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Abstract

In this paper, we propose a market design solution for a data market. We focus on
four specific challenges: (1) different providers have the capability to produce different sets
of databases; (2) to answer typical queries from buyers, two or more databases must be
joined; (3) data providers have high fixed costs for producing a database; and (4) buyers
have combinatorial values over which databases are produced and thereby become available
in the marketplace. The key idea of our solution is to use a reverse auction for the sellers,
a posted-price mechanism for the buyers, and a fixed-point iteration algorithm for finding
an outcome that balances the two sides of the market. Via simulations, we show how our
market distributes the surplus between buyers and sellers. In particular, we demonstrate
that our design rewards providers of “unique” data much more than providers of “common
data.”

1. Introduction

Many datasets on the Web are unstructured, i.e., they can be interpreted by humans but
not by machines. There are numerous domains in which we would benefit greatly from data
published in a structured way, for example, as a database. This allows machines to under-
stand relationships between different pieces of data (Bernstein et al., 2016). Consequently,
this significantly reduces the effort for humans to analyze lots of unstructured datasets that
are discovered by traditional search engines. Instead, one could delegate this task to au-
tomatic query processing algorithms. For example, in the life sciences, researchers submit
queries that join data from multiple databases provided by different companies. Each of
these databases contains information on chemical compounds, disease data, biological func-
tion, and biomarkers. Automatic aggregation and processing of this data leads to faster
and more efficient drug discovery (HCLS, 2001). Another example is IBM Watson, a large
scale question answering system that defeated the human champions in the well-known TV
show Jeopardy. This system heavily relies on querying structured data from distributed
databases (Ferrucci et al., 2010) and has numerous applications in cancer treatment and
clinical research, financial advisory, and retail.

Technology that enables automatic aggregation and processing of structured data al-
ready exists, for example, the Web of Data (WoD) (W3C, 2014). This technology does
all the work of joining and processing the data and returns a precise answer to the user’s
query. However, despite the apparent power of the WoD approach, the technology has not
yet seen widespread adoption. One of the reasons for this underutilization is of economic
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nature: most of the data produced for the WoD so far was either subsidized by govern-
ments or produced at a loss (Buil-Aranda et al., 2013). This suggests that one of the most
important reasons preventing wide adoption of the WoD is a lack of financial incentives
for data providers to publish their data in a structured way. Indeed, data providers may
incur high costs for producing their databases, i.e., for structuring their data and linking it
against databases of other data providers. Naturally, data providers hope to recoup these
costs. However, advertisement, the main source of income for many data publishers as well
as traditional search engines, does not work in the Web of Data because in the WoD, data
is processed by machines rather than by humans and the machine can simply ignore any
ad. Therefore, new sources of revenue for data providers are needed. One possible way to
achieve this is via a market in which providers sell data to users and trade is mediated by
a market platform. In this paper, we propose the design of such a market.

1.1 Call for Data Markets

The need for data markets was recognized by both business and academic communities.
In a recent McKinsey report (2016), for example, the authors explained the need for data
markets by referring to the inefficient use of constantly increasing amounts of data produced
by businesses adopting IoT technologies.

Schomm et al. (2013) provide a good overview of existing data markets. One prominent
practical data market was operated by Microsoft with the Microsoft Azure Data Marketplace
platform, but seized operation in 2016 due to a “lack of sustained customer interest” (Ramel,
2016). This lack of interest, however, does not imply a lack of demand for data. A more
likely explanation is an inadequate business model. This explanation is supported by the
fact that companies like Thomson Reuters, LexisNexis and Bloomberg still make large
profits by selling access to their proprietary databases (Thomson-Reuters, 2015; Greg, 2011).
However, it is not possible to easily combine and process their data with data from databases
produced by other data providers.

There are numerous challenges when designing markets for information goods such as
data. Already more than 20 years ago, Varian (1995, 1997) highlighted the problem of high
sunk and low marginal production costs for these goods. Bakos and Brynjolfsson (1999)
studied the problem that buyers may have high uncertainty regarding their valuations for
information goods. More recently, Moor et al. (2015) argued that, in data markets, the
combinatorial preferences of buyers should be taken into account when the buyers are able
to join multiple databases.

1.2 Overview of our Approach

In this paper, we propose a new market design solution for a data market. We focus on
three challenges: (1) databases are distributed (produced by different data providers) and
can be joined to produce an answer to a query; (2) data providers have high fixed costs for
producing a database; and (3) buyers have combinatorial values over which databases are
available (i.e., different combinations of databases lead to more or less valuable answers to
a buyer’s query).

Goldberg et al. (2001), Goldberg and Hartline (2001, 2003) also studied markets for
information goods. They proposed an auction for selling goods in unlimited supply (such
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as data) in a setting with a single seller. However, they did not consider a setting with
multiple distributed sellers or buyers with combinatorial values.

In recent papers by Balazinska et al. (2013), Koutris et al. (2013, 2015) and Deep and
Koutris (2016), the authors aimed at designing a data market with quoted prices. The
basic idea was to charge a different price for different views of the database in a way that
would guarantee a no-arbitrage property. However, their approach does not allow joining
data from multiple different data providers and ignores the costs of production.

While many authors (e.g., Varian (1995), Goldberg et al. (2001)) have previously studied
the economic problem of how to sell an information good (such as music files or videos),
their approaches do not translate to data markets. The main reason is the combinatorial
structure that arises in a data market once we allow databases to be joined: a buyer’s value
for receiving answers based on one database may be zero while it may be very large once
two databases are joined. This combinatorial structure is not present with music or video
files which is why data markets require a new design.

The general approach we adopt for designing such a two-sided market is as follows. First,
we design an auction to elicit the data providers’ production costs. The objective of the
auction is to allocate data providers (and respective databases) in a way that maximizes the
total utility of buyers. This needs to be done subject to the constraint that the production
costs of data providers are recouped. Second, we suggest a uniform posted pricing scheme
that is presented to buyers submitting their queries. Apart from its simplicity, the use of
uniform posted prices prevents complex strategic behavior of buyers who are assumed to
be price-takers. Finally, we propose a mechanism that makes the overall market budget
balanced, i.e., that guarantees that the total expected amount of money collected from
buyers is equal to the total payment that needs to be accrued to data providers. While
there are many possible equilibria that can arise in such a market (for example, a trivial
equilibrium where nobody is allocated), our mechanism targets at finding the one with the
highest surplus. This balancing mechanism ties together with the reverse auction on the
one side and the posted price mechanism on the other side, and we consider this balancing
mechanism to be the main contribution of this paper.

Scope of this work. To keep our model simple, we focus only on the most essential
features of the domain such as high fixed costs and low marginal costs of production of data,
the distributed nature of production and the combinatorial aspect of users’ preferences. We
argue that these features have the most significant implications on market design. The list
of all possible features may include privacy and quality of data, endogenous demand or
dynamic arrival of sellers to the market. Accounting for privacy and quality of data can
make the model unreasonably complicated and are therefore outside the scope of the current
paper. Endogenous demand and dynamic arrival of sellers are possible future extensions.

2. Preliminaries

2.1 Formal Model

Figure 1 provides a schematic overview of the market we will design. We assume that there
are N sellers (i.e., data providers), s1, ..., sn; and L buyers (or users), by, ..., by, who submit
their queries; N, L > 0 are given exogenously. To keep the model simple, we assume that
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Figure 1: Market structure. Buyers consume rows of database tables corresponding to their
queries for a posted price p per row. The reverse auction A elicits fixed costs of sellers. The
market platform balances both sides of the market, i.e., the total payment collected from
buyers needs to be equal to the total payment accrued to sellers.

each buyer submits a single query. The answer to a buyer’s query consists of multiple rows
of a database table (possibly joined over multiple databases) that satisfy the buyer’s query.
Thus, the buyer can buy some of these rows in exchange for money. This means that there
are two goods involved in the exchange: money and rows of database tables corresponding
to buyers’ queries.

Market Structure. The market is mediated by a market platform. This market platform
operates a so-called query engine, which executes buyers’ queries and produces answers for
these queries. Given a query from buyer b;, the query engine takes databases of different
sellers as inputs and then outputs R; € N rows by joining those databases.

In our market design, the market platform is a neutral (and, in particular, non-profit
maximizing) entity for two primary reasons. First, observe that there are two levels of
production: the sellers produce their databases, and the query engine then takes/joins
those databases to produce answers to buyers’ queries. Thus, it is highly convenient to
consider the query engine a separate entity residing at the market platform. Second, one
can show that in a domain with zero marginal costs of production (such as our domain),
a (non-trivial) competitive equilibrium (i.e., where the seller maximizes her profits and the
buyer maximizes his utility) is not guaranteed to exist (Mas-Colell et al., 1995).! Similar
problems occur in markets with natural monopolies (Tirole & Laffont, 1993). In practice,
such markets require a regulator, and the regulator is usually a governmental organization
that induces prices based on its own analysis of production costs and market demand.
This fact comprises our second argument for the use of the neutral (non-strategic) market
platform that acts as a “regulator.”

In our case, it is the market platform “sets prices” based on two key factors: the sellers’
production costs and the market demand for the databases. To elicit the production costs
of the sellers we argue for the use of a reverse auction A (defined formally later in this

1. This follows from the fact that the profit maximizing seller will produce the maximum possible number
of rows at zero marginal cost if the price per row is positive. The buyer, however, may not be willing to
pay for all these rows unless the price is 0.
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section). We also argue for the use of a uniform posted price per row that is exposed to
buyers for estimating the demand for databases (see Figure 1).

Sellers. We assume that every seller can produce a single database and that ¢; € R>g is
the fixed cost of s; for producing her database.?? Let ¢ = (c1,...,cny) be the cost profile
of sellers. Let D be the number of different databases, D < N. For every database
ke {1,..,D} we let i(k) = (i1(k), ..., i4(k)) denote the indices of sellers that can produce
the database k.

We assume that the ¢; are independent random variables distributed according to cumu-
lative probability distributions F;, ¢ = 1,..., N. We let f; be the corresponding probability
density. We assume that f;(¢;) has full support on some interval [o;, 5;]. Then, the joint
probability density is f(c) = HZ]\LI fi(e;). Similarly, f_i(c—;) = [I;4; fi(¢;) is the joint
probability density of all sellers except s;.

Let t = (1, ..., tn) denote transfers (payments) received by s; and a = (a1, ..., an) denote
an allocation decision of the reverse auction A4, i.e., a; € [0, 1] is the probability that s; is
allocated. 4 The utility of seller s; is assumed to be quasi-linear, i.e, ui(a, ¢, t) = t; — a;c;.

Sellers are strategic and can thus misreport their costs. Let ¢ denote the reported
cost of s;. Then, (é1,...,¢x) is a reported cost profile of all sellers. Similarly, ¢_; =
(1, ...y Gi—1, Cix1, ..., C) denotes a reported cost profile of all sellers except s;.

Buyers. We assume that every buyer b; is equipped with an
initial endowment of money e € R>g. A buyer can use his en-  U;
dowment to acquire rows of the database table corresponding

to his query and keep the rest of this money, m; € R>q, in his
wallet. Let r; € N denote the number of rows acquired by b;. ,

We assume that the buyers in our market are institutional % fl) >

agents. They could be pharmaceutical companies, operators 7i(a) t;
of cloud applications or some other kind of intermediary. Im-
portantly, we assume that the buyers in our domain can esti-
mate their value for rows of the database tables. We assume
that buyers are risk-neutral the b;’s preferences are described
by a quasi-linear utility function uj(mj,r;, a) = vj(rj, a)+m;.
Here, v; is the value function of b;. Notice that the value function depends on the allocation
decision a of A regarding data providers. This follows from the assumption that the larger
the number of allocated sellers, the more “informative” (and thus valuable) an answer for the
buyer’s query becomes. For simplicity, we assume that for any a, vj(r;, a) is linear and non-
decreasing in 7; up to a certain threshold 7;(a) > 0, and exhibits zero marginal increase for
every additional row r; > 7;(a) (see Figure 2). 5 Formally, vj(rj, a) = v/;(a) min{r;,7;(a)}.

J

Here, v} (a) is the marginal value for rows if the allocation is a. We let Fiy(,) and Fy,

denote the cumulative distribution functions of v(a) and 7;(a), respectively.

Figure 2: Value function of
the buyer b; when the allo-
cation is a.

2. We assume marginal costs, i.e., costs of maintaining a database and answering queries, to be zero.

3. Throughout the paper we use “she” for sellers and “he” for buyers.

4. For technical reasons and simplicity of some proofs we assume that the allocation is probabilistic. The
resulting mechanism that we will present in Section 3 however, will be deterministic.

5. Generally speaking, buyers could have a decreasing marginal value for additional rows. However, the
assumption of a constant marginal value and a threshold is not too restrictive as it still captures convex
preferences of buyers while providing us with a relatively simple model.
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We make two assumptions regarding how buyers’ preferences change when additional
sellers (and thus, additional databases) are allocated. Assume that a = (aq, ..., a;,...,an)
is an allocation and let us define da; = (0,...,0,...,0) with the ith element equal to §,
0<6<1—aq.

Assumption 1 (Monotonicity of the Marginal Value). For every j = 1,...,L, Vi =
1,..., N the following inequality holds vj(a + da;) > vi(a).

The intuition behind this assumption is as follows: As more sellers are allocated, the
marginal value of every buyer b; for his query answer cannot decrease. This assumption
is justified by the fact that the more information there is available, the more precise the
answer to the query will be.

Assumption 2 (Monotonicity of the Maximum Buyer’s Value). For every j =
L., L, Vi=1,...,N it holds vj(a + da;)7;(a + da;) > vj(a)T;(a).

This assumption can be interpreted as follows. Buyers submit their queries in order to
answer a particular question. As answers for queries become more valuable (due to Assump-
tion 1), each buyer can decide to buy more or fewer rows. However, this doesn’t change
the value of answering the particular question they had in mind: more information simply
permits a better approximation of the question because it makes use of more databases.
This makes the total value of a query answer, v;(a)7;(a), non-decreasing.

Finally, we assume that buyers are indifferent between identities of sellers who produce
a database k.

Allocation and Pricing. Let p denote the posted price per row in an answer to a query.
The price p will be set independent of the query to prevent buyers from engaging in complex
strategic behavior when deciding which queries to submit (e.g., to get cheaper answers
to their questions). While this may seem counterintuitive at first sight, remember that
producing any answer has zero marginal costs for the seller. Further, we assume the number
of buyers L to be large, such that buyers are price takers and thus cannot manipulate the
market price.
Given price p and allocation probabilities a, every buyer b; solves his consumption
problem of maximizing his utility subject to the budget constraint (Mas-Colell et al., 1995):
max u;(m;, 7, a)
st.p-rj+m; <e, (1)
m; Z 0, Ty S Rj.

Let (m (p,a), T (p,a)) be a solution to the consumption problem when the posted price
is p and the allocation is a. Here, r}(p, a) is the (Marshalian) demand of b; for rows when
the posted price is p and the allocation is a. Similarly, m;‘ (p,a) is the demand of the buyer
for money (i.e., how much money the buyer wants to keep). Observe that mj(p,a) and
r; (p,a) need not be functions. In fact, they are correspondences (Mas-Colell et al., 1995).

Let A = (g, h) be the reverse auction adopted by the market platform. Here, g : RV —
[0, 1]V denotes an allocation rule that maps the cost profile ¢ = (cy, ..., cx) to the allocation
decision (a1, ...,an); a; = gi(ci, c_;), where g;(ci, c_;) : RN — [0, 1] computes the probability
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that s; is allocated. If a is an allocation, we let |a]; be the corresponding allocation in
which sellers producing database k are not allocated. We let h denote the payment rule
that maps the cost profile ¢ = (¢q, ..., cy) to the vector of payments (¢4, ...,tx) to be paid to
the sellers. As we shall see in Section 3, these payments need to be made “in expectation”
due to the random nature of buyers’ values and sellers’ costs. As we discuss in Section 3,
when A computes the allocation and payments it takes into account F; for all: =1,..., N as
well as both F(,) and Fy, for all possible deterministic allocations a € {0,1} of sellers.®

Given all of the above information, the market platform can compute the price per row
p > 0, which is exposed to buyers, and payments ¢t; > 0 to be paid to sellers.

Remark 2.1. In practice, the market platform will need to do some market research to
learn the distributions Fy, Fyy(q), Fy(q)- Such learning can be done by building an appropriate
regression model that captures the connectivity of different databases, their topics, the va-
lidity of the data, etc. The design of an appropriate learning procedure, however, is outside
of the scope of this paper.

Finally, we define the social welfare as the total utility of buyers and sellers obtained
in the market given allocation a, payments ¢ and the posted price p, i.e., SW(a,t,p) =

N L * *
Zizl ui(aa Ci, t) + Zj:l uj(mj (p7 a)? Tj (pa a)? a)'

2.2 Market Properties

We now discuss a number of properties we would like the reverse auction A and the overall
market mechanism to satisfy.

Auction Properties. We begin with the properties we would like the reverse auction A
to satisfy.

Definition 1. The reverse auction A = (g,h) is Bayes-Nash incentive compatible
(BNIC), ZfVZ = 1, ,N VCZ‘ \V/él VC,Z‘

By uig(ci, c—i), i, hci, c-i)] 2 By [ui(g(éi, c-i), i, h(éi, c—i))]. (2)

In our work, we look for a reverse auction A that satisfies BNIC.
The following property guarantees participation of sellers in the reverse auction:

Definition 2. The reverse auction A = (g, h) is individually rational (IR) for sellers,
ifVi = 1, ceny N, VC,‘,VC_Z‘

Ey_,[ui(g(ci, c—i), ci, h(ci,c—i))] > 0. (3)

Market Mechanism Properties. Now, we switch to a discussion of the properties that
the overall market mechanism should have.

First, observe that individual rationality is satisfied for buyers automatically. This
follows from the fact that when solving their consumption problem (1), buyers always have
the option not to consume rows and to keep their whole endowment e.

Additionally, we would like the market mechanism to be budget balanced. Formally:

6. Observe that as the number of databases increases, the number of possible deterministic allocations
increases exponentially. In practice, the valuations of buyers for different allocations may be very similar.
This would allow the market platform to considerably reduce the amount of information it needs to collect
and this would also simplify pricing. In this paper however, we do not discuss such optimizations.
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MP computes a,t,p
Sellers arrive Sellers produce DBs Buyers arrive and pay

Period 1 Period 2 Period 3

Figure 3: Temporal model of the market. During the first time period, sellers arrive and
report their costs. In the second time period, the market platform computes an allocation
and payments to sellers, as well as the posted price p. During the third time period, buyers
arrive and consume the desired number of rows of database tables corresponding to their
queries.

Definition 3. The market mechanism is budget balanced (BB) if Ve, VE (4, Fr(a), VE;
(i=1,...,N ), the price p, the allocation and payments computed by A = (g, h) satisfy

L

N
Y ti=> (e—mi(p,a)), (4)
=1

j=1
where (t1,...,tn) = h(c) and a = g(c).

In words, the total payment to sellers computed by A should be equal to the total
amount of money collected from buyers. As A uses Fy (), Fr) and Fj, i = 1,..., N to com-
pute the allocation and payments (see Section 2.1), this property should hold for arbitrary
distributions.

2.3 Temporal Structure

Figure 3 illustrates the temporal structure of the data market we propose. First, for sim-
plicity, we present the model with only three time periods and then elaborate on how it can
be generalized for an arbitrary time horizon T.

In time period 7 = 1, all sellers s;, ¢ = 1,..., N arrive to the market and report their
costs to the market platform. Then, in time period 7 = 2, the market platform computes
allocation a = (a1, ...,an) and payments ¢t = (t1,...,tx) as well as the posted price per row,
p, based on reported costs received from sellers and the value model of buyers (i.e., Fyy(q)
and F;(a)). Once the allocation is computed, allocated sellers can produce their databases
(this happens during the same time period 7 = 2). Finally, in time period 7 = 3, buyers
arrive to the market, submit their queries and pay a price p per row of answers to their
queries.

This simple model can be generalized straightforwardly to a setting where buyers do not
arrive to the market at the same time, but over a certain time horizon T. In this setting,
we assume that each database remains fully relevant (i.e., the value of the buyers remains
the same) for T time periods, but that the data in the database becomes obsolete and thus
has zero value after T time periods.” This means that we assume that T is the timeliness
of data (i.e., a period of time during which the data is still up to date).

7. It is also possible to use a discounting factor for the value of data. We leave this direction for future
work.
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The market platform promises to the sellers that over the time horizon T, every allocated
seller s; will receive payments that are expected to add up to ;.8 This means that the market
platform does not pay t; to the seller s; immediately at time 7 = 1. Instead, it will accrue
money paid by buyers coming to the market over the time horizon T. We assume that
L buyers arrive to the market over the time horizon T, each paying e — m; (p,a) to the
market platform to get r} (p, a) rows of database tables (possibly joined) corresponding to
their queries. These payments go directly to sellers until all promises are fulfilled (i.e., each
seller s; receives ;).

3. Market Design

In this section, we present our main contribution: a market design solution for selling
distributed data. We demonstrate how the reverse auction A should be designed as well as
how the posted price p must be computed to achieve our design goals.

3.1 Market Design Objective and Constraints

Social Choice Function. The result of Myerson and Satterthwaite (1983) in domains
when buyers and sellers are both strategic implies that there does not exist a social welfare
maximizing mechanism that is BNIC, IR and budget balanced. Thus, optimizing social
welfare is not feasible in this domain. Instead, we find it acceptable to sacrifice a bit of
social welfare as long as the resulting market is BNIC and guarantees IR and BB. Given
this, we can consider either optimizing the total utility of buyers or the revenues of sellers,
subject to the aforementioned constraints.

As discussed in Section 1.1, non-negative profits for sellers is a crucial constraint for
the viability of markets for distributed data. This is why maximizing the revenue of sellers
could be a potential objective. This objective, however, does not seem very attractive, as we
envision the market for distributed data to give rise to many novel Al applications coming
from the buyers’ side. Distributing all the surplus in favor of the sellers (who are often
“monopolists” of their data) can make the market uninteresting for many potential buyers.

This is why we focus on optimizing the total utility of buyers subject to the constraint
that the fixed costs of the allocated sellers can be recouped and the market is overall budget
balanced.

3.2 Deriving a Value for Databases

To compute the allocation and payments of the sellers, we now derive the induced values
of the buyers for the databases of the sellers. To this end, we first define the aggregate
value of buyers for rows of database tables corresponding to their queries. Based on this
aggregate value function, we can compute the positive externalities that different databases
impose on buyers. Finally, we use these externalities to define buyers’ values for different
databases.

8. In our model, we assume that exactly L buyers arrive. In practice, more or fewer buyers would arrive.
Our model extends straightforwardly to these cases by including an additional expectation over the
number of buyers.
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Given an allocation a € [0, 1]N and price per row p, the market demand for rows is
r*(p,a) = Z]L:1 r7(p,a). The market demand for money m*(p,a) is defined analogously,

ie, m*(p,a) = Zle mj;(p,a). We begin with the following definition:

Definition 4. An aggregate buyer is a fictional buyer with an endowment E = L -e and
the utility U(m,r,a) = V(r,a) + m. Here, V(r,a) is an aggregate value function, i.c.,
a function that makes the solution of the consumption problem (1) for the aggregate buyer
equal to the market demand m*(p,a),r*(p,a).

This means that the aggregate buyer is a fictional agent that acts in the same way as
all buyers would act together when responding to the price p and the allocation a. The
following proposition provides a way to compute the aggregate value function.

Proposition 3.1. Given allocation a € [0,1]", the aggregate value function is

V(r,a) = /07“ m(z,a)dz, (5)

where (2, a) = max,«(y q)=, P'.°

Proof. From the Kuhn-Tucker conditions (Mas-Colell et al., 1995) for the aggregate con-
sumer’s problem (see Equation (1)), we have:

W (e a)=p. (6)

dr
If 7*(p,a) was a function, then the right hand side in Equation (6) would be the inverse
demand function 7*~!(p, a). However, r*(p,a) is a correspondence and, therefore, there can
be many different prices p that support the solution r* = 7*(p,a). To resolve ambiguity, we
let
av ;

—(r*,a) = max . 7
dr ( ) r*(p’,a):r*p ( )

Integrating Equation (7) and replacing max,«(,y )=, p’ with (z, a) we get V(r,a) = [ 7(z,a)dz.

Thus, solving Equation (6) with this aggregate value function gives us a solution r*(p,a),
which is a market demand for rows. The demand of the aggregate buyer for money is then

* L L * L * * 3 3
equal to B —p-r*(p,a) = > ;e —p) i ri(pa) = 3 -y mi(p,a) = m*(p,a), which is
exactly the market demand for money. Thus, V(r,a) is the aggregate value function.  [J

Now that we know how to compute the aggregate value function we can analyze some
of its properties. We begin by showing that the aggregate value of buyers can only increase
when more databases are allocated:

Proposition 3.2. For allr >0, Va € [0,1]V, Vi = 1,..., N the following holds:

ov
aai (T7 a’) — 0

9. This corresponds to the maximal inverse demand function.

10



THE DESIGN OF A COMBINATORIAL DATA MARKET

Proof. Consider a single buyer bj. Let da = (0, 5a2,...,0), With da; > 0. Then Vr,

vj(r,a+da) = vj(r,a) +5aza (r,a). Consequently, 6a L(r,a) = 5, L (vi(r,a+ da) — v;(r,a)).
From Assumptions 1 and 2 it follows that vj(r,a + 5a) > vj(r, a) for all r > 0, Va,Vj =

1,...,L. Therefore, (r a) > 0. This means that every buyer’s value for r rows can
only increase with the increase of a;. Consequently, the aggregate value can also only
increase. O

Example 1. Assume that L = N = 2 and that e = 10; each seller produces a single
database. Consider a setting where sy is allocated while s9 is not, i.e., a = (1,0). Assume
bj (7 =1,2) submits a query against the database of s and has the following value function
for her data: vi(ri,a) = 4 - min{ry,1}, ve(re,a) = 1 min{re,2}. Buyers solve their
consumption problems, see Equation (1). From the Kuhn-Tucker conditions we obtain the
buyers’ demands when the allocation is a:'*°

1, ifp<4 2, ifp<1
ri(p,a) = 410,1], ifp=4  r3(p,a) =¢10,2], ifp=1
0, otherwise 0, otherwise.

Consequently, the market demand is

3, fo<p<l1
[1,3], ifp=1
r*(p,a) =< 1, ifl<p<d (8)
[0,1], ifp=14
L0, if 4 < p.

It is easy to check that this market demand is equal to the demand of the aggregate buyer
with an endowment of E = 2e and utility U(m,r,a) = V(r,a) + m, where

4r, if0<r<1
Virya)=¢3+r, if1<r<3
6, if3<r

is the aggregate value function. For example, here the aggregate value for the first row
(0 < r < 1) is equal to 4. Therefore, if p > 4, the aggregate buyer’s demand must be 0.
Equation (8) confirms this as r*(p,a) = 0 for p > 4. Other cases are analogous.

Remember, that if a is an allocation, then |a]; stands for a similar allocation in which
the database k is not allocated. We now define the externality imposed by a database k on
all buyers as follows:

10. The result is quite intuitive. Indeed, b; is not willing to buy query answers as long as the price p per
answer is larger than his marginal value for the answer (which is equal to 4 for b; and 1 for b2). As soon
as the price is smaller than the marginal value, b1 and b2 are willing to buy up to one and two query
answers respectively.

11
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Definition 5. For a given allocation a and a posted price p, the externality imposed by the
database k 1is

exty(a,p) = V(r*(p,a),a) = V(r*(p, alr), la]r)- 9)

The externality reflects how much additional value the database k brings to all buyers.
Note that this quantity could be zero if the database k is not allocated in a. To define the
value of buyers for a database k in a consistent way, we split the aggregate value achieved
by all buyers proportionally to exty(a,p). Formally:

Definition 6. Given allocation a € {0,1}" and price p, the induced value Wi(a,p)
of the aggregate buyer for the database k is the share of the aggregate value that is
proportional to the externality that database k imposes on the aggregate buyer, i.e.,

C.Ttk(a,p) *
Wi(a,p) = V(rt(p,a),a). 10
k(a, p) S ertu(anp) (r*(p,a),a) (10)

Observe that Wy(a,p) depends on the posted price p and on the whole allocation a.
Thus, indirectly it depends on allocations of all other databases. The dependency on al-
location a reflects the important fact that buyers may have combinatorial valuations, i.e.,
they can value database k higher if a complementary database is also available.

The fact that Wy(a,p) depends on price p has the following intuition: If price p is
too high such that no one can afford to buy a single row, the externality imposed by any
database is zero. If prices are low, externalities become positive.

We impose an additional assumption: all allocated databases are (weak) complements
for the aggregate buyer. Thus, his valuation of databases is supermodular (Chambers &
Echenique, 2009). Intuitively, supermodularity can be described as follows. Consider any
two databases ¢, k. Supermodularity says that the induced value of database k can only
increase as the allocation probability of the other database ¢ increases. Formally:

Assumption 3 (Weak Complementarity). For any two databases ¢ and k, for any
a € {0,1}, ¥p > 0 the following inequality holds:

Wi(a,p) > Wi(lae, p). (11)

Remark 3.1. This assumption is quite intuitive: If the database £ complements another
database k, an increase in allocation probability of £ leads to an increase in the induced value
of database k for the aggregate buyer. Imposing this assumption on the aggregate buyer is
natural: given that this buyer can be considered as the whole population, it makes sense to
allocate those databases that are complementary. Note that, for individual buyers different
databases can still be either complements or substitutes.

While Assumption 3 is intuitive, it does not follow directly from Assumption 1 and
Assumption 2. Indeed, one could construct an example where Assumptions 1 and 2 are
satisfied but Assumption 3 is not. To eliminate these corner cases we state the Assumption
3 explicitly.

12
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Example 2. We follow the setup of Example 1. The externality that s1 imposes on buyers
when the allocation is a = (1,0) and the posted price is p is exti(a,p) = V(r*(p,a),a) —
V(r*(p,|al1), |a]1), where |a]; = (0,0). Here, the aggregate value when the allocation is
la]i is V(r,|a]1) = 0 as no queries can be answered. Similarly, the externality that so
imposes on buyers under allocation a is 0 (as sy is not allocated). Thus, for example, if
p = 1 — €, then the market demand r*(p,a) = 3 and the induced value of the database of
s1 is Wi(p,a) = % -6 = 6. Ezample 8 extends the current example for the case when all
databases are allocated.

3.3 Designing the Reverse Auction

Now that we have defined the induced values for different databases, Wy(a,p), we can
define an appropriate auction A that maximizes the total utility of buyers, subject to the
constraint that the fixed costs of allocated sellers are recouped. In this auction, the market
platform computes the allocation a and payments ¢ based on the costs reported by sellers.
We design this auction in a way that is similar to Myerson (1981) optimal auction.

First, observe that the expected total utility of buyers is equal to the difference between
the expected value that the aggregate buyer can achieve under the allocation g(c) and the
total payment that the buyers must make to the sellers. Formally,

N
By [U(g(c), )] =E; [V (1" (b, 9(c)), 9(e)) = 3 hi(0)]
=1

D

N

=E; [Z Eg (o) [Wk(avp)} - hi(C)} : (12)
k=1 i=1

Here, E; () [Wk(a, p)} is the expected induced value of the database k with the probabilistic

allocation of sellers g(c) (see the formal definition of this term in Appendix B). The market
design problem now is to find an auction A = (g, h) that maximizes E¢[U(g(c), h)] subject
to BNIC, IR and the following constraints:

Y gie)<1 Vk=1,..,D Vee 0,1V, (13)
i€i(k)
gi(c)>0  Vi=1,..,N Vee[0,1]". (14)

Constraints (13) and (14) ensure that each database is allocated at most once and that the
allocation probabilities are non-negative.
We assume that the distributions of costs of sellers f; are regular, i.e., monotone and

strictly increasing (Myerson, 1981). We also let ¢;(c;) = ¢; + ?((CC’)) denote the wvirtual cost

of seller s;. Let us also define the virtual surplus as S(a) = Zszl Wi(a,p) — Zf\il ¢i(ci)ai,
a € {0,1}". Now, we are ready to present the optimal reverse auction.

Buyer-Optimal Reverse Auction (BORA)

Allocation rule: a* € argmax,e o 1}5 §(a); use random tie breaking in the case of ties.
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Payment rule: For each seller s;:
If a; = 1, then

ti= o7 (¢ile) + S(a) = S(la))). (15)

If a; =0, then t; = 0.

In words, the allocation rule says that the auction allocates sellers in a way that maxi-
mizes the virtual surplus. We break ties randomly. Informally, the payment of the allocated
agent is computed in a similar way as VCG payments, where agents report their virtual
costs instead of their true costs. To better understand the intuition behind the payment
rule, let us consider several special cases.

One database, one seller. Let us first consider the setting with a single seller, i.e., N =
1, and consequently, D = 1. In this case, the seller is allocated whenever her virtual cost
is smaller than the induced value of buyers for her database, i.e., ¢1(c1) < Wi(a,p). From
Equation (15) it follows that the payment to the seller must be equal to t1 = ¢ (Wi(a,p)).
This payment is similar to the Myerson (1981) reserve payment. In words, the reserve
payment is equal to the cost that the seller should have had for her virtual cost to be equal
to the induced value of the aggregate buyer for the respective database.

One database, multiple sellers. Let us now assume that there are multiple sellers
that can produce the same database, i.e., D = 1 and N > 1. In this case, the seller
with the smallest virtual cost is allocated as long as her virtual cost is smaller than
the induced value of buyers for her database. W..o.g., let us assume that ¢;(c1) is the
smallest virtual cost and ¢2(c2) is the second smallest virtual cost. Then, the payment
of the allocated seller is equal to the minimum of ¢;'(¢2(c2)) and ¢ (Wi(a,p)), ie.,
t1 = min{¢; (d2(c2)), d7 (Wi(a,p))}. In other words, the payment of the allocated agent
is computed as the minimum of the reserve payment and the critical value. Here, the critical
value is defined similarly to (Nisan et al., 2007), i.e., it is equal to the largest cost that the

seller could have reported while still being allocated, i.e., gf)z-_l(minjei(k)\i qﬁj(cj)).

Two databases, two sellers. Consider the setting with two distinct databases, each
produced by a single seller. Assume further that ¢;(c1) > Wi(a,p) for a = (1,1) and for all
p. In contrast to the setting with a single database and a single seller discussed above, in
this case, one can happen that the database 1 is allocated (i.e., despite of the fact that its
virtual cost is larger than the induced value of the respective database). Such a situation
is possible, for example, when the database 1 has a very strong complementary effect on
the database 2. Thus, the presence of the database 1 can increase the induced value of the
second database, Wa(a,p), as this induced value depends on the whole allocation a. As a
result this may lead to a higher virtual surplus. Therefore, it may be optimal to allocate
both databases. Example 4 in Appendix A illustrates this case.

Multiple databases, multiple sellers. In this most general case, the intuition behind
the payment rule (15) mimics the intuition of the standard VCG mechanism. Indeed, the
first two summand in the Equation (15), (¢;(c;) + S(a*)), correspond to the total virtual
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surplus achieved by all sellers apart of s; at the optimal allocation a*. The last summand,
S( |a]}), corresponds to the optimal virtual surplus achieved in a similar setting but without
the seller s; being present. Thus, the argument of the inverse virtual cost function can be
interpreted as a virtual externality imposed by the seller s;.

Observe also that in the general case, the objective of maximizing the virtual surplus in
the allocation rule of the BORA auction is non-linear. This follows from the fact that the
induced values of databases need not depend linearly on different allocations. This poses
a number of computational challenges that we will address in Section 3.5. Appendix A
presents a number of worked examples that illustrate the BORA auction.

Theorem 3.3. If the distributions f; are reqular for all i = 1,..., N, and the databases are
complementary for the aggregate buyer, then the BORA auction maximizes buyers utilities
and satisfies constraints (13), (14), BNIC and IR.

Proof. First, let E¢ ,[gi(ci,c—;)] be an ex-interim allocation probability of s;. As Myerson

(1981) showed, BNIC, IR and constraints (13) and (14) imply monotonicity of ex-interim
allocation (see Lemma B.1 in Appendix B). We use this result to prove the following lemma:

Lemma 3.4. Consider the allocation rule g : RJZVO — [0, 1]V that mazimizes

Ef[i (Eg(c) [Wk<a7p)} - (Ci + ?Z((Z)))QZ(C))] (16)

k=1 i€i(k)

subject to monotonicity of the ex-interim allocation and constraints (13) and (14). Further,
consider the payment rule h;(c) = gi(c)cﬁ—fc'fi 9i(¢i,c_;)dé; for everyi=1,...,N, Vec. Then,
A = (g, h) mazimizes buyers’ utilities under the constraints (13) and (14), BNIC and IR.

Proof. The proof is presented in Appendix B. O

Now we would like to show that if a database £ is allocated with a positive probability,
then this probability must be equal to 1. To achieve this, we first present the following
proposition that shows that constraints (13) are binding when databases are complements:

Lemma 3.5. Let g*(¢) be a solution of (16). Then, if for a database ¢ there exists a seller
si with i € i(¢) such that g;(c) >0, then 3 ;i) 97 (c) = 1.

Proof. See Appendix B for the proof. O

From Lemma 3.5 and Lemma B.2 (see Appendix B), it follows that, there must ex-
ist a deterministic allocation ¢g*(c) that maximizes Equation (16). Consider a mechanism
that for any reported cost profile ¢ maximizes the virtual surplus S (a) = Zszl Wi(a,p) —
S > ici(k) i(ci)ai, where a € {0, 1}V, This allocation also maximizes Equation (16).
Remember that the distributions f; are 1"egu1a]r.11 Thus, ¢;(c;) must be monotone. Conse-
quently, the ex-interim allocation is also monotone.

11. For irregular distributions we could use ironing in a similar way as in (Myerson, 1981).
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From Lemma 3.4 it follows that in order guarantee BNIC, the payments of sellers must
satisfy

Bi
mwzﬁ@m+/gm@ama (17)

for every i =1,..., N, Vc. If a seller s; is not allocated (i.e., aj = 0), then from monotonicity
of the ex-interim allocation (see Lemma B.1) it follows that s; is not allocated for any other
cost gj > ¢j. Consequently, h;(c) = 0. If a seller s; is allocated (i.e., a; = 1), then Equation
(17) can be simplified as follows

G
hj(C) =c+ déj :Cj+<j —¢j :Cj, (18)

Cj

where

G = sup{elé;(c) < diler) Vi€ i(k)\j and d(c) < 6;(c) + 5(a*) — S(la})}.  (19)

Now, let us exclude the seller s; who produces a database k from the mechanism and
consider two scenarios. In the first scenario, the resulting allocation of databases stays the
same, i.e., the database k is still produced but perhaps by a different seller i € i(k). In this
case, it must hold that ¢;(c¢;) = min{¢,(cq),q € i(k)}. Thus, the second inequality in (19)
implies the first one. In the second scenario, the database k is not allocated anymore. Thus,
it must be that ¢;(c;) — ¢;(c;) > S(a*) — S'(Laj;), where ¢;(c;) = min{gy(cq),q € i(k)}.
Equivalently, ¢;(c;) > ¢;(c;) + S(a*) — S( la]}) and therefore, the first inequality in (19) is
again implied by the second one. Therefore, from the monotonicity of ¢;(c;) it follows that
the payment of any seller s; can now be rewritten as follows:

hi(e) = &5 (65(c) + S(a*) = S(Lal))). (20)
[

3.4 The Overall Market Mechanism

The reverse auction designed in the previous section does not guarantee that the market
mechanism is budget balanced. Instead, it assumes that the market platform can always
pay the sellers. To guarantee that the market is budget balanced, the market mechanism
needs to set a posted price p, such that the total amount of money collected from the buyers,
Z]L:l(e —mj(p,a)), is equal to the total payment S | i received by the sellers.
Consider the budget surplus'? achieved when the allocation is a and the price is p:

L N
B(pa Cl) = Z(e - m;(p7 CL)) - Ztl (21)
=1 i=1

12. In microeconomic literature, this quantity is also often called the ezcess demand for money (Mas-Colell
et al., 1995).
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Z"L<p7 a)

1A
Figure 4: Example of the dependency of the budget surplus B(p, a) on posted price p. Point
C' corresponds to the minimal p that satisfies overall budget balance.

Observe that the total payment to be accrued to sellers depends on allocation a and on
price p. To see this, notice that if p = 0, buyers can gain a lot of value from submitting
queries against all databases (for free). Thus, the induced value of any database k, W (a, p),
is large, and it is likely that the database is allocated. As a result, the second term in (21)
is positive. At the same time, buyers do not pay anything and, consequently, the first term
in Equation (21) is zero. This means that if p = 0, then B(p,a) < 0. This case is illustrated
by point A in Figure 4. A similar argument works for a situation in which p = co. In this
case, both terms in B(p,a) are zero, which corresponds to the trivial equilibrium when no
sellers are allocated. Point B in Figure 4 illustrates this scenario. As can be seen in Figure
4, the non-trivial equilibrium prices that satisfy the budget balance constraint correspond
to points C' and D. In general, there may be multiple solutions for which B(p,a) = 0 (such
as points B, C and D in Figure 4). Consequently, there may be many different posted
prices that guarantee budget balance. However, we aim to find the smallest such price, as
it would deliver the largest total utility to buyers.

Data: Fi(c;), i =1,..., N; Fy(q), Frq) for all a € {0,1}
Result: Allocation a, payments ¢, posted price p

16+ 0.01 // Step size
2140

3 p(t)=0

4 a(v) « (a1,...,an), s.t., Vk < D holds 3,y ai = 1

5 ask sellers to report ¢ = (¢, ..., ¢n)

6 repeat

7 compute Wy (a(e),p(¢)) for all k < D // See Definition 6
8 set up A = (g, h) parametrized by Wy(a(¢),p(¢)) // See BORA

9 solve A, i.e., compute a < g(¢) and t < h(¢) // See BORA
10 compute market demand for money m;(p(¢), a(t))

B(p(v),a()  Xioy (e = mi(p(t), a(0)) = LN,

11 p(t+1) < p(t) — B(p(t),a(t)) - // Price update
12 Lt v+1

13 until |B(p(),a(r))] <€

14 p < p(t)

15 return a, t, p

Algorithm 1: Fixed-point iteration for computation of the allocation and the price.
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To find a solution, we adopt an idea similar to the Tatonnement process (Cheng &
Wellman, 1998). More concretely, we design an iterative algorithm that updates the price,
allocation and payments of sellers at every iteration . We begin from an initial price pg = 0
that corresponds to a situation when rows of database tables corresponding to buyers’
queries are free. We then perform a fixed-point iteration by increasing the posted price p(t)
as a function of the iteration ¢, as well as adjusting allocation probabilities a(t). At every
iteration ¢, we evaluate Wi (a(¢),p(¢)) and compute the tentative allocation a and payments
t of the auction A. Knowing the allocation and payments, we can compute the excess
demand for money, B(p(t),a(t)), at this iteration. As long as B(p(t),a(t)) is negative, we
increase the price p(¢). We stop the algorithm when the change in price is smaller than the
chosen tolerance threshold. Algorithm 1 summarizes the whole market mechanism.

Remember that the sellers are asked to report their costs only once. Precisely, this
happens at time 7 = 1 of our temporal model (see Figure 3). We assume that the sellers
understand Algorithm 1 and the rules of the BORA auction. Thus, they can make a truthful
report ¢ = ¢ (see line 5 of Algorithm 1).

Note also that Algorithm 1 does not require any interaction with the buyers. Instead, it
is considered a heuristic procedure for computing an equilibrium price and allocation. Thus,
this algorithm must be executed at time period 7 = 2 of our temporal model (see Figure 3),
in other words, before actual buyers arrive to the market. This implies that the iterative
nature of the algorithm does not change the incentives of the buyers to behave truthfully
and the truthfulness of the overall market follows immediately from the truthfulness of the
BORA auction.

Second, observe that a non-trivial equilibrium does not always exist. Consequently, our
algorithm may return a null allocation and zero payments. Consider, for example, about a
domain with a single seller with a high fixed cost and assume that there is a single buyer with
a very small marginal value and a small value threshold. In this case, it is not possible to
compensate the seller for producing her database. This result, however, does not constitute
a failure of our market design: Indeed, if the society does not value the data highly enough,
then the data should not be produced in the first place. In other words, we are aiming at
designing a market that incentivizes data providers to produce useful data rather than any
data. 13

Finally, note that, even though we designed our market with the goal of optimizing the
buyers’ surplus, it is not possible to provide any meaningful lower bound on the share of the
surplus obtained by buyers in general. The following proposition states this result formally:

Proposition 3.6. The share of the buyers’ surplus achieved by Algorithm 1 auction is lower
bounded by zero.

Proof. To prove the statement we construct a corner case where all sellers have zero costs
and face no competition for producing their databases. At the same time, only joining all
databases brings value to every buyer, while joining any other combination of databases

13. Remember, that our choice of the initial price po = 0 follows the idea that we want to find an equilibrium
with the largest surplus for buyers. Clearly, if the initial price was too high, then the trivial equilibrium
in which nobody is allocated could be reached immediately. Technically, we could also launch Algorithm
1 from several starting points. However, our experiments show that even starting with p = 0, we can
obtain high levels of surplus. Example 5 in Appendix A illustrates our approach.
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has zero value. In this case, we can show that the buyers’ surplus is zero (and it can’t
be negative as buyers can always decide not to participate in the trade). The full proof is
provided in Appendix B. O

The corner case used to prove Proposition 3.6 is obviously pathological, and we would
not expect such cases in practice. To study how much surplus buyers can get in more

realistic settings, we have performed a number of computational experiments (see Section
4).

3.5 Winner Determination via Mixed-Integer Allocation Programming

In this section, we discuss computational challenges that arise in practical implementation
of our proposed BORA auction. First, remember that buyers are indifferent about the
identities of sellers. Thus, it follows that the induced values of databases Wy(a,p) are
constant for any allocation of sellers as long as the allocation of the respective databases stay
the same. As the number of databases D is typically much lower than the number of sellers
N, we can now compute the induced values of databases for every possible deterministic
allocation a € {0,1}? of databases rather than for every possible deterministic allocation
a € {0,1}" of sellers. With a slight abuse of notation we let Wy (a, p) be the induced value
of the database k when the allocation of databases is .

Further, remember that the winner determination problem in the BORA auction is non-
linear. In order to linearize it, we can pre-compute the induced values of databases for every
possible deterministic allocation of databases. We then include these pre-computed values
into the objective function with auxiliary binary optimization variables indicating whether
a particular deterministic allocation of databases is chosen. This idea is illustrated with the
following linearized mixed integer program:

D N
max Z lza : Z Wk(aap)] - Z di(ci)a; (22)
k=1 =1

a;i=1,...,.N
Za,0€{0,1}P ae{0,1}P
s.t. 24 < a; Yae€{0,1}P Vk=1,...D s.t. ap=1 (23)
jei(k)
Zo < (1—a;) VYaec{0,1}” Vk=1,..,D s.t. a;=0 (24)
jei(k)
a; €{0,1} Vi=1,.,N (25)
zo € {0,1} Va € {0,1}7. (26)

Here, binary optimization variables a; represent allocation decisions of the BORA auc-
tion regarding sellers s;, ¢ = 1,..., N. Further, the synthetic optimization variable z, is
equal to 1 if the deterministic allocation of databases is o € {0,1}”. Here, constraints
(23) and (24) build a bridge between allocation decisions regarding different sellers and
the chosen deterministic allocation of databases produced by these sellers. In particular,
constraints (23) guarantee that the deterministic allocation « in which the database k is
allocated (ay = 1) is not feasible (2, = 0) if none of the sellers producing database k are
allocated. Similarly, the constraint (24) sets z, = 0 if at least one seller producing the
database k is allocated even though the database k should not be allocated (o, = 0).
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Looking into the objective function (22), we see that constraints (23) and (24) guarantee
that there is only a single term of the total induced value of databases that gets activated
for a specific allocation of databases and sellers. In particular, if the allocation of databases
is a and the allocation of sellers a satisfies constraints (23) and (24), then the objective
function value is Zszl Wi(a,p) — Zf\il oi(ci)a;.

Observe, that such a linearization of the allocation problem of the BORA auction is
achieved by a high cost. Indeed, in order to achieve the linear formulation, we have in-
troduced a number of synthetic optimization variables z,, that grows exponentially in the
number of databases D. However, the high complexity of our approach seems to be un-
avoidable and follows directly from the combinatorial preferences of buyers for different
allocations of databases. Example 4 in Appendix A illustrates the advantages of using the
combinatorial design of the auction to achieve higher buyers’ surplus.

4. Experiments

To study the economic properties of our market, we carry out a set of computational
experiments. To do this, we first implement a simulation set up to generate buyers and
sellers according to the model described in Section 2.1. We then run our market mechanism
based on the Algorithm 1 and measure social welfare, as well as the share of the social
welfare obtained by buyers and sellers, respectively. Note that, at first, we perform all
of our experiments in a small “stylized” setting to gain a detailed understanding of the
behavior of our market mechanism. To study the scalability of our approach, we then
perform a number of computational experiments in a medium-sized domain, in which we
increase the numbers of databases, data providers and buyers. More realistic large-scale
market simulations may require a thorough examination of buyers’ preferences for data
of a particular domain (e.g., preferences of doctors or drug developers using life sciences
databases (Hall et al., 2013) or of marketers in the digital marketing domain (Blue Kai,
Inc., 2011)). We defer these simulations to future work.

4.1 Experiment Set-up

Small Set-up. We simulate a setting with IV = 3 sellers and D = 2 databases. We assume
that seller s; can produce database 1, and both sellers s9 and s3 can produce database 2. We
assume that costs ¢; of all sellers are i.i.d., ¢; ~ U[0,20], i = 1,2,3. This models a scenario
in which seller s; is a unique producer of database 1 (i.e., s; has a monopolistic ownership
of her data), while sellers sy and s3 are competing to produce database 2. Because the
BORA auction is BNIC (Theorem 3.3) we assume that sellers report their costs truthfully.

We vary the number of buyers L from 1 to 128 while keeping the number of sellers and
databases fixed. Each buyer has an initial endowment of money e = 10. For simplicity, we
assume that the marginal value v§~ and the threshold 7; of any buyer b; only depends on
the number of allocated databases but not on the identities of these databases. Thus, if
there are no databases allocated, the marginal value and the threshold of each buyer are
equal to zero. If there is exactly one allocated database, then the marginal value of each
buyer is drawn from UJ0,2]. The threshold, in this case, is drawn from a discrete uniform
distribution U{0,5}. Finally, if there are exactly two databases allocated then the marginal
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value v; is incremented by a random variable drawn from UJ0, 2], while 7; is incremented
by a random variable drawn from U{0,5}.

Medium Set-up. To study the scalability of our approach, we perform a number of
computational experiments with more realistic numbers of data providers, databases and
buyers. Generally speaking, the exact numbers can be domain specific. In practice, we
expect them to be in the order of dozens to hundreds for data providers and thousands
for buyers. Some evidence for these numbers is derived from an examination of existing
data marketplaces. For example, a recent report on the Oracle proprietary digital data
marketplace for selling marketing data (Blue Kai, Inc., 2011) presents a domain with more
than 200 data providers and with more than 200 customers across multiple industries.
Assuming that a typical query against real-world databases joins only two to four of these
databases, we can split buyers into different groups based on the databases they are most
often interested in. In this case, buyers within a group are assumed to submit most of their
queries against 5 to 15 databases and very few queries against the remaining databases. In
other words, we assume that the overall market can be partitioned into several pieces with
loose pairwise connections between these pieces. Such partitioning reduces the number of
databases and buyers in each part, which therefore leads to a lower computational hurdle.
Therefore, for our experiments, we assume that such a partitioning can be carried out
effectively using a certain clustering technique, and we can run our market mechanism for
each piece of the partitioning. The design of the exact clustering procedure is beyond the
scope of this work.

Thus, in our medium-sized experiments, we vary the number of databases D, from 2 to
10. While some databases can be produced by unique data providers (monopolistic data
ownership), others can be produced by many different data providers. This allows us to
vary the number of data providers N from 2 to 100. Similarly to the small set-up, we
generates sellers’ costs from a uniform distribution U0, 20].

In this set-up, we vary the number of buyers L from 8 to 1024. We use the same simple
value model for buyers as in the small set-up. Specifically, we assume that allocation of an
additional database has two effects on buyers. First, it leads to a growth of the marginal
value v; of a buyer by a random amount drawn from U|0, 2]. Second, it causes an increase
in the threshold 7; by a random number drawn from U{0,5}. The main complication of
the medium-sized set-up compared to the small set-up is of a computational nature: Due to
the combinatorial structure of the problem, we now must specify the value function of every
buyer for all 2P possible deterministic allocations of databases. As previously discussed,
in practice, many buyers submit their queries against only a certain subset of available
databases. This means that the marginal change of a buyer’s value caused by allocation
of an additional database gets smaller as the number of allocated databases grows. As a
result, the computational problem of estimating the typical value function of a buyer may
be somewhat simpler than in our experiments. However, modeling more realistic value
functions of buyers can be domain specific as it depends on the typical queries that buyers
submit. Modeling such realistic value functions is one of the directions of our future work.
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Figure 5: The top graph shows the probability that the market is in a trivial equilibrium.
We vary the number of buyers from 1 to 128 (or from 0 to 7 in the logarithmic scale). The
bottom graph shows the dependency of price p on the number of buyers, L. Error bars
indicate confidence intervals at 0.05 significance level.

4.2 Studying the Small Set-up.

We call the auction instances with the same number of buyers a setting. For each setting
(with 1, 2, 4, ... buyers) we generate 10 random instances as described above. This allows
us to estimate the mean values and confidence intervals for every setting.

4.2.1 PROBABILITY OF “NO TRADE”

Consider Figure 5 (top), which shows the probability that the market mechanism only finds
the trivial equilibrium (“no trade”). We see that, when L is small (< 8), then it is likely
that there are not enough buyers to cover the fixed costs of sellers, whatever the price p. If
L > 8, then both databases are always allocated. In this case, seller s; produces database
1 and either s or s3 produces database 2.

4.2.2 POSTED PRICE

Consider Figure 5 (bottom), which shows the dependency of the posted price (in a non-
trivial equilibrium) on the number of buyers L. As L grows, the amount of money that
must be collected from each buyer to achieve BB decreases. Consequently, the price p also
decreases. As the number of buyers increases, the marginal effect of every additional buyer
on the price decreases (the price curve becomes less steep). This is expected, as the impact
of an individual buyer on the aggregate demand decreases as L increases, which leads to
more and more “price-taking behavior”.

22



THE DESIGN OF A COMBINATORIAL DATA MARKET

Efficiency
<o =
o o
g q

0.0
2 3 4 5 6 7
<
g 1000 I Buyers
L ;
; s
- - s -
-3 [
S 0 ——
1 2 3 4 5 6 7
= 14
n
=
4]
3
n 0-

1 2 3 4 5 6 7
Number of buyers (logarithmic scale), log, L

Figure 6: The top graph shows efficiency reached in a non-trivial equilibrium. The middle
graph shows social welfare separated by buyers and allocated sellers. The bottom graph
shows the relative distribution of the achieved welfare. Small differences in the mean surplus
of sellers so and s3 are not statistically significant at the 0.05 significance level.

4.2.3 EFFICIENCY AND SOCIAL WELFARE

We now study the most important question: How efficient is our market mechanism? To
this end, consider Figure 6. In the graph in the center, we observe that the absolute value
of social welfare grows linearly as the number of buyers increases (an exponential trend in
the logarithmic scale). This is what we would expect. Now, consider Figure 6 (top), which
shows the efficiency of our market mechanism.' For the illustration reason we omit the
efficiency measurement that corresponds to L = 1. The reason for that is that in this case
our market reaches almost 100% efficiency. This is due to the fact that when the number
of buyers is small, the market stays in the “no trade” equilibrium most of the time (see
Figure 5 (top)). Even when there is trade, only one database gets allocated, which makes
achieving high efficiency easier. If both databases are allocated (L > 32), the efficiency is
95%. As L increases further, the efficiency stabilizes. This is due to the fact that the posted
price p becomes more flat (see Figure 5 (bottom)), such that there is a constant fraction of
buyers with a marginal value per row smaller than the posted price p. These buyers do not
buy anything, causing the efficiency loss. Thus, as p becomes constant, the efficiency also
becomes nearly constant.

4.2.4 SHARES OF SOCIAL WELFARE

Consider Figure 6 (bottom), which shows how social welfare is distributed between buyers
and sellers. Observe that seller s;’s share increases as the number of buyers increases (as
long as L < 8), while shares of other sellers decrease (see also Table 1 for the absolute values
and standard errors). To understand this result, remember that seller s; is a monopolist,
i.e., she faces no competition for her database. Thus, her payment is solely determined by

14. Efficiency is defined in the standard way, as the fraction of the social welfare achieved by our mechanism
and the social welfare of an optimal (omniscient) mechanism which can disregard incentive constraints.
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Number of buyers
Surplus 2 | 4 [ 8 | 16 | 32 | 64 | 128
Buyers 7.20 | 17.66 | 45.00 | 128.02 | 280.82 | 583 | 1198.23
(1.28) | (2.25) | (6.17) | (8.23) | (6.18) | (7.97) | (15.65)
Seller s, 1.17 | 439 | 861 | 957 | 957 | 957 9.57
(0.62) | (1.46) | (1.40) | (1.26) | (1.26) | (1.26) | (1.26)
Seller s, 0.54 | 0.80 | 3.40 | 4.06 4.06 | 4.06 4.06
(0.35) | (0.62) | (1.16) | (1.33) | (1.33) | (1.33) | (1.33)
Seller s 059 | 1.74 | 3.26 | 3.43 3.43 | 3.43 3.43
(0.41) | (0.67) | (0.87) | (0.97) | (0.97) | (0.97) | (0.97)

Table 1: Mean values and standard errors for the surplus of buyers and sellers for the small
setup reached in a non-trivial equilibrium.

the reserve price set by the auction, which only depends on the value that database 1 is
expected to generate for all buyers. As L increases, this value naturally increases, which
means that the seller receives a larger payment. However, this payment is bounded by the
upper bound of the support of the distribution of sellers’ costs (which is 20 in this set up).
This is why as soon as L > 16, the share of s; can only decrease. In contrast, s3’s payment
is constant for L > 20 and depends only on the virtual cost of her competitor so.'® Finally,
there is also no significant evidence that sellers s and s3 get different surplus in the market
at 0.05 significance level.

4.3 Studying the Medium Set-up.
4.3.1 AGGREGATE DEMAND

To illustrate combinatorial preferences of buyers, we compute aggregate demand curves
that correspond to different deterministic allocations of databases. Remember that the
value model we adopted for our simulations assumes, for simplicity, that marginal values
vé- and thresholds 7; of buyers depend only on the number of allocated databases but
not on identities of those databases. Thus, we can restrict our attention to considering
only 10 different deterministic allocations that correspond to different numbers of allocated
databases.

Figure 7 illustrates how the demand curve changes as the number of allocated databases
increases. There are two effects happening in parallel. First, as the number of allocated
databases grows, the threshold 7; also increases (see Section 4.1). This shifts the demand
curve to the right for larger numbers of allocated databases.

Second, as the number of allocated databases grows, the marginal values of buyers also
increase (see Assumption 1). As a result, for large price levels, the elasticity of demand
increases, as now there are more buyers reacting to changes in the posted price. To see this
more clearly, compare the leftmost curve that corresponds to the case with a single allocated
database to the second curve that corresponds to the case with two allocated databases.

15. When L < 8 then the reserve payment is smaller than the virtual cost of s;. Then s3’s payment
sometimes depends on the reserve payment.
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Figure 7: Aggregate demand curves in the domain with 1024 buyers and 10 databases.
Different curves correspond to different numbers of allocated databases. As the number of
allocated databases increases, the respective demand curve shifts to the right. The difference
between two demand curves gets smaller as the number of allocated databases grows.

Clearly, if the price p > 2, no rows are consumed in the first scenario. This happens because
marginal values of all buyers are smaller than this price (remember that marginal values in
this case are drawn from U[0, 2]). By contrast, the marginal values of buyers in case of two
allocated databases are drawn from a distribution with a larger support,i.e., interval [0, 4].
Thus, more buyers are now reacting to price changes at the price level p = 2. Consequently,
for large price levels, the aggregate demand becomes more elastic as the number of allocated
databases increase.

Remember that as the number of allocated databases increases, there are fewer buyers
with very small marginal values. Therefore, for small price levels (e.g., p = 0.5), there are
more buyers with marginal values larger than p. These buyers keep buying even if the price
changes slightly. This is why, for small price levels, the aggregate demand becomes less
elastic as the number of allocated databases increase.

In Figure 7, we also see that the difference between demand curves gets smaller as the
market grows. In practice, such “convergence” of demand curves may allow us to reduce
the computational hurdle arising from combinatorial preferences of buyers by considering
smaller domains. We conjecture that, in this case, we could bound the efficiency loss caused
by such an approximation. However, we leave this direction to future work.

4.3.2 EXPECTED PROFIT

Now, we study how the expected profits of sellers responds to the level of competition
between sellers for producing their databases. To do this, we fix the number of databases
D = 10 and the number of buyers L = 1024. We further assume that database 1 can
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Figure 8: Expected profits of sellers in a market with 10 DBs and 1024 buyers. All sell-

ers extract a positive expected surplus. The larger the number of sellers involved in the
production of a DB, the smaller the surplus these sellers can expect.

be produced only by a single data provider s1, who has a monopolistic ownership for the
respective data. Similarly, database k < D can be produced by k different data providers
who compete with each other in the BORA auction to produce the database. Thus, the
total number of data providers in this scenario is

D
Zk:1+2+...+10:55.
k=1

Figure 8 demonstrates that the seller s; enjoys the largest expected surplus. To explain
this result, remember that s; faces no competition in the BORA auction, as she is a unique
data provider for database 1. This means that the externality imposed by s; is poten-
tially larger that the externality exposed by any other seller facing a stronger competition.
Consequently, the payment must also be larger.

One insight provided by this simulation is that, despite that all allocated data providers
can recoup their fixed costs, our market rewards data providers who innovate (produce
original data) substantially more than those who produce databases containing common
knowledge.

4.3.3 SHARES OF SOCIAL WELFARE

Figure 9 (left) presents the distribution of the social welfare achieved in the market as the
number of buyers increases from 16 to 1024. As in Section 4.3.2, we set the number of
databases D = 10 and we assume that database 1 can be produced by only a single data
provider s;, while database k can be produced by k different data providers.
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Figure 9: Distribution of the total welfare achieved in the market with 1024 buyers and
different numbers of DBs. Buyers get the largest share of it, while the seller that produces
the unique DB gets the second largest portion.

The figure confirms that buyers receive the largest share of total welfare. It is clear as
the BORA auction is designed to maximize the buyers’ surplus. The figure also suggests
that the surplus of sellers stays constant as the number of buyers increases. This result
is expected: indeed, the payment of s; approaches its maximum value of ¢~1(20) (in this
experiment, ¢; ~ UJ0,20]) as the number of buyers increases. At the same time, payments
of other sellers are essentially second price payments. These payments depend on costs
distributions F; of sellers rather than on the number of buyers. Consequently, the total
payment to be accrued to sellers does not depend much on the number of buyers. Finally,
the total social welfare achieved in the market grows linearly as the number of buyers
increases (exponential trend in the logarithmic scale).

Figure 9 (right) presents the distribution of social welfare achieved in the market as the
number of databases increases from 2 to 10. Here, we set the number of buyers to 1024.
As before, we can see that buyers always get the largest share in the overall surplus. The
figure also demonstrates the exponential growth of the social welfare. This trend however,
may be caused by the strong complementarity of all databases implied by our experimental
setup. In practice, buyers may not join all possible databases and thus the trend can be
less steep.

4.3.4 VARYING THE LEVEL OF UNIQUE DATA PROVIDERS

Next, we study how the extent of monopolistic ownership of data affects the social welfare
and its distribution in the market. To do this, we consider a setting with 10 databases and
1024 buyers. We assume that k out of 10 databases are produced by a single data provider
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Figure 10: Dependency of the price (left) and share of sellers’ surplus (right) on the number
of sellers with monopolistic ownership of data. The experiment is carried out for different
costs distributions of sellers, Fj.

and the rest (10 — k) can be produced by two data providers. In this case, we say that there
are k data providers with monopolistic ownership of data. In our experiments, we vary k
from 0 to 10. We argue that restricting the competition for the rest (10 — k) of databases
to two sellers is enough. Indeed, the competition in the respective BORA auction drives
profits of competing sellers down to a constant level (see Section 4.3.2). As the number
of buyers increases, even the competition between only two sellers that produce the same
database makes their profits small compared to the profit of the seller s; with monopolistic
ownership of data (see Figure 8).

Figure 10 illustrates our findings. Here, the horizontal axis corresponds to the fraction
of databases produced by a data provider with monopolistic ownership of her data, i.e., %,
k < D. As Figure 10 (left) demonstrates, the posted price p grows linearly as the number
of data providers with monopolistic ownership of data increases. This trend is clear, as the
number of allocated databases increases, buyers’ willingness to pay also grows (following
from Assumptions 1 and 2). At the same time, the market platform now needs to collect
more money from buyers to compensate the newly allocated data providers. Naturally, the
market platform needs to increase the posted price to keep the overall market balanced.

We carry out this experiment for three different costs distributions. In the first case,
costs of sellers ¢; are drawn uniformly from [0, 20] as before. In the second and the third
cases, these costs are drawn from U|[0, 40] and U|0, 60] respectively. This approach enables
to model different levels of uncertainty of the market platform regarding costs of sellers.
As Figure 10 (left) demonstrates, the higher this uncertainty, the larger is the posted price
the market platform needs to set. The explanation of this follows form the fact that higher
level of uncertainty enables sellers to receive larger payments in the BORA auction. Conse-
quently, the market platform must set higher prices to make the market budget balanced.
As a result, the profits of sellers must also grow (see Figure 10 (right)).
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4.4 Discussion

The results of our computational experiments raise a number of interesting points regarding
designing a market for distributed data.

First, the design we proposed solves the original problem we posed. Specifically, the
market brings high surpluses to buyers and compensates allocated sellers. The market
enables allocated data providers to recoup the high fixed costs they experienced when
producing their databases and linking them against databases of other data providers. As
we showed, such a market gives stronger incentives to data providers to innovate, i.e., to
produce unique data sets instead of transforming common knowledge into a structured form.
The rising inequality in profits distribution arises from the fact that the production of a
unique database reduces competition in the BORA auction. This allows data providers
with monopolistic ownership of data to receive payments that are typically larger than the
“second price” payment. However, even those allocated data providers who do not have
access to the unique data can expect to run positive profits.

Second, our market awards a large portion of the achieved welfare to buyers. In fact,
even in the most extreme cases, when all data providers enjoy high profits from monopolistic
ownership over their data, buyers can still expect to get a substantial portion of the achieved
welfare. In practice, providing a high share of surplus to buyers can be crucial when
designing such a market. It allows for a shift in the current paradigm meaning that the
linked data must be free, and thus makes buyers less resistant to entering the market
(some discussion on this topic can be found, for example in Grubenmann et al. (2018),
Grubenmann et al. (2017)).

Finally, our experiments give us a reason to think that the complex combinatorial pref-
erences of buyers do not constitute an unsolvable issue. In fact, we think that the combina-
torial structure can be tackled efficiently when we aggregate buyers and setup the posted
price based on their aggregated preferences. In particular, we showed that as the number
of databases grows, the aggregate demand curve does not change significantly. This opens
up an opportunity to approximate the aggregate demand curve for a large domain by con-
sidering only a smaller part of it. We conjecture that this can reduce the complexity of our
approach with a bounded loss in efficiency. However, we leave this direction to future work.

Limitations. In our computational experiments, we considered buyers coming from the
same value model. This means that, despite the fact that different buyers in our experi-
ments have different marginal values v; and thresholds 7}, these values are still drawn from
the same distribution. We also assumed that all buyers are endowed with the same initial
amount of money and that the preferences of all buyers depend on the number of allocated
databases, not on the identities of these databases. All these simplifying assumptions were
made for better clarity of the experimental results, rather than to circumvent any compli-
cations arising in computations of the equilibrium allocation and prices. Thus, any of these
assumptions can be easily relaxed.

5. Conclusion

In this paper, we have proposed a combinatorial market for distributed data. Our research
is motivated by the increasing value of data, while the design of good mechanisms for buying
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and selling data has proved to be elusive. We have argued that data is different from other
information goods such as music or videos because databases produced by different data
providers can be joined and buyers have combinatorial values over which databases are
available. The key idea behind our solution is to use two different mechanisms for the two
sides of the market and to employ a fixed-point iteration algorithm for finding an outcome
that balances the entire market. Our experimental results are consistent with our theoretical
predictions, with a small number of buyers, it is likely that no trade happens because the
buyers’ values are not large enough to warrant the high fixed costs of the data providers.
But, as more and more buyers arrive on the market, the probability of trade approaches
one, and the posted price buyers face quickly stabilizes. We have also shown that, as the
number of allocated databases increases, the marginal change in the aggregate demand gets
smaller. This opens the door for future opportunities to design an approximation algorithm
that would efficiently tackle the computational hardness of equilibrium price computation
procedure for larger domains. Another important discovery of our model highlights the
fact that data providers who innovate by producing unique data sets can expect to receive
larger rewards than those who structure the common knowledge data. However, even in
the most extreme cases, where every data provider enjoys monopolistic ownership of her
data, buyers can still expect to receive at least half of the total welfare generated by the
trade. Future work can build on our model and consider various extensions, such as the
dynamic arrival of sellers to the market or endogenous demand (i.e., where the number of
buyers varies depending on the price). One particularly important subject of future work
is the development of a realistic domain generator and large-scale simulations to study the
behavior of our market mechanism under real-world conditions.
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Appendix A. Examples

Example 3. We use the setting of Fxample 2 but assume now that both sellers s1 and
s9 are allocated, i.e., o’ = (1,1). As there is now more data available to buyers, their
preferences change. Assume that value functions of buyers for the new allocation are
v1(r1,a”) = 6min{ry, 1} and ve(re,a”) = min{re,4}. Now, the aggregate buyer has the
following aggregate value V(r,a”) and demand r*(p,a”):

5, if p e (0,1)
6r, ifrel0,1] [1,5], ifp=1
V(r,a")=<5+r ifre[1,5] r*(p,a") =<1, ifpe(1,6)
10, if5<r [0,1], if p=6
L0,  if6<p.
In this case, the positive externality imposed by so is exts(a”,p) = V(r*(p,d”),a") —

V(r*(p,a),a). Again, if p =1 — €, then the market demand r*(p,a”) =5 and the aggregate
value of having both databases is V (r*(p,a”),a") = V(5,a"”) = 10. Then, the externality im-
posed by sy is exty(a”,p) = V(r*(p,a”),a”) =V (r*(p,a),a) = 10— 6 = 4. If we now assume
that for allocation o’ = (0,1) agents have same preferences as for allocation a = (1,0),
then exty(a”,p) =V (r*(p,a”),a"”) =V (r*(p,a"”),a"”) = 10— 6 = 4. Thus, the induced value
of the databases are Wy(p,a") = 4'% =5, Wa(p,d") = % = 5. Observe, that the presence
of s9 increased the induced value Wi (p,a") for the database of s;.

Example 4. Consider a domain with a single buyer, L = 1. Assume that there are N = 2

sellers each producing a single database, i.e., D = 2. Let c¢1,co ~ U[0,2] and ¢; = 1.5,

co = 0.5. In this case, the virtual cost function for both sellers is ¢(c) = ¢+ ?((cc)) = 2¢;

consequently, ¢1(c1) = 3 and ¢2(c2) = 1. Assume that the value function of the buyer is
vi(ri,a) = bmin{ry, 1} if both databases are allocated (i.e., a = (1,1)) and vi(r1,a) = 0
otherwise. The buyer has an endowment e = 4. As there is only a single buyer, the aggregate
value function corresponds to the value function of this buyer, i.e., V(r,a) = vi(r,a). The
endowment of the aggregate buyer is E = e.

Let us now compute the induced values of both databases. First, exti(a,p) = exts(a,p) =
5 for all p < 5 and for a = (1,1). Also exti(a,p) = exta(a,p) = 0 if a # (1,1) or
if p > 5. Thus, Wi(a,p) = Wa(a,p) = %-5 = 25 for any p < 5 if a = (1,1) and
Wi(a,p) = Wa(a,p) = 0 for other cases. Obuviously, the solution to the allocation problem
is a* = (afj,a%) = (1,1). In this case, the objective is 2.5+ 2.5 —3 —1 =1 for any p < 5.
The payments are computed as follows: t; = %(3 +1-0)=2,ty= %(1 +1-0)=1.

Observe that if we run instead two BORA auctions for each of the databases separately,
we first would not allocate the first database as its virtual cost ¢1(c1) = 3 is larger than the
induced value of the database Wi(a,p) = 2.5. Consequently, the second database would also
not be allocated as the buyer has a positive value only for both databases.

Finally, if we set p = 3, then the buyer would decide to pay e —mj(p,a) = 3 for a single
row of answers for his query, ri(p,a) = 1. Such a price makes the overall market balanced
as the total payment to the sellers must be t1 + to = 3.
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Example 5. In this example, we would like to demonstrate that even if there exist multiple
non-trivial equilibria, our mechanism finds the “best” one, i.e., the equilibrium with the
largest surplus for buyers.

Consider a domain with a single buyer, L = 1. Assume that there are N = 2 sellers
each producing a single database. Let c1,co ~ U0,1] and ¢y = c2 = 0.5. In this case,
the wvirtual cost functions are ¢1(c1) = ¢2(ca) = 1. Assume that the value function of
the buyer is vi(ri,a) = 2min{r;, 6} if both databases are allocated (i.e., a = (1,1)) and
vi(ri,a) = 2min{ry, 2} if only one database is allocated. The buyer has an endowment
e = 10. The aggregate value function is V(r,a) = vi(r,a) (the endowment of the aggregate
buyer is B =e).

Suppose Algorithm 1 starts with p = 0. In this case, both databases must be allocated.
Howewver, the market is not budget balanced as the buyer pays 0. Assume now that after
several iterations of Algorithm 1, the price increases to p = 1. In this case, an allocation
a = (1,0) makes the market budget balanced. Indeed, in this case, Wi(a,p) = 4 while
Wy(a,p) = 0. Consequently, the virtual surplus is S =4 —1 =3 and the payments are
t1 = 2 and t9 = 0. Given this price, the buyer decides to buy two rows and thus pays the
total amount of 2 which implies budget balancedness. In this equilibrium, the buyer gets a
surplus of 2.

Observe however, that the allocation a = (1,0) does not mazimize the virtual surplus
given the price p = 1. Instead, the BORA auction would allocate both databases. This would
lead to a virtual surplus of S =10 and payments t1 = 4, to = 4. This, makes the market
unbalanced as buyers can pay only 6. Consequently, the price must increase up to p = 4/3
for the market to become budget balanced. In the new equilibrium, the buyer gets a surplus
of 4 and pays the total amount of t1 + to = 8 to sellers.
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Appendix B. Proofs

Let Gi(g,¢) f gl ¢iyC—;) f—i(c—;)dc_; denote the ex-interim allocation of s;.

Definition 7. A mechanism A = (g, h) is feasible if it satisfies BNIC, IR, and Ziei(k) gi(c) <
1,Vk=1,..,D, gi(c) >0,Vi=1,..,N.

Lemma B.1. A mechanism A = (g,h) is feasible if and only if the following conditions
hold:

1. ¢; < q; implies Gi(g,q:) < Gi(g,¢;) for any qi, Ve; € o, Bi], i = 1,..., N,

2. IEf [ul(gaczah)] Ef [uz 97517 fﬁl 97% d‘h;
3. Ef [ui(g,Bi,h)] >0 foralli=1,...,N,

and 3 ;ci 9i(c) <1, gi(c) 20 for allk =1,...,D, Ve € Hfil[ai,ﬁi].

Proof. The proof repeats the respective proof provided in (Myerson, 1981) for a reverse
auction setting.
O

In words, the first condition of the previous Lemma means monotonicity of ex-interim
allocation while the second and the third conditions are more technical and will be used in
derivation of the surplus optimal mechanism.

Now, remember that the probabilistic allocation of sellers g(c) induces a probabilistic
allocation of databases. We can define the expected induced value of a database k as follows:

Definition 8. The expected induced value of the database k given the probabilistic allo-
cation g(c) of sellers is

<>[Wkap} > Hg ¢)(1 = gi(c))'~“Wi(a,p).

ac{0,1}N i=1

In a setting when multiple sellers compete for producing a database ¢, an assignment of
the full allocation probability v > 0 to only one of them leads to weakly higher expected
induced values of all databases than any other assignment of . The following lemma shows
this fact formally:

Lemma B.2. Let g(c) be a probabilistic allocation of sellers such that };c; . gi(c) = for
some £ < D, 0 <y < |i(f)]. Then, for any allocation g'(c) such that g, = min{1,~} for
some q € i(£), gy =0 Vs € i(£)\q, and g; = g; Vj & i(£) we have

Eg (o) [Wk(a,p)} > Ey ) [Wk(aap)} Vk < D.

Proof. W. 1. o. g. let s1,...,54 be sellers producing the database ¢ (here, d = [i(¢)]).
We first introduce some helpful notation. Specifically, let a.q = (a1, ...,aq) € {0,1}¢ and
a_1.q4 = (agy1,-..,an) € {0,1}¥=% be the allocation of the first d sellers and of the rest of
the sellers respectively. Thus, we can rewrite a = (a1.4,a—1.4)-

33



MOOR, SEUKEN, GRUBENMANN, & BERNSTEIN

In this case, from Lemma B.3 it follows that Ya_;.4, ¥p, for any two ai.q4,a}.; : ||a1.q4]| >
0,]]a}.4l > 0, we have Wi ((a1.4, a—1.4),p) = Wi((a}.4»a—1:4),p) for any k < D.

Consider now the expected induced value of a database k under the probabilistic allo-
cation g(c):

By [Wilan)] = 5 [0 00— i) Wida ) -

ac{0,1}V i=1

Yoo =g (g0 [T 6 = gae) 1 OWR((O, - 0,02 10), )+
a_1.0€{0,1}N~d i=1

Z g1 - 1 _gd H gng,lLd gd—H')l_a_l:d(i)Wk((lv"'707a—1:d)7p)+
a_1;d6{0,1}N7d

Z g1 .- 9d H gd_l ) 1 - ngri)liail:d(i)Wk((l? ey 17@*1:d)7p) =

a*lzde{orl}N_d

Yo A-g) o (1-ga) H Gari* (1 = gara) 4 OWL((0, ..., 0, a1.4), p)+
a_1.4€{0,1}NV—d

> 1-0-=g1) - (1 —ga) H gd+, (1 = gara) = OWy((ar.4, a_1:0), p)-
a_l;dE{O,l}N*d

Here, ||ay.q|| > 0 implies that there exists ¢ < d, s.t., a1.4(q) = 1. We now can rewrite the
expression above as

Yo (l-g) e (1-ga) Hgd+ (1 gars) O OWL((0, -, 0, 0 1.4), p)+
a,l;de{o,l}Nfd

> H ggﬁ A1 = gar) 1 OW (arg, a1.0), p)—

a_1.q€{0,1}N—d i=1

o (-g) - (1-ga) H 9ais A1~ gar) 1 OW (a1, a-1:0),p) =
a_1.q€{0,1}N—d

> H gyt (1~ gar) 1 OW (014, a-1:0), p)+
a*l:de{ovl}N 4 i=1

o =g (1-ga) H 95 (1 — gays) o x

a*lzde{o»l}Nid

(Wk((07 cey 0y a—lrd)7p) - Wk((altda a—l:d)app'
<0
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Notice that the last term in the expression above is non-positive due to Assumption 3.
At the same time, the first summand does not depend on ¢y, ..., g4. Thus, the problem now
is to find such an assignment of ¢y, ..., g4 that is feasible (i.e., 0 < ¢g; < 1, Vi € i(¢) and
>ici(ey 9i = 7v) and that minimizes (1 —g1) - ... (1 — gq). We claim that g = min{y, 1} for
some ¢ € i(¢) and gs = 0 Vs € i(£)\q is such an assignment.

To see this, let’s consider only the case when ¢ = 1 (all other cases are symmetric).
We proceed by induction in d. If d = 1, the statement is trivial. Indeed, in this case,
g1 = min{1, v} minimizes (1 —g;). Now consider the case d = 2. In this case, we are solving
the following problem:

min(1l — g1)(1 — g2)

91,92
s.t. g1+g2=v
91,92 € [07 1]

If v > 1, let us rewrite the objective function as ming, (1 — v + ¢2)(1 — ¢g2) = ming, 1 —
g5 — 7 + vga. In this case, the concave objective function is minimized at the boundary of
the [0, 1] interval, namely when g2 = 0 (respectively, g1 = min{l,v} = 1). The optimal
objective value in this case is 0.
If v < 1, let us rewrite the objective as ming, (1 —v+¢1)(1—g1) = ming, 1—g¢? —v+vg1.
In this case, g1 = v minimizes the objective function. The optimal objective value in this
case is 1 — .
Assume now that the statement is true for some r, 1 <r <d, ie, (1 —g1)-...- (1 —gr)
is minimized by setting g1 = min{1,~}. Consider the following problem for r + 1:
min (1 —g¢1) .- (1 =grt1)
GlyeesGr+1
r+1

s.t. Zgi =7
i=1
gi €10,1] Vi=1,...,r+ 1.
We can rewrite it as

min_ (1-01)((1 = g2)oe- (1= gr1))

915---,9r+1
r+1

s.t. Egi=7—91
=2
e0,1] Vi=1,..,r+ 1

From the induction hypothesis, it follows that for any 0 < ¢g; < v setting g0 = v — g1,
93 = ... = gr+1 = 0 minimizes (1 — g2) - ... - (1 — gr41). Therefore, the problem is to find
such g1, g2 that solve

min(1 — g1)(1 — go)

91,92
s.t. ga=7—q1
91,92 € [07 1]
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As we have shown above, the solution to this problem is g; = min{1,~}, go = 0. Q.E.D.
O

Lemma 3.4. Let g : R]ZVO — [0,1] mazimizes

[ (Euio [Wet0.0)] - 3 (o 21 )50)]

k=1 i€i(k)

subject to monotomczty of ex-interim allocation and constraints (13), (14). Let also h;(c) =

gi(c)c; + f 9i(qi,c—;)dg; for everyi=1,...,N, Ve. Then A= (g,h) is an optimal surplus
mammzzmg reverse auction.

Proof. The proof is similar to the one presented in (Myerson, 1981). Consider the surplus
of the auctioneer.

D

Efmg?hn—laf[z By [Weta )] — 3 hite)] = /(ZE [Watan)] -
i=1 ¢
hi(c) ) f(c)de = ZEQ(C Wi(a, p) f(c)dc—/Zhi(c)f(c)dc:
¢i=1

k=1

/CEg(c) Wi (a p c)de — ZN:/CZ% )dCJer:/Cz‘gi(C)f(C)dC—/éhi(c)f(c)dc_

Mz

..
I
—

(
(

D

> | B

k=1

D D R

;/CEQ(C) [Wk a,P)} kzz: . /ngz clc—i—z:/qgZ c)de — ;/chi(c)f(c)dc_
D

Z/(Eg(@ [Wk(mp)] - > cigile dc—i—Z/ cigi(c) — hi )>f<c)dC:

k=17¢ ici(k)

N
A+ Z / / €)= () e (-t = A= 3 / g o, o B
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Given that we are looking for a feasible mechanism, we can rewrite E; [u;(g, ¢, h)] =
Er  [ui(g, Bi, h)] + f big (9, q:)dg; (see condition 2 of Lemma B.1). Therefore,

[ =A- Z/ IEf Uz g’ﬁu fz Cz dcz Z/ G g qi d%fz(cz)dcz =

Ci JC

A= Ey (g, o) Z / ' Gilg, @)dai fi(ci)dei = A— B — Z / / Gilg, @) daidFi(ci) =
i=1 G G

B

Bi
A—B—EXE@) Gi(9,qi)dg;
i=1 ¢

N

Bi Bi
A—B—;[OJr/ai (cl)G(g,cz)dcz] A-B- Z/ / gi(cor e i) file_s)de_iFi(ci)dei =
A-B- }:/%g, 3

Fi(c;
c)de = Z/ g(c) Wk a P)} Z <Ci + fi((;)))gi(c))f(c)dc - B
From Lemma B.1 it follows that

=2

Bi Bi Bi
C= [ Bl [ Gilg.a)da] -

i€i(k)

Dﬁz

N
B = Z Ey_,[ui(g, Bi, h)

( Jui(g, ci, h)] — @qumm)—
=1 =1

i::</ gile)ei) f-ile—i)de—i — /ﬁ/ gildise-i)f-ilei)de_ida;) =

=1

iv: (/ = gi(c)ei — /CBZ gi(qiaC*i)d(_h')f—i(c—i)dcfl')

=1

From the third condition of Lemma B.1 it follows that h;(c) — g;(c)c; — f(f * gi(qi, c—i)dg; > 0.
This means that the payment rule that max1m1zes the expected surplus of the auctioneer,
Ef[U(g,h)], must satisfy h;(c) — gi(c f 9i(gi,c—i)dg; = 0. Consequently, h;(c) =
c)ci + ffz 9i(4i, c—i)dg;.
This means that the problem now is reduced to finding such an allocation function g
that maximizes

5[ (o [Whten)] - 3 (o0 D )o0))

k=1 i€i(k)

Q.E.D. O
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Lemma 3.5. Let g*(c) be a solution of (16). Then, if for a database ¢ there exists a seller
si with © € i(C) such that g¥(c) >0, then 3, g7 (c) = 1.

Proof. Assume that there are d sellers s, ..., s4 who produce the database ¢, i.e. 1,...,d €
i(€). Assume that g7(c) > 0 but > ;) g7 (c) < 1. Consequently, gj(c) < 1. Consider the
first term under the expectation in Equation 16:

D N—d '
ZEEI( [Wk (a,p) ] Z Z g1 9d H gfflzd(l)(l - gi)l’aiWk((l, v lya-1.4),p)+
k=1 i=1

k=la_;.qe{0,1}N—4

D N—d
Z Z gi-...- (1 - gd) H gzil:d(l)(l - gi)l_aiWk((la "'70) a—l:d)yp)—'_
i=1

k=1 a*l:de{ovl}Nid

D N—
Z Z (1 - gl) ’ 1 - gd H ga 1d(Z gi)l_aiWk((()’ "'>O7a—1:d)>p)‘

k=1 a—l:de{ovl}Nid

Observe, that the sum above is linear in g1, i.e., we can rewrite it as

D
ZEQ(C) [Wk(aap)} = 1A (g-1) +7(9-1),

where A(g_1) and y(g_1) are independent of g;. Now, we can rewrite Equation 16 as follows

D (.
E; Z (]Eg*(c) [Wk(a,p)] - Z (Ci + 1;;7’((0:)))91*(0))} =

k=1 ici(k)

- D
Ef|91(©)A(9Z1) = ¢1(c1)gi(e) = ... = dalca)gq(c) — > dilegi(o) + V(Qil)} =

Ef[g1() (Mg™1) = 61(c1)) = da(e2)g3(0)-.. = dulca)gilc -3 i@+ (6" D]

k=21ici(k)

does not depend on gf(c)

Here, gj(c) > 0 implies that A(¢*;) > ¢1(c1). Thus, if for some positive € < 1 — g} we take
any ¢'(c) such that g (c) = g5 (c) + € and ¢(c) = gf(c) for all ¢ # 1, then

D
E; Z( g'(c) [Wk a p)} Z <Ci + ?jé;;)g;(c)} =

k=1 ici(k)

_ D
Ef[(g7(0) + ) (MgZ1) = d1(en) = . = dulcalgile) = S D7 dile)gi (@) +(g"1)] =

Er[gi(e) (Mg21) = é1(er)) = . = dalea)gi(c) = > Z 0i(ei)gi () +(9%)].
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This means that g*(c) cannot be an optimal solution. Contradiction. Q.E.D. O

Lemma B.3. For any database k and any price p, for any a,a’ € {0,1}" such that V¢ &
i(k): ag=aj and 3s,q € i(k) : ag = 1,a,, =1 it follows

Wi(a, p) = Wi(d',p).

Proof. From our assumption that buyers are indifferent about the identities of sellers it
follows that Yk, Vb;, Vp and for any a and o’ satisfying the conditions above, we have
ri(p,a) = ri(p,d’) and mj(p,a) = mj(p,a’). Consequently, r*(p,a) = Zle ri(p,a) =
Zle 7i(p,a’) = r*(p, a’); similarly, m*(p, a) = m*(p, a’).

It follows that m(z,a) = m(z,a’). This results in V(r,a) = V(r,a’) and consequently
in exty(a,p) = exty(a’,p). From this it immediately follows that Wy(a,p) = Wi(d/,p).
QE.D. 0

Proposition 3.6. The share of the buyers’ surplus achieved in Algorithm 1 auction is lower
bounded by zero.

Proof. We prove this statement by providing an example of the domain in which buyers
reach zero surplus. Consider a domain with a single buyer, L = 1. Assume that there
are N = 2 sellers each producing a single database, i.e., D = 2. Let ¢1,¢co ~ UJ|0, 3] and

¢1 = ¢ = 0. The virtual cost function for both sellers is ¢(c) = ¢ + ?((cc)) = 2c¢; thus,

p1(c1) = ¢a(c2) = 0.

Assume that the value function of the buyer is vi(ry,a) = 5min{ry, 1} if both databases
are allocated (i.e., a = (1,1)) and v1(r1,a) = 0 otherwise. The buyer’s endowment is e = 5.
With a single buyer, the aggregate value function V(r,a) = vi(r,a) and the aggregate
endowment F = e.

Let us now compute the induced values. First, exti(a,p) = exta(a,p) = 5 for all
p < 5and a = (1,1). Also exti(a,p) = exta(a,p) = 01if a # (1,1) or if p > 5. Thus,
Wi(a,p) = Wa(a,p) = 2.5 for any p < 5 if a = (1,1) and Wi(a,p) = Wa(a,p) = 0
otherwise.

Given price p, the allocation problem in this case is maxg, 4, {W1 ((a1,a2),p)+Wa((a1,a2),p)—

o1(c1)ar — d)g(Cg)ag}. The solution to this problem is (aj,a%) = (1,1). In this case, the
objective value is 2.5 +2.5—-0-1—-0-1 = 5 for any p < 5. Payments are computed as
follows: t; = 3(0+5—0) = 2.5, t, = £(0+5—0) = 2.5. Setting the price p = 5, the market
becomes balanced. In this case, the buyer pays 5 = (t1 + t2) for a single row of answers for
his query, 77 (p,a) = 1. However, the buyer’s surplus is 0. Q.E.D. O
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