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ABSTRACT

 

Interactive visualization of large digital elevation models is of con-
tinuing interest in scientific visualization, GIS, and virtual reality
applications. Taking advantage of the regular structure of grid dig-
ital elevation models, efficient hierarchical multiresolution trian-
gulation and adaptive level-of-detail (LOD) rendering algorithms
have been developed for interactive terrain visualization. Despite
the higher triangle count, these approaches generally outperform
mesh simplification methods that produce irregular triangulated
network (TIN) based LOD representations. In this project we com-
bine the advantage of a TIN based mesh simplification preprocess
with high-performance quadtree based LOD triangulation and ren-
dering at run-time. This approach, called QuadTIN, generates an
efficient quadtree triangulation hierarchy over any irregular point
set that may originate from irregular terrain sampling or from
reducing oversampling in high-resolution grid digital elevation
models.
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eling; I.3.3 Image Generation; E.2 Data Storage Representation
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1. INTRODUCTION

 

Efficient interactive visualization of very large 

 

digital elevation
models

 

 (DEMs) is important in a number of application domains
such as scientific visualization, GIS, virtual reality, flight simula-
tion, military command & control, or interactive 3D games. Grid
digital terrain data sets can easily reach several million vertices
while graphics hardware accelerators may be capable of interac-
tively render only a fraction of this at 20 frames or more per sec-
ond. Due to the generally very large size of DEM terrain data sets
and the limited rendering power of graphics systems, efficient

 

level-of-detail

 

 (LOD) based mesh simplification is required to
reduce the geometric scene complexity adaptively and without
leading to an intolerable poor visual representation.

Taking advantage of the regular grid structure of common
DEM terrain data sets, quadtree based hierarchical multiresolution
triangulation methods [18] have proven to be very efficient in
terms of LOD selection, triangulation and rendering performance.
On the other hand, TIN based triangle mesh simplification meth-
ods [5, 2] are generally superior in the triangle count for a given
LOD error threshold and allow arbitrary irregular input point data
sets. Achieving the high performance of regular quadtree based
multiresolution triangulation on irregular point sets is hard to
achieve.

Having uniform high-resolution terrain data available does not
mean that this uniform resolution is desired everywhere at all.
Therefore, quadtree based methods do not provide an adequate
approach. However, TIN based simplification in a preprocess to
eliminate unnecessary detail data (see our examples in Section 5)
can optimally remove this redundancy. The remaining data set is
not anymore a conforming grid that is directly usable in quadtree
based methods.

Our method imposes an efficient quadtree triangulation hierar-
chy on any irregular TIN based input,
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 thus the name 

 

QuadTIN

 

.
The proposed approach is able to provide fast quadtree based
adaptive LOD triangulation and real-time rendering of irregular
terrain height-field data using additional Steiner points. Further-
more, due to the imposed restricted quadtree triangulation on the
TIN input any arbitrary LOD can be represented as one single tri-
angle strip. See Figure 1 for an example.

The remainder of the paper is organized as follows. Section 2
presents a short overview on related work and in Section 3 we
review the quadtree based triangulation method underlying our
approach. In Section 4 we describe our QuadTIN triangulation
approach. Experiments are presented in Section 5 and Section 6
concludes the paper.

 

2. RELATED WORK

 

There has been extensive work on TIN based triangle mesh simpli-
fication, refinement methods and multiresolution triangulation for
terrains that goes beyond the scope of this paper. We refer the
interested reader to the literature for more details (see [3, 5, 6, 9,
12, 13, 19]). Because such TIN based methods work on arbitrary
irregular point input data sets they tend to have higher computa-

 

1. irregular triangulation of elevation points in the 2D projection

 

FIGURE 1.

 

QuadTIN triangulation of irregular points of the
Puget Sound elevation model. The seamingly irregular
triangle mesh is represented and rendered by one single
triangle strip.
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tional costs associated with simplification and refinement opera-
tions compared to regular hierarchical methods. Furthermore, TIN
based multiresolution hierarchies require more complex and costly
data structures as well to capture irregular refinement or simplifi-
cation operations and adjacency relations. Their main advantages
are handling of arbitrary point distributions and superior (smaller)
triangle counts for given LOD thresholds.

Adaptive quadtree based hierarchical multiresolution triangu-
lations have been studied in the literature for adaptive triangulation
of grid-digital terrain elevation models [1, 7, 8, 10, 14, 16, 23]. In
[18] we discuss advantages and differences between the various
approaches of this class of quadtree [16, 23] or bintree [1, 7, 8, 14]
triangulations. These methods take advantage of the regular grid
structure to create an efficient multiresolution triangulation hierar-
chy. The main advantages are simple construction of the multires-
olution hierarchy, fast LOD selection and efficient rendering. The
main disadvantages are the suboptimal size of an adaptive LOD
mesh compared to TINs and the restricted applicability.

In [26] semi-regular, quasi-regular and irregular 4-k meshes
are presented. However, this type of irregularity is quite different
from what we are considering in this paper. In [26], the semi- and
quasi-regular 4-8 meshes are basically 

 

subdivision

 

 methods [25],
and the irregular 4-8 meshes are adaptive tesselations of paramet-
ric or implicit surfaces. In contrast, this paper discusses how to use
any given irregular point set in 2D with additional Steiner points to
create a restricted quadtree triangulation.

 

3. RESTRICTED QUADTREE TRIANGULATION

 

The 

 

restricted quadtree triangulation

 

 (RQT) method is an adap-
tive, hierarchical triangulation model [23, 27] to tessellate sur-
faces. Figure 2 shows the basic recursive quadtree subdivision and
triangulation that introduces vertices from the grid in two steps.

 

FIGURE 2.

 

Recursive quadtree subdivision and
triangulation.

 

To avoid cracks in the triangulated surface from unrestricted
adaptive subdivision and triangulation of the quadtree as shown in
Figure 3, RQT subdivision is constraint such that the levels of
adjacent quadtree nodes differ by at most one. We call this the

 

restricted quadtree property

 

.

 

FIGURE 3.

 

Cracks (shaded in grey) resulting from an
unrestricted quadtree subdivision.

 

An efficient variation of this constraint to avoid cracks is the
dependency relation shown in Figure 4 that was introduced in [14].
This relation specifies for each vertex 

 

v

 

 on level 

 

l

 

 two other verti-
ces 

 

v

 

a

 

, 

 

v

 

b

 

 on level 

 

l

 

 as in Figure 4 b) and d), or on level 

 

l

 

-1 as in

Figure 4 a) and c), that must be included in the triangulation such
that 

 

v

 

 itself can be selected without introducing a crack.

It has been noted in [7] that a conforming strictly monotonic
error metric allows a simple top-down selection of vertices without
having to consider the dependency relation shown in Figure 4 or
any quadtree subdivision constraint. With a conforming error met-
ric the selected vertices adhere to these constraints automatically.
This observation was also made in [16] and a technique, referred to
as 

 

error saturation

 

, was proposed to support a broad range of error
metrics.

Furthermore, this class of restricted quadtree or bintree trian-
gulations allows the entire triangle mesh to be represented by one
single generalized triangle strip [7, 14, 16] which is important for
rendering efficiency.

 

FIGURE 4.

 

Dependency relation of a RQT. The center
vertex a) depends on the inclusion of two corners of its quad
region. The boundary edge midpoints b) depend on the
center vertex. Dependencies within and between the next
higher resolution levels are shown in c) and d).

 

4. QUADTIN TRIANGULATION

 

In this section we describe the algorithmic details of the proposed
QuadTIN method. At this point we assume we are given an irregu-
lar point data set or TIN from an irregular-sampling terrain recon-
struction process or from preprocessed and simplified terrain
height field data.

 

4.1 Overview

 

As shown in Figure 5, the QuadTIN approach consists of a prepro-
cess to construct the restricted quadtree hierarchy from a TIN, or
irregular set of elevation points. It is important that the input data
is organized in an efficient spatial index structure that allows fast
range query access for the QuadTIN construction process. In our
current version we use a quadtree [21] to manage the input data.

The QuadTIN construction process as described in Section 4.2
iteratively creates a restricted quadtree top-down. The resulting
quadtree hierarchy is not balanced but conforming to the RQT
constraints. Additional information such as approximation error,
bounding spheres and normal cones used for view-dependent tri-
angulation and rendering are also computed for each node at this
stage.

The rendering application reads a QuadTIN data structure
from file and adaptively triangulates and displays the terrain based
on various LOD criteria such as variable (object space) geometric
approximation error thresholds or (image space) view-dependent
error metrics as outlined in Section 4.4.

 

FIGURE 5.

 

Schematic overview of QuadTIN framework.
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4.2 Subdivision and vertex selection

 

The recursive irregular quadtree subdivision by binary triangle
splitting and vertex selection for corresponding edge bisection is a
crucial part of the QuadTIN construction process. The triangle
subdivision as shown in Figure 2 is basically a special case of the
longest side bisection triangle refinement method [20, 24] where
all triangles are isosceles right-triangles. As shown in Figure 6, in
QuadTIN triangles are not anymore isosceles right-triangles. How-
ever, we maintain the alternating split-base for edge bisection as in
the regular restricted quadtree or bintree triangulation. Further-
more, in QuadTIN an edge is (geometrically) bisected not by intro-
ducing the edge’s actual midpoint but by adding a vertex from the
input data set.

 

FIGURE 6.

 

Irregular QuadTIN subdivision.

 

For edge bisection and vertex selection, we have to consider
two triangles  and  forming a quadrilateral region

 that share the same base edge
 that is to be split. The vertical projection of

 into the 

 

x,y

 

-plane is called the domain . The basic idea
is that whenever two base-adjacent triangles have to be refined by
edge bisection of their base edge , the vertex  clos-
est to the midpoint of  is selected as shown in Figure 7 a).
However, to avoid bad aspect-ratio triangles only points from a
restricted domain as shown in Figure 7 b) are considered.

 

FIGURE 7.

 

Vertex closest to the midpoint of base edge 

 

e

 

t,t’

 

is selected for edge bisection a) but only from within a
restricted search domain b).

 

To define the restricted search domain exactly let us first
define the 

 

offset region

 

  of a triangle 

 

t

 

 as shown in
Figure 8. For a given triangle  in the 

 

x,y

 

-plane with
base edge  and offset factor 

 

f

 

 we define  to be the
intersection of the open half spaces defined by  and

. For a quadrilateral  we define the restricted search
domain to be .

 

FIGURE 8.

 

Offset region 

 

∂

 

t

 

offset

 

 

 

for 

 

f

 

 = 50% of one triangle

 

∂

 

t

 

=(

 

A,B,C

 

)

 

 used to define the restricted search domain.

 

It is possible that base-adjacent triangles  and  that must be
split form a 

 

non convex

 

 quadrilateral domain  as shown in
Figure 9 a). Care has to be taken not to select any vertex

 that may cause overlapping or flipped triangles. By def-
inition, the restricted search domain  avoids such degen-
eracies as shown in Figure 9 b).

 

FIGURE 9.

 

Non-convex quadrilateral a), and restricted
point search domain for edge bisection b).

 

Due to the dependency constraints, outlined in Section 3 and
Figure 4, irregular point distributions and the restricted search
domain it is possible that two triangles must be split where there
are no points available from the input data set for edge bisection.
In that case we insert a so called 

 

Steiner point

 

 (see also [4]) within
the region  to guarantee a matching restricted quadtree tri-
angulation. The coordinates and normal vectors of Steiner points
are locally interpolated from the nearest neighbors of the input
data set as outlined in the following section.

On the boundary of the input data, triangle subdivision differs
slightly. Choosing the vertex closest to the midpoint of 
could lead to a situation where unprocessed input points are out-
side of the boundary of the refined triangulation as shown in
Figure 10 a). To avoid this problem and preserve the 

 

inside-bound-
ary

 

 relation at any time, the vertex  that minimizes
the largest angle formed with  is selected as shown in
Figure 10 b).

 

FIGURE 10.

 

Vertex closest to midpoint causes input points
to be outside the boundary after edge bisection a), and b)
modified vertex selection retaining inside-boundary relation.

 

The restricted search domain parameter 

 

f

 

 mainly determines
the number of inserted Steiner points. Without offset restrictions, 

 

f

 

= 100%, only the minimal necessary number of Steiner points is
inserted that satisfies the dependency restrictions of the quadtree
triangulation outlined in Section 3, and that prevents flipped trian-
gles due to concave quadrilaterals as shown in Figure 9.

 

4.3 Construction preprocess

 

The process to create the QuadTIN data structure consists of the
following components:

 

•

 

Top-down construction of restricted quadtree
hierarchy.

 

•

 

Vertex selection for edge bisection.

 

•

 

Interpolation of Steiner points.

 

•

 

Computation of error metric and view-dependent
rendering parameters.
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Top-down hierarchy construction: The QuadTIN hierarchy H is
initialized with a quadtree root node containing two triangles
defined by the corners and one diagonal of the bounding box of the
input data set. In general, the corners of the bounding box are
interpolated Steiner points. The hierarchy is iteratively created by
subdividing the leaf nodes and triangles of the quadtree H in
breadth-first order and center-vertices first (see Figure 6) which
allows preserving the restricted quadtree property at any time dur-
ing the construction process. If a triangle t has to be subdivided,
first it is checked that the base-adjacent triangle t’ already exists. If
not, subdivision is propagated to the parent triangle of t’ first.
Unless a subdivision is induced by a dependency relation, the top-
down triangle subdivision stops if no more input points are within

.

Edge bisection: As outlined in the previous section, for each sub-
division of triangles  and  the input point set must be searched
for candidate vertices within the restricted search domain 
to perform edge bisection. To support such spatial search queries
efficiently, the input points are loaded into a spatial indexing struc-
ture. We currently use a region quadtree [21] to quickly select a
subset of input points within the bounding box of . Then we
reduce this subset to valid candidate points within .
Finally, the vertex  closest to the midpoint of  is
selected for edge bisection and removed from the input point set or
marked as used. If no suitable input point can be found,

, a new Steiner point is inserted.

Steiner points: To interpolate the coordinates and normal vectors
of Steiner points, again the input point set is searched. For every
Steiner vertex vS that is inserted in  at least three and up to
four closest points within  from the input data set, or corners
of the incident triangles  and , are selected. The z-coordinate
and normal vector of vS are averaged from these closest points.
The x,y-coordinates are set to the midpoint of the bisected edge

. If not initially given, the vertex normals of the input points
are calculated from the TIN input file as average from the adjacent
triangles.

Error metric: The error metric that QuadTIN uses is the L∞ norm
of the vertical distance (terrain elevation dimension) of vertices to
the triangulated surface. Let us denote the minimum vertical dis-
tance of a vertex v to two triangles  and  by , and let

 be the vertex selected for subdividing the base edge .
Therefore, the error of  is initialized to

. (EQ 1)

This error metric provides a conservative LOD triangulation,
the top-down vertex selection and triangle subdivision can be
stopped at nodes with  below a given tolerance. By defi-
nition of the error metric, stopping selection at  with

 below the given error threshold guarantees that there is
no other vertex within  farther than  from the cur-
rent triangles t and t’. Because this error metric is not guaranteed to
be monotonic, cracks in the triangulation have to be avoided by
propagating subdivision according to the dependency relations
shown in Figure 4. Thus propagated subdivisions must verify the
error threshold as well. Note that in [15] a view-dependent error
metric was proposed that is monotonic and does not require depen-
dency resolution via split propagation.

Rendering parameters: Besides the geometric approximation
error that is stored with each vertex, each node  of the

QuadTIN hierarchy also stores bounding sphere (center h.c and
radius h.r) and bounding normal cone [22] (cone axis h.n and semi
opening angle h.θ) parameters used for view-dependent triangula-
tion and rendering. The bounding sphere of a node h encloses all
vertices, and the bounding normal cone bounds all triangle nor-
mals of descendants of h. These parameters are computed bottom-
up after the basic quadtree data structure has been constructed.

4.4 Real-time rendering
Our interactive visualization application reads the preprocessed
QuadTIN data structure from a binary file. The real-time rendering
process performs the following steps for each frame:

1. View-dependent vertex selection.
2. Dependency resolution.
3. Triangle strip construction.
4. Rendering.

The top-down traversal of the QuadTIN hierarchy H for vertex
selection is similar to the algorithms presented in [16, 23]. How-
ever, for a fly-through application vertices are selected based on a
view-dependent (image space) error metric as outlined below. Due
to this view-dependent vertex selection the RQT constraints have
to be satisfied by including all vertices according to the depen-
dency relation shown in Figure 4. Dependency resolution is effi-
ciently performed in linear time with respect to the size of the
generated triangle mesh as shown in [16] and is not further dis-
cussed here.

Furthermore, due to the imposed restricted quadtree hierarchy
on the TIN input data set, including a few additional Steiner
points, the presented QuadTIN approach can represent different
LOD triangulations of an irregular point set using only one single
triangle strip (with swap operations). Note that also the triangle
strip generation algorithm [16] is linear in time with respect to the
number of rendered triangles.

View-dependent vertex selection: The vertex selection takes
three view-dependent selection criteria into account: view-frustum
culling, back-face culling and screen projection tolerance. These
criteria allow efficient back-tracking during the recursive traversal
of the QuadTIN hierarchy H for vertex selection. If the bounding
sphere of a node  does not intersect the view frustum
(approximated by a viewing cone) or if the bounding normal cone
indicates a completely back-facing region, recursive vertex selec-
tion can be stopped at this node h. For performance reasons Quad-
TIN computes view-frustum and back-face culling similar to [17]
using only a few floating point operations, see also Figure 11. We
assume that the viewpoint e and semi-angle ω (as well as its sine,
cosine and tangens) of the viewing cone are given for each frame.
Furthermore, for each node  we know its bounding sphere
(c, r) and bounding normal cone (n,θ).

View-frustum culling as shown in Figure 11 a) is performed if
 or . Using the rules

 and  this
can be rewritten to

. (EQ 2)

Equation 2 can efficiently be evaluated without trigonometric
functions by using a dot-product 
and an additional division.  can be precomputed once as
long as the FOV aperture angle does not change between frames
and . A few additional relations such as

 ⇒ continue selection,  ⇒ continue selec-
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tion, and  ⇒ stop selection need to be tested before
Equation 2 can be used to stop recursive vertex selection.

While view-frustum culling as explained above is slightly dif-
ferent and more efficient than in [17], back-face culling as shown
Figure 11 b) is practically identical. Recursive vertex selection can
be stopped at node h if  or .
This is equivalent to

, (EQ 3)

and can be computed efficiently without trigonometric func-
tions as shown in [17].

FIGURE 11. a) View-frustum culling if  and b)

back-face culling if  are used for efficient back-

tracking in vertex selection.

In addition to view-frustum and back-face culling which are
used for back-tracking, a screen projection error tolerance is used
for vertex selection as well as back-tracking. A vertex  that
refines triangles t and t’ is selected only if its geometric approxi-
mation error  projected on screen exceeds a given toler-
ance τ. Given the normalized viewing direction w and the focal
length d of the viewing plane as shown in Figure 12, the projected
error on screen that is compared to τ for vertex selection is 

. (EQ 4)

Note that the approximation error  as computed in
Equation 1 does not actually have to occur at  itself but can
occur at any point within the bounding sphere. Therefore, for the
purpose of back-tracking we use an adjusted conservative screen
projection error given by

. (EQ 5)

FIGURE 12. Screen projection of the approximation error is
performed by perspective division.

Rendering: The rendering process mainly takes advantage that
due to the imposed quadtree hierarchy the irregular point set can
be triangulated with one single triangle strip. We use the algorithm
presented in [16] to generate a generalized triangle strip including
swap operations. The so created triangle strip (see also [7, 8, 14])
contains almost as many swap operations as triangles. If a swap

operation is simulated in OpenGL by repeating the second last ver-
tex and thus creating a degenerate line-triangle, the resulting trian-
gle strip contains almost twice the number of actually visible
triangles. Note however, that even in the worst case this triangle
strip is still better then an indexed triangle list. This is because
even with swap operations no more than 2 vertices (amortized) per
visible triangle are processed for transform and lighting compared
to 3 per triangle with an indexed triangle list.

To avoid popping artifacts in multiresolution triangulations
vertex morphing was proposed in [11] to smoothen the transition
between different LODs. In vertex morphing, a vertex v is first
inserted at an interpolated start position vstart and then smoothly
translated to its end position vend by 
over some time, or number of frames. This works well when
inserting vertices since the start position can be interpolated from
the current triangulation and because the end position is well
defined by the vertex’ actual coordinates. On the other hand, ver-
tex morphing is problematic when removing vertices to decrease
the LOD. In that case the start position vstart is the vertex v’s cur-
rent coordinates as used for rendering. However, the end position
vend is not well defined as shown in Figure 13. If any of the verti-
ces, from which the end point vend is interpolated, is itself a mor-
phing vertex then it is difficult to efficiently prevent any popping
at the time when v has to be removed from the mesh.

FIGURE 13. Vertex morphing endpoint interpolation at the
beginning of the morph a) and at the end when the
interpolated vertices are modified as well.

In addition to the above problems of correctly determining end
positions for vertex removal, morphing also poses problems in the
vertex selection process. Creating a particular LOD triangulation is
not anymore a one-step process because vertices not only have to
be selected but must also actively be removed over a number of
frames. Thus vertices must be actively scheduled for removal as
soon as they are selected only due to dependency relations from
vertices that are already in the process of being removed. Due to
the asymmetry of vertex morphing at insertion and removal time
and due to open problems in LOD selection under dynamic vertex
removal, morphing is currently not implemented within our ren-
dering algorithm.

5. EXPERIMENTS
In this section we present experimental results with digital eleva-
tion models (DEMs) from the United States Geological Survey
(USGS). The original DEM files are all regular grid height-field
data sets from which we generated irregular TIN representations in
a mesh simplification preprocess. We used the Terra software [9]
available from http://graphics.cs.uiuc.edu/~garland/CMU/scape/
to simplify the DEMs to a fraction of the original data size using
only very small error tolerances. The so generated TINs were used
as example input data sets to our QuadTIN construction algorithm
and QuadTIN rendering application. The downloaded Terra soft-
ware has some limitations, it processes a height-field with a fixed
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spacing of one unit between points in x,y. To avoid any loss of res-
olution in the elevation dimension we did not scale (down) the ele-
vation accordingly but processed the input file conservatively
using Terra with exaggerated elevation.

We used the following terrain data sets to test our QuadTIN
approach: Isabel Valley, Mindego Hill, Palo Alto,1 San Jose1 (all
available from http://bard.wr.usgs.gov/), Puget Sound, and Grand
Canyon (both from http://www.cc.gatech.edu/projects/
large_models/).

5.1 QuadTIN construction
Table 1 shows results of the preprocess using Terra mesh simplifi-
cation and the QuadTIN construction process. The Terra prepro-
cess was conducted on a Sun Enterprise 450 server with 4GB
memory and running on one of the four 296MHz UltraSPARC-II
CPUs. The QuadTIN construction process was performed on a Sun
Ultra60 workstation with a 450MHz UltraSPARC-II and 512MB
main memory.

Despite the fact that the QuadTIN construction process per-
forms demanding spatial search operations on the TIN input data,
executes complicated distance and error metric calculations,
inserts new Steiner points and computes a bounding sphere and
bounding normal cone hierarchy it is very efficient. The construc-
tion process operated at a rate of processing more than 4300 points
per second for most input files. One can also observe that the ratio
of inserted Steiner points in comparison to the input data set is
only about 23% for an offset factor of f = 80% for the restricted
search domain (see also Section 4.2).

In Table 1 we also show the unusual results obtained with the
Grand Canyon data set. This data set is unlike the others in several
aspects. It has a very poor resolution of only 8 bits in the elevation
dimension (only 256 different altitude values). This causes the
Terra preprocess to perform poorly in terms of mesh simplifica-
tion. The unusual simplification and extreme point distribution
also causes the QuadTIN construction to perform poorly. Alto-
gether, this outlier data set performs about 2 times worse in all
aspects than the other data sets.

5.2 Triangulation and rendering
In Figure 14 we show the numbers of selected vertices for different
object-space geometric approximation error thresholds for a

subset of the Palo Alto data set. We com-
pared a plain restricted quadtree triangulation (RQT) built on the
full resolution height-field, and our QuadTIN approach with two
different Terra preprocess variants to corresponding simplifica-
tions with Terra which are single resolution meshes. Despite the

added Steiner points our QuadTIN approach outperforms the regu-
lar grid RQT method significantly in terms of selected vertices for
the same LOD. The Terra results are shown for comparison only
since Terra provides only discrete simplifications and is not a mul-
tiresolution method. Figure 19 illustrates adaptive QuadTIN trian-
gulation for a perspective view of the Mindego Hill data set at
varying image-space error thresholds τ.

FIGURE 14. Number of vertices used to represent a LOD
triangulation for different object-space approximation errors.

As shown in Figure 15 for the Palo Alto model, the ratio of
Steiner points is as low as 14% for coarse triangulations with high
approximation errors. This shows that the QuadTIN triangulation
adopts extremely well to the TIN input at coarse levels, and the
inserted Steiner points are mainly required for conforming
quadtree triangulations at high LODs. This can also be seen nicely
in Figure 18 where we observe that the number of selected Steiner
points (red dots) is larger in regions close to the actual viewpoint
(with high LOD) than in regions farther away (with low LOD).

FIGURE 15. Number of Steiner points in comparison to the
overall number of selected vertices for different object-
space approximation errors and offset factor f = 80%.

Figure 16 shows experimental results of the Palo Alto data set
(1.4M vertices) rendered on a Dell 1.7GHz Pentium 4 with
QuadroPro2 graphics card. The results are amortized over a large
number of frames while interactively viewing the data set.
Figure 16 shows per frame timing results of our rendering algo-
rithm at varying image-space error thresholds τ. The correspond-
ing number of selected vertices, relative per vertex timing, and
frame rates are given in Table 2. We can see that the number of
selected vertices and the rendering cost decreases rapidly (expo-
nentially) as the image-space error threshold value τ increases
slowly (linearly). One can also observe that the overall display per-
formance for very small tolerances τ is dominated by the vertex1. multiple terrain data files merged together

Model #points Terra error #points QuadTIN #points %Steiner
Isabel Valley 154795 16" 0.4 45770 10" 56610 23.68
Mindego Hill 1507815 2'43" 1.2 230117 51" 282475 22.75
Palo Alto 6021376 14'46" 0.8 1147256 4'29" 1418299 23.63
San Jose 17958000 35'06" 1.2 2008583 7'54" 2461123 22.53
Puget Sound 16785409 36'32" 6 2073276 8'17" 2563548 23.65
G. Canyon 8394753 33' 2.0 2540172 16'29" 3825217 50.59

TABLE 1. First four columns: number of points of initial models, time used
by Terra for simplification, preprocess error tolerance in meters, and size of the
resulting TIN. Last three columns: QuadTIN construction time, resulting data
set size including inserted Steiner points, and percentage of Steiner points
added in comparison to the TIN input size.

2
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selection time, which performs the error calculations and LOD
based vertex selection. Furthermore, looking at the display cost
measured per rendered vertex it is noticeable that the system actu-
ally amortizes the cost better per vertex for small τ and larger
meshes, despite the fact that the frame rate is lower (compare to
Figure 16). However, this observation is not surprising since the
constant overhead costs of the algorithms and data structures have
more impact if the number of displayed vertices is small.

FIGURE 16. Per frame timing results of the rendering
algorithm for different screen projection error thresholds τ.

In Figure 17 we show experimental results of the Mindego Hill
data set (280K vertices) rendered on a Dell 2.2GHz Pentium 4 with
GeForce4Ti 4600graphics card. Figure 17 shows per frame render-
ing cost comparison between standard triangle strip and vertex-
cache based rendering. It does not include timing for vertex selec-
tion or triangle strip generation but only the rendering cost. The
standard method keeps the vertices in the application’s system
memory and uses an indexed triangle strip to render the triangu-
lated terrain model. In contrast, the vertex-cache approach stores
all vertices of the data set on the graphics card’s memory using a
NVIDIA OpenGL extension. The performance improvement is
particularly significant for very small screen-space error tolerances
τ with high triangle counts. Note that all vertices of the Mindego
Hill data set fit into the graphics card’s memory.

FIGURE 17. Comparison of rendering time between
standard triangle strip rendering and rendering using vertex
caching on the graphics card.

FIGURE 18. Example of Steiner points (red dots) shown in
comparison to all selected vertices for a perspective view of
the San Jose data set (shown from bird’s eye view).

6. CONCLUSION
In this paper we presented QuadTIN, a novel approach to impose
quadtree-based multiresolution triangulation hierarchy on arbitrary
irregular sets of elevation points. Using a limited number of
Steiner points this triangulation hierarchy allows fast view-depen-
dent LOD triangulation, triangle strip generation and real-time ren-
dering. We also introduced an efficient heuristic how such a
hierarchy can efficiently be constructed with a minimal number of
Steiner points.

Experiments on a variety of meshes have shown the efficiency
and applicability of our approach. Compared to TIN based multi-
resolution approaches the QuadTIN triangulation hierarchy pro-
vides better triangulation and rendering speed, and compared to
quadtree or bintree triangulations based on regular grids QuadTIN
requires significantly fewer vertices for given error thresholds and
less storage space.
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Error τ (pixels) 0.0 0.5 1.0 1.5 2.0 2.5 3.0

selected vertices 254703 35983 14356 8093 5288 3761 2824
per frame timing 0.13s 0.032s 0.016s 0.010s 0.008s 0.006s 0.005s
per vertex timing 0.52µs 0.89µs 1.13µs 1.32µs 1.52µs 1.71µs 1.91µs

frame rate 7 30 61 93 124 155 200

TABLE 2. Timing experiments for different screen-space error
thresholds τ.
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FIGURE 19. QuadTIN triangulations of the Mindego Hill data set with screen projection error threshold τ < 4, 7 and 12 pixels (from left
to right), resulting in 7984, 3789 and 1601 selected vertices respectively.
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