarchical structure

Decisions are handed down, no ability to dispute
Less input into each decision, less motivation?
Less discussions could lead to faster decisions

Flexible, collaborative, team-based structure

Better decisions through collaboration
Different people focus on different issues, cover all
bases

53

Code Reviews

Formal Inspection
Well defined, specific participant roles and
responsibilities, documented review procedure,

Less formal reviews

Tool-assisted code review
Ad-hoc review (over-the-shoulder)
Peer deskcheck / Email pass-around
Pair programming
etc.

See more at
http://www.atlassian.com/software/crucible/learn/codereviewwhitepaper.pdf

http://www.atlassian.com/software/crucible/learn/codereviewwhitepaper.pdf

54

Style Checkers

55

Joel Test: 12 steps to better code
1. Do you use source control?
2. Can you make a build in one step?
3. Do you make daily builds?
4. Do you have a bug database?
5. Do you fix bugs before writing new code?
6. Do you have an up-to-date schedule?
7. Do you have a spec?
8. Do programmers have quiet working conditions?
9. Do you use the best tools money can buy?
10. Do you have testers?
11. Do new candidates write code during their interview?
12. Do you do hallway usability testing?

see http://www.joelonsoftware.com/articles/fog0000000043.html

http://www.joelonsoftware.com/articles/fog0000000043.html

CMMI- Software Process Improvement

Capability Maturity Model Integration is an
approach to guide organizations to improve their
performance

Various process areas are assessed and
classified using maturity levels

Note: there are other ones, e.g., SPICE / ISO
15504

56

CMMI 22 Process Areas

57

CAR Causal Analysis and Resolution
CM Configuration Management
DAR Decision Analysis and Resolution
IPM Integrated Project Management
MA Measurement and Analysis
OID Organizational Innovation and

Deployment
OPD Organizational Process Definition
OPF Organizational Process Focus
OPP Organizational Process

Performance
OT Organizational Training
PI Product Integration
PMC Project Monitoring and Control
PP Project Planning

PPQA Process and Product Quality
Assurance

QPM Quantitative Project Management
RD Requirements Development
REQM Requirements Management
RSKM Risk Management
SAM Supplier Agreement Management
TS Technical Solution
VAL Validation
VER Verification

CMMI Maturity Levels

Image Source Wikipedia 58

Process Models and Quality

59

Reminder Software Process
A software process is a structured set of
activities to develop a software system.

Defines who is doing what, when and how to reach a
goal.

Many different software processes, all include:
requirements elicitation & specification, design,

Goals of each activity

Mark out clear set of steps to perform, produce
tangible item(s), allow for review of work, specify
actions to perform in the next activity

60

61

Benefits of a software process

provides an organizational tool: activities
cannot be forgotten
provides a large-scale shared framework in
which to work
facilitates necessary communication
forces us to break down the problem
provides a management tool

Software Process Models

62

A software process model is an abstract
representation of a software process.

Many different types; different models for different

types of software
types of companies
types of management

One size does not fit all mix of models often used in
practice, tailored to environment, project,

Waterfall Model
separate and distinct phases of specification and
development

63

(a.k.a. BDUF: Big Design Up Front)

Waterfall

Good for well-understood but complex
projects

Tackles all planning up front
No midstream changes = efficient process

Provides support for an inexperienced team
Orderly, sequential, easy-to-follow model
Relatively slow progress
Reviews at each stage

64

65

Agile Models / Principles
The goal of agility: to develop software in the face of
changing environment and constrained resources

Incremental and iterative
Development/delivery broken down into increments
(parts of required functionality)
Requirements are prioritised and highest priority
requirements are included in early increments.

self-organizing cross-functional teams
More a set of principles than a fixed model; many
variations of agile processes

What is Agility?

Satisfy customer through early and continuous
delivery
Customers, developers and stakeholders
work together daily

An agile process must be continually guided
Build project around motivated individuals
High value on face-to-face conversations

Primary mode of communication
Written documentation is not required

66

What is agility?
A sustainable process

Teams work at a rate that can be maintained
for the entire duration of the project

Continuous attention to technical excellence

High quality is the key to high speed

Simplicity is essential

Take the simplest path that is consistent with the goals
Be confident that it is easy to change if needed

67

Extreme Programming (XP)
 12 core practices

Fine scale feedback
Pair programming
Planning game
Test driven development
On-site customer /
 whole team

Continuous process
Continuous integration
Refactoring
Small releases

68

Shared understanding
Coding standards
Collective code ownership
Simple design
System metaphor

Programmer welfare
Sustainable pace

XP - Pair Programming

69

Pair Programming (1)
Increased discipline. Pairing partners are more likely to
"do the right thing" and are less likely to take long
breaks.
Better code. Pairing partners are less likely to produce a
bad design due to their immersion, and tend to come up
with higher quality designs.
Multiple developers contributing to design. If pairs
are rotated frequently, several people will be involved in
developing a particular feature. This can help create
better solutions, particularly when a pair gets stuck on a
tricky problem.
Improved morale. Pair programming can be more
enjoyable for some engineers than programming alone.

70

Pair Programming (2)

Collective code ownership. When everyone on a
project is pair programming, and pairs rotate frequently,
everybody gains a working knowledge of the entire
codebase.
Mentoring. Everyone, even junior programmers,
possess knowledge that others don't. Pair programming
is a painless way of spreading that knowledge.
Team cohesion. People get to know each other more
quickly when pair programming. Pair programming may
encourage team gelling.

71

Test-Driven Development

Test cases are written first
Cover new functionality or
improvement

Then the necessary function
is implemented

tests pass

Refactor before adding
feature if design could be
better

72

Advantages of Test-Driven

73

Drawbacks of Test-Driven

74

Class Activity

In groups of 2 or 3, on paper:
Compare and contrast Waterfall vs. XP with
respect to managing software quality

75

Summary

Software Quality is a large problem
Code quality is an important part of it

Code quality is difficult to assess directly
Usually associated to process quality

Good mechanisms for these processes
Cultural, Human, Automatic, Pair programming,

CMMI to capture & improve process maturity
Agile principles incorporate quality
management

76

