
Eurographics Symposium on Parallel Graphics and Visualization (2010)
J. Ahrens, K. Debattista, and R. Pajarola (Editors)

Scalable Parallel Out-of-core Terrain Rendering

Prashant Goswami† Maxim Makhinya‡ Jonas Bösch§ Renato Pajarola¶

Visualization and MultiMedia Lab
Department of Informatics

University of Zürich

Abstract

In this paper, we introduce a novel out-of-core parallel and scalable technique for rendering massive terrain
datasets. The parallel rendering task decomposition is implemented on top of an existing terrain renderer using
an open source framework for cluster-parallel rendering. Our approach achieves parallel rendering by division
of the rendering task either in sort-last (database) or sort-first (screen domain) manner and presents an optimal
method for implicit load balancing in the former mode. The efficiency of our approach is validated using massive
elevation models.

Categories and Subject Descriptors (according to ACM CCS): I.3.2 [Computer Graphics]: Graphics Systems—
Distributed Graphics; I.3.m [Computer Graphics]: Miscellaneous—Parallel Rendering

1. Introduction

Interactive visualization of very large terrain datasets re-
mains a challenging task as precision of data acquisition
is increasing with the advancement of hardware. Moreover,
in many visualization applications terrain rendering itself is
only a secondary task and is often relegated to the back-
ground. The massive sizes of terrain data and the demand
of high quality data display make it challenging for the ap-
plication to run at interactive frame rates even with the best
hardware on a single machine. Therefore, there has been an
inclination towards the use of parallel rendering approaches,
which allows one to use resources from multiple systems,
improving the rendering capacity manifold.

Continuing improvements in CPU and GPU performance
as well as increasing availability of multi-core processors
and cluster-based parallel systems demand for flexible and
scalable parallel rendering solutions that can exploit multi-
pipe graphics hardware. However, such solutions are not al-
ways easy to design and often not inherent in the basic struc-

† e-mail: goswami@ifi.uzh.ch
‡ e-mail: makhinya@ifi.uzh.ch
§ e-mail: boesch@ifi.uzh.ch
¶ e-mail: pajarola@acm.org

ture or choice of algorithms. Our goal in this work is to come
up with an efficient out-of-core parallel and scalable terrain
rendering approach that allows interactive visualization of
huge digital elevation models (DEMs) while still maintain-
ing the desirable features and properties of state-of-the-art
terrain rendering algorithms.

Many algorithms have been proposed for interactive ren-
dering of large DEMs, limiting the 3D graphics load effec-
tively to the available computing and graphics resources as
well as display needs. To improve rendering performance,
an appropriate level-of-detail (LOD) of the graphics data to
be displayed is selected for each frame. The LOD is adaptive
with respect to surface features and viewing parameters and
is selected to achieve a target rendering quality and frame
rate. With current generation CPU-GPU configurations, em-
phasis is more on optimizing LOD over batched primitives
than on processing individual geometric primitives such as
vertices or triangles. This way, a coarse LOD selection is
quickly accomplished by the CPU and then the correspond-
ing geometry is handed over to the GPU for batched ren-
dering. Hence, the CPU does not consume excessive time to
perform fine-grained LOD optimizations that risk starving
the fast-paced graphics hardware pipeline.

Many of the state-of-art terrain rendering algorithms sup-
port high-performance rendering and compact storage of

c� The Eurographics Association 2010.

Goswami, Makhinya, Bösch, Pajarola / Parallel Terrain Rendering

DEM data. However, not only do these approaches lack sim-
plicity of implementation and usage, but they also do not
keep DEM height data in a format independent from the mul-
tiresolution triangulation. These approaches do not allow the
DEM data to be used by other non-rendering applications,
thus requiring data duplication. Even more, many methods
cannot guarantee continuous out-of-core LOD fetching and
display to maintain a consistent frame rate. Most impor-
tantly, none of these algorithms can be parallelized easily
and efficiently across multiple computer systems and dis-
tributed graphics resources.

The presented parallel terrain renderer is built upon
RASTeR [BGP09], which introduced the concept of a paired
multiresolution tree structure where the multiresolution tri-
angulation is independent of the DEM data. In order to
achieve this, the DEM data is kept in square tiles, which are
the basic units of a quadtree, and the multiresolution trian-
gulation is organized as triangle patches which are the basic
units of a meta triangle-bintree. Triangulation itself is never
explicitly stored and is based on a lean LOD data structure.
Continuous display is achieved through out-of-core DEM
and texture data fetching by an asynchronous server thread.
In addition, DEM data tiles can be compressed and kept in
compact form. The most important feature of the algorithm
in the current context is, however, its ability to easily paral-
lelize terrain rendering on multiple distributed machines.

Our novel parallel terrain rendering solution is based on
sort-first and sort-last task decomposition, division of the
viewing frustum or DEM database range across several ma-
chines respectively and rendering them in parallel. The par-
tial rendering results can then be combined together on a
destination display, or multiple displays if desired. We have
implemented our parallel terrain renderer using the Equal-
izer parallel rendering framework [EMP09].

The remainder of the paper is organized as follows. Sec-
tion 2 briefly discusses the related work in parallel render-
ing and terrain visualization. In Section 3, we summarize
the fundamentals of RASTeR, our basic terrain rendering al-
gorithm. Section 4 discusses the parallelization of RASTeR
in detail, and in Section 5, the implementation results are
presented. The paper ends with a conclusion in Section 6.

2. Related Work

The early fundamental concepts of parallel rendering have
been laid down in [Cro97] and [MCEF94]. Cluster-based
parallel rendering has been commercialized for offline ren-
dering for computer generated animated movies or special
effects and for other special application domains. Render-
ing of realistic terrain images on massively parallel com-
puter systems has initially been addressed in [VR91, AG95,
LDC96]. However, these approaches are not capable of han-
dling very large data sets at interactive frame rates exploit-
ing current generation GPU hardware. Recent work includes

[JLMVK06] which relies on shared resources from a com-
munity of users to view 3D data, [YJSZ06] that focuses on
rendering on a PC cluster, and [HTMS07] that describes a
remote visualization system for large-scale terrain rendering
based on a parallel streaming pipeline architecture.

However, none of these previous works on parallel terrain
rendering specifically address the problem of rendering task
decomposition in the screen (sort-first) or database (sort-last)
domain. Moreover, they do not offer a comparative analysis
of rendering performance for various rendering modes, con-
figurations and data sizes as presented in this paper.

A number of different multiresolution terrain rendering
approaches have been developed in the past, which are re-
viewed in a recent survey [PG07]. As current graphics hard-
ware can render many million geometric elements per sec-
ond, focus has shifted from fine-grained LOD rendering to
faster block-based LOD selection and terrain rendering tech-
niques [Pom00, Lev02, CGG∗03, LPT03, HDJ05, BGP09].
This avoids starvation of the fast GPU by slow detailed LOD
selection on the CPU. Despite the increased number of ren-
dered elements, these methods demonstrate the performance
advantages of coarse LOD adaption and optimized rendering
of batched geometry.

While rendering optimization has focused on optimizing
the CPU-GPU communication on a single graphics work-
station, none of the methods proposed above address the
use of multiple cluster-parallel GPUs for interactive render-
ing of massive terrain datasets. In this paper we present a
distributed cluster-parallel terrain rendering solution based
on the RASTeR terrain rendering approach [BGP09] and
implemented using the Equalizer parallel rendering frame-
work [EMP09].

3. RASTeR

3.1. Basic Principles

RASTeR [BGP09] is a system for real-time adaptive simpli-
fication and rendering of large grid-digital terrain data and
follows the idea of batch-based multiresolution triangulation
and rendering. It is based on the concept of LOD triangle K-
Patches and M-Blocks of elevation data.

A K-Patch is an isosceles right triangle cluster with a con-
stant number of K vertices along each triangle patch bound-
ary. An adaptive batched triangulation can be achieved by
selectively splitting K-Patches at their longest edge. These
K-Patches can be interpreted as macro triangles of a batched
meta bintree and thus can be arranged in a triangle strip se-
quence. The orientation of a K-Patch is always an instance
of one of eight basic isosceles right triangle types. The reso-
lution is doubled for every two consecutive levels in the meta
bintree.

An M-Block is a square block of a regular grid of DEM
height sample data stored in a file on disk. All M-Blocks
are defined to be of equal size, M×M vertices where M =

c� The Eurographics Association 2010.

Goswami, Makhinya, Bösch, Pajarola / Parallel Terrain Rendering

2m + 1. M-Blocks are organized in a quadtree multiresolu-
tion hierarchy. Data within an M-Block can be compressed
using standard compression schemes.

M-Blocks and K-Patches form two separate but tightly
connected hierarchies, and each meta bintree triangle patch
node stores a pointer to the associated quadtree elevation
data node as indicated in Figure 1. Exploiting this relation-
ship means that it is possible to clearly separate the LOD
selection from rendering, both conceptually as well as in
the implementation. The LOD selection is performed on the
K-Patch meta bintree, considering a K-Patch as a triangle
of triangles. Rendering and resource management are done
based on the M-Block quadtree, considering K-Patches as
pre-defined triangle strips stored as index buffer over M-
Block vertex buffers.

K-Patch meta bintreeM-Block quadtree

(a) (b)

Figure 1: M-Block height-field quadtree nodes (a) can cor-
respond to different K-Patch meta bintree nodes (b) de-
pending on the selected LOD triangulation. Elevation data
in the M-Block quadtree is separated from the triangle
mesh connectivity in the K-Patch meta bintree. (Figure from
[BGP09].)

As error metric, a saturated view-dependent definition
based on the object-space geometric approximation error is
used. This error metric is defined per K-Patch rather than per
triangle. For more details on the LOD triangulation and the
error metric see [BGP09].

3.2. System

The meta bintree is sufficiently small compared to the DEM
height field data and can typically be loaded into main mem-
ory. At run-time, the K-Patch bintree is traversed by the
LOD manager in the rendering thread, and LOD selection
is performed on a per K-Patch basis. To avoid cracks and T-
junctions, a saturated octagon error metric [Ger03] is used.

The object-space error can thus be quickly computed and
compared to a user-specified error tolerance.

texture
images

DEM
height
data

texture
loader

loader thread

load
requests
queue

texture
cache

DEM
cache

interaction handler

render thread

GPU

height
maps

texture
images

shaders
k-patch
table

LOD manager

meta-
bintree

user
input

pre-fetcher
thread

DEM
loader

texture
fetcher
thread

render queue

shaders

Figure 2: RASTeR system threads and resource management
overview (Figure from [BGP09]).

To match the K-Patch and M-Block structures, textures
are managed in square units and organized in a texture
mipmap pyramid. The texture resolution used for one or
more related K-Patches is chosen depending on the distance
from the camera.

As the K-Patch index buffers are static, the only resources
which have to be actively managed during run-time are
the M-Block DEM height data and the textures. Loading,
caching and prefetching of this data is handled by an asyn-
chronous load queue.

For a more detailed description of RASTeR, please refer
to [BGP09].

4. Parallel Terrain Rendering

Our terrain rendering approach is parallelized and imple-
mented using the Equalizer [EMP09] framework for cluster-
parallel rendering. Equalizer provides an API and library
to facilitate the development of distributed as well as non-
distributed parallel real-time rendering applications exploit-
ing multiple GPUs. It is driven by a client-server approach in
which the task decomposition and parallel rendering config-
urations to be executed are independent from the rendering
client and entirely managed by the Equalizer server.

c� The Eurographics Association 2010.

Goswami, Makhinya, Bösch, Pajarola / Parallel Terrain Rendering

In the context of Equalizer, a node refers to a single ma-
chine (or CPU), a pipe to a graphics card, a window to an
OpenGL drawable and a channel to a viewport within a win-
dow. For a more detailed description, please see [EMP09].
In the following, we generally assume a canonical arrange-
ment of one window per pipe and one pipe per node. For
sort-first rendering, there are multiple channels per window,
otherwise one.

At any time, each machine contributing to the rendering
executes an independent modified and parallelized RASTeR
rendering application. Task distribution is managed by the
Equalizer server process according to the user specified con-
figuration. In order to achieve distribution of the render-
ing task, the modified RASTeR terrain renderer has to take
into account either of two parameters supplied by Equalizer:
a view frustum or database range for sort-first or sort-last
rendering respectively. These parameters are passed to the
application nodes by the Equalizer server. Each node uses
its individually supplied view frustum for culling, and the
database range to select a subset of the entire model to be
rendered. All other user parameters, such as pixel-error LOD
threshold values and key or mouse controls are duplicated
and broadcast to all nodes. However, each parallel instance
of the RASTeR application maintains its own rendering front
which it incrementally updates every frame.

Since Equalizer has its own OpenGL context handling
mechanism and the original implementation of the terrain
renderer uses many asynchronous threads, for example to
fetch textures and DEM data M-Blocks into GPU mem-
ory, we have to provide each application thread the relevant
OpenGL context using Equalizer’s data and object distribu-
tion features.

4.1. Sort-Last or Database Decomposition

In a typical sort-last decomposition, the 3D geometry data
is divided among rendering machines, as indicated in Fig-
ure 3(a). Final image compositing is based on perspective-
correct back-to-front α-blending or z-depth-buffer visibility
culling of the partially rendered frames and is performed by
Equalizer independently of the client rendering applications.

In order to ensure optimal and scalable parallelization
for best performance, it is important that any partitioning
scheme ensures that:

1. the rendering primitives or rendering task is divided as
equally as possible between the nodes,

2. the per-frame inter communication traffic between the
nodes is kept minimal.

The first constraint is not always easy to achieve ef-
ficiently as the task of database decomposition is more
straightforward in simple rendering as compared to adaptive
LOD based rendering. In LOD based visualizations a simple
spatial range based decomposition of 3D data fails to dis-
tribute the rendering primitives equally among the different

bucketization
(sort)

G G G

F F F

graphics
database

display

sort screen-space
primitives

G G G

F F F

graphics
database

display

sort fragments
(depth visibility)

G G G

F F F

graphics
database

display

geometry
processing

fragment
processing

sort-firstsort-middlesort-last

(a) (b)

Figure 3: Sort-last (a), sort-middle and sort-first (b) task
decomposition and parallel rendering data flow.

nodes. Moreover, it may involve a substantial amount of syn-
chronization and communication traffic between the render-
ing nodes to agree on what part of the constantly changing
LOD data is rendered by which node. In the worst case this
adversely affects the rendering efficiency from achieving an
equal task decomposition.

For sort-last rendering, our terrain renderer decomposes
the rendering task by dividing the terrain data into N parts.
Equalizer maps the entire 3D database to be displayed to an
abstract representation, a linear range interval [0,1]. This in-
terval is split into N equal ranges Ri = [i

N , i+1
N] and each ren-

dering node must interpret the range Ri it gets assigned by
Equalizer in terms of 3D data to be rendered. All nodes ren-
der into a window and channel using the same view frustum.
Hence, each node selects and draws 1

N -th of the (visible) ter-
rain as indicated by Ri, and z-depth visibility compositing is
finally done at the destination node by Equalizer.

Using a naive approach, all multiresolution triangles can
be enumerated, equally distributed and mapped to one of the
N data ranges Ri. Each node must perform LOD selection as
well as in-range tests for the selected triangles, and then send
the LOD triangles belonging to its own range to the GPU for
rendering. Since this involves excessive per-primitive evalu-
ations by the CPU, this would lead to starvation of the GPU.
However, as we explain later, RASTeR allows us to perform
such evaluations on a coarse level.

As discussed earlier, the bases of RASTeR are triangle K-
Patches and terrain data M-Blocks. At rendering time, the
LOD manager selects all K-Patches within the given LOD
error value range for rendering. These triangle K-Patches
in turn activate their corresponding M-Blocks which are the
data units containing height and normal values of the terrain.
Using these units as a basis for sort-last rendering we dis-
cuss three decomposition approaches, each improving upon
the other.

c� The Eurographics Association 2010.

Goswami, Makhinya, Bösch, Pajarola / Parallel Terrain Rendering

4.1.1. Linear Block Enumeration

A simple way to achieve database domain decomposition is
to enumerate the terrain M-Blocks and assign them equally
to the participating rendering nodes. Thus each node is as-
signed a linear range Ri of M-Blocks. All nodes traverse the
meta bintree in parallel and identify the LOD K-Patches to
be displayed. Each node checks if the selected K-Patches
correspond to an M-Block within its own range Ri, and only
this filtered set of K-Patches is then rendered. For exam-
ple, if the range of the current node as supplied by Equal-
izer is Ri = [l,r], with the origin of an M-Block is given by
OM(x,y) and xmax being the maximum x-dimension value,
then l ∗ xmax ≤ OM(x) ≤ r ∗ xmax can be checked to decide
if a K-Patch should be rendered on this node, see also Fig-
ure 4(a). In fact, as soon as a K-Patch fails this test, the
traversal of the meta bintree can be stopped, as the child
nodes do not fall in the given range either. With this ap-
proach, we can exploit the K-Patches as triangle cluster units
instead of doing per primitive LOD and in-range queries.

The drawbacks with this approach are that the meta bin-
tree LOD traversal has to be constrained to the branches
corresponding to the M-Blocks indicated by Ri, and that
this LOD traversal and selection are easily susceptible to
view changes upon rotation or translation. Above all, this
approach cannot guarantee an even division of data across
all machines, since the adaptive view-dependent LOD se-
lection unequally maps to the fixed assignment of M-Blocks
per node, and hence is not the best for parallel rendering (see
also Figure 6(a)).

4.1.2. Quadtree Enumeration

An improved approach makes use of the quadtree structure
of the M-Block hierarchy (see Figure 4(b)). Starting from
the root M-Block, all quadtree nodes are recursively enu-
merated. Bottom-up, intervals to all internal nodes are as-
signed that cover the range of its descendants. At runtime, all
bintree K-Patches that correspond to M-Blocks in the range
Ri = [l,r] supplied by Equalizer are selected for rendering
on a particular machine. The range test is simple and can be
made as follows:

l ∗nmax ≤ LM ≤ r ∗nmax∨
l ∗nmax ≤ RM ≤ r ∗nmax

where nmax refers to the maximum number of a leaf node
and [L,R]M is the interval of the M-Block node itself cover-
ing its descendants. This decomposition strategy allows us to
select coherent terrain data per machine that is not as suscep-
tible to rotational and translational changes as in the previous
approach. Figure 6(b) clearly demonstrates the advantage of
this improved decomposition mode over a simple linear enu-
meration.

4.1.3. Active K-Patch Enumeration

The problem with both of the above decomposition schemes
is that they do not ensure that all rendering machines get

a similar amount of rendering workload and hence optimal
performance is not reached. Since our basic rendering units
are triangle K-Patches and M-Blocks, any simple spatial di-
vision of these units cannot guarantee that the rendering load
is evenly distributed across all machines in terms of the num-
ber of drawing primitives. This can however, be achieved by
making the observation that each K-Patch contains the same
number of triangles. Therefore, an optimal task decomposi-
tion can be achieved by dividing the list of visible K-Patches
equally among all rendering nodes as illustrated in Figure 5.
After the meta bintree LOD traversal, the front of visible K-
Patches is the same across all machines. Each machine can
choose from this list a particular sub-set of K-Patches to ren-
der. Thus, the front of selected K-Patches is enumerated and
mapped to the ranges Ri provided by Equalizer. Using this
view-adaptive assignment of visible triangle K-Patches, each
node can select a similar number of geometric primitives to
display without the need for any communication overhead.
A run-time view is shown in Figure 6(c).

X

Y

l=0.0

 r=0.25

l=0.5

 r=0.75

l=0.25

 r=0.5

l=0.75

 r=1.0

(a)

0

[5-20]

1

[5-8]

2

[9-12]

3

[13-16]

4

[17-20]

5 6

7 8

l=0.25

r=0.5
l=0

r=0.25

l=0.5

r=0.75

l=0.75

r=1.0

(b)

Figure 4: Sort-last database decomposition of terrain for
four nodes using (a) linear block and (b) quadtree enumera-
tion.

4.2. Sort-First or Screen Decomposition

The sort-first decomposition mode involves task division in
screen space and is relatively simple (see also Figure 6(d)).
For each frame, before the LOD meta bintree is traversed,
every rendering node updates its view frustum parameters
to the ones indicated by the Equalizer server. The meta bin-
tree traversal is then restricted to the particular view frustum,
performing view-frustum culling of the LOD meta bintree on
that node. Since in sort-first mode different machines render
different parts of terrain that occupy mutually separate parts
of the screen, final image assembly is simple and fast as it
does not involve any costly z-depth or α-compositing stage.

5. Results

Equalizer and RASTeR are both written in C++ using GLSL
shaders. The implementation is tested on a 10-node Linux

c� The Eurographics Association 2010.

Goswami, Makhinya, Bösch, Pajarola / Parallel Terrain Rendering

(a) (b)

(c) (d)

Figure 6: Screenshots of sort-last database decomposition of terrain on four nodes using (a) linear block, (b) quadtree and (c)
active K-Patch enumeration. (d) Sort-first view frustum decomposition.

a

g h

e f

b da c

b c d e f g h

l=0.0

 r=0.25

l=0.25

 r=0.5

l=0.5

 r=0.75

l=0.75

 r=1.0

K-Patch list

Meta bintree

Figure 5: Sort-last database decomposition for four nodes
using active K-Patch enumeration.

cluster with 2 Gbit/s Myrinet for image compositing and 1
Gbit/s network for out-of-core terrain data retrieval. Each
node features a dual 2.2 GHz AMD Opteron CPU, 4GB
of RAM and GeForce 9800 GX2 graphics. Two different
data sets were used: Puget Sound (16k×16k vertices) and
SRTM (32k×32k vertices); all tests were carried out using
1280×1024 pixels viewport.

The linear block and quadtree enumeration sort-last data
decomposition modes should be used in combination with
dynamic load balancing to distribute the rendered geome-
try as evenly as possible. Otherwise, a static assignment of
data to rendering nodes cannot achieve scalable sort-last ren-
dering at all. Current sort-last load balancing in Equalizer
redistributes the data ranges Ri based on measures of time
spent on rendering by all nodes in the previous frame. This
type of load balancing based on past performance can easily
and quickly be integrated into a sort-last rendering system.
However, this scheme does not take into account caching
of data in main memory and can thus tend to shift load to-
wards a single machine, which has most of the data cached
already. Awarding a fast rendering node with further data to
be displayed can lead to most of the geometry being ren-
dered on one node, while other machines are busy updating
their caches, resulting in poor overall performance.

Our tests have shown that linear block and quadtree
enumeration with the above outlined fixed or past-frame
adaptive load distributions do not provide scalable sort-
last rendering. Only our third approach using active front
K-Patch enumeration showed performance improvements
when adding more rendering nodes. This method provides
simple and automatic load balancing (since all nodes ren-
der almost equal number of triangles) which is not based on
past rendering times, while other approaches require more
sophisticated load balancing computations. We demonstrate

c� The Eurographics Association 2010.

Goswami, Makhinya, Bösch, Pajarola / Parallel Terrain Rendering

(a) (b)

Figure 7: Sort-first screen partitioning causes a less even distribution of data to be rendered in the case of vertical (a) compared
to horizontal (b) partitioning. (four nodes)

Figure 8: Zurich dataset using display wall configuration

sort-last scalability using this technique in the graphs below
and in the accompanying video.

For sort-first parallel rendering we have analyzed two
simple screen decomposition modes, vertical and horizontal
tiling, that partition the view frustum equally. Vertical parti-
tioning leads to wide screen regions as shown in Figure 7(a)
and can lead to dramatically uneven data distribution per tile
due to the perspective projection. Despite view-dependent
LOD, the top tiles can receive significantly more geometry
per screen space area and thus will limit the overall frame
rate. Horizontal partitioning as in Figure 7(b) leads to a much
more even distribution of geometry per screen tile. For larger
numbers of rendering nodes, however, both vertical and hor-
izontal tiling lead to large aspect ratio screen tiles with poor
parallel rendering scalability. Hence, a more regular rectan-

gular screen partitioning is necessary for sort-last rendering
on many nodes (see also Figure 6(d)).

Figures 9(a) and 9(c) present frame rate graphs for moving
forward and turning camera trajectories, while Figures 9(b)
and 9(d) present those for the camera zooming into the ter-
rain. As we can see from these graphs, in both sort-first (2D)
and sort-last (DB) parallel rendering modes pure drawing
performance (labeled as 2D - Rendering and DB - Render-
ing respectively) scales at least linearly. Superlinear perfor-
mance of rendering can be explained by reduced data fetch-
ing since each machine fetches only those terrain M-Blocks
that are not already cached locally in main memory. The
reduced size of the rendering front of active K-Patches on
a single machine allows it to be cached more efficiently in
GPU and main memory, hence avoiding repeated data fetch-

c� The Eurographics Association 2010.

Goswami, Makhinya, Bösch, Pajarola / Parallel Terrain Rendering

ing. Pure sort-last rendering scales better than sort-first be-
cause each machine renders a similar number of triangles,
thus data is well distributed among them. However, this can-
not be ensured in the case of sort-first task decomposition.

Overall rendering performance depends largely on the
compositing stage of the parallel rendering framework,
which includes reading of partial images back from GPUs,
transmitting them to the destination node and assembling
final frames for display. The decrease of the final perfor-
mance (labeled as 2D and DB) with increasing number of
nodes on Figure 9 happens due to the image throughput bot-
tleneck. The amount of data that has to be sent over the
network in case of sort-last rendering and compositing is
roughly twice larger than for sort-first, thus network satura-
tion happens earlier despite the rendering itself being faster.
In our case, sort-last network saturation happens at around
15 fps, which is independent of the drawing speed. That
means if the initial rendering on one node is already fast,
overall performance will not scale well with more rendering
nodes. For the smaller Puget Sound terrain model, when the
camera is zooming in and the initial speed is about 3 fps,
sort-last rendering does not scale anymore after 6 nodes (see
also Figure 9(b)). For sort-first rendering, network saturation
should happen at around 30 fps. This speed is not reached in
our experiments, therefore, the final performance of sort-first
rendering scales almost linearly up to the tested number of
nodes.

Figure 9 demonstrates that performance of distributed
RASTeR rendering scales very well. Overall performance
however is mostly limited by network throughput and by the
compression used for partial images. Therefore, it is possible
to improve overall performance if better network or more so-
phisticated compression schemes are used, especially in case
of sort-last rendering.

The proposed K-Patch enumeration sort-last parallel ren-
dering solution works well and does not interfere with
Equalizer’s general task distribution and parallel rendering
approach. The task decomposition flexibility of Equalizer is
fully maintained, an example showing a tiled wall configu-
ration driven by our parallel terrain rendering application is
given in Figure 8.

6. Conclusion

In this paper a new perspective on real-time multireso-
lution out-of-core terrain visualization in the context of
scalable cluster-parallel rendering has been presented. We
have shown that scalable parallel rendering cannot easily
be achieved by simple sort-last or sort-first task distribu-
tion, even if applied to adaptive LOD terrain rendering ap-
proaches. To achieve effective parallel rendering using dis-
tributed graphics hardware resources over a network, more
aspects on task assignment and out-of-core loading have to
be taken into account. This is the case because the bottleneck
shifts from the simple CPU-GPU communication problem to

a more complex and challenging environment of distributed
resources.

The experiments on sort-last and sort-first parallel terrain
rendering demonstrate possible pitfalls if adapting known
out-of-core LOD, but single CPU-GPU terrain visualiza-
tion methods to a parallel system. In particular, we have
introduced a novel sort-last data decomposition technique
that achieves per-frame automatic load balancing. While this
method realizes highly scalable, multiresolution terrain ren-
dering from out-of-core for very large grid-digital elevation
models, the introduced technique and analysis only presents
the first steps towards efficient cluster-parallel terrain ren-
dering. More challenges have to be addressed, in particular
towards the analysis and reduction of system-wide overhead
when using a very large number of parallel rendering nodes.

Acknowledgements

This work was supported in part by the Swiss National Sci-
ence Foundation under Grant 200021-116329/1. The authors
would like to thank and acknowledge the following institu-
tions and projects for providing 3D data sets: the Georgia
Tech Large Geometric Models Archive for the Puget Sound
data set, NGA and NASA for providing the SRTM height
field. as well as swisstopo for the DHM25 model of Zürich
(used in the video). We would also like to thank Stefan Eile-
mann for his help on using Equalizer in this project.

References

[AG95] AGRANOV G., GOTSMAN C.: Algorithms for rendering
realistic terrain image sequences and their parallel implementa-
tion. The Visual Computer 11, 9 (1995), 455–464.

[BGP09] BÖSCH J., GOSWAMI P., PAJAROLA R.: RASTeR :
Simple and efficient terrain rendering on the GPU. In Proceed-
ings EUROGRAPHICS Areas Papers (2009), pp. 35–42.

[CGG∗03] CIGNONI P., GANOVELLI F., GOBBETTI E., MAR-
TON F., PONCHIO F., SCOPIGNO R.: BDAM - batched dy-
namic adaptive meshes for high performance terrain visualiza-
tion. Computer Graphics Forum 22, 3 (2003), 505–514.

[Cro97] CROCKETT T. W.: An introduction to parallel rendering.
Parallel Computing 23 (1997), 819–843.

[EMP09] EILEMANN S., MAKHINYA M., PAJAROLA R.: Equal-
izer: A scalable parallel rendering framework. IEEE Transactions
on Visualization and Computer Graphics 15, 3 (May/June 2009),
436–452.

[Ger03] GERSTNER T.: Top-Down View-Dependent Terrain Tri-
angulation using the Octagon Metric. Tech. rep., Institute of Ap-
plied Mathematics, University of Bonn, 2003.

[HDJ05] HWA L. M., DUCHAINEAU M. A., JOY K. I.: Real-
time optimal adaptation for planetary geometry and texture: 4-8
tile hierarchies. IEEE Transactions on Visualization and Com-
puter Graphics 11, 4 (2005), 355–368.

[HTMS07] HU C., TIAN J., MING D., SHEN D.: Multi-screen
tiled displayed, parallel rendering system for a large terrain
dataset. In MIPPR 2007,Medical Imaging, Parallel Processing of
Images, and Optimization Techniques, Vol:6789 (2007), pp. 47–
54.

c� The Eurographics Association 2010.

Goswami, Makhinya, Bösch, Pajarola / Parallel Terrain Rendering

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'!"

$" %" &" '" #" (")" *" +" $!"

,-
.

"

/0123"

45678"$(98"$%*!:$!%'8"%;<=>?3"

!"#$#%&'(&)*'+#

!"#

",#$#%&'(&)*'+#

",#

-*'&.)#

(a)

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'!"

$" %" &" '" #" (")" *" +" $!"

,-
.

"

/0123"

40056"$(76"$%*!8$!%'6"%9:;<=3"

!"#$#%&'(&)*'+#

!"#

",#$#%&'(&)*'+#

",#

-*'&.)#

(b)

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'!"

$" %" &" '" #" (")" *" +" $!"

,-
.

"

/0123"

45678"&%98"$%*!:$!%'8"%;<=>?3"

!"#$#%&'(&)*'+#

!"#

",#$#%&'(&)*'+#

",#

-*'&.)#

(c)

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'!"

$" %" &" '" #" (")" *" +" $!"

,-
.

"

/0123"

40056"&%76"$%*!8$!%'6"%9:;<=3"

!"#$#%&'(&)*'+#

!"#

",#$#%&'(&)*'+#

",#

-*'&.)#

(d)

Figure 9: Graphs showing rendering performance on 10 machines in parallel using DEM models of (a),(b) 16k×16k Puget
Sound and (c),(d) 32k×32k SRTM grids with camera in turning and zooming trajectories respectively. 2D - Rendering refers to
sort-first rendering, 2D to sort-first rendering with compositing, DB - Rendering to sort-last rendering, DB to sort-last rendering
with compositing.

[JLMVK06] JOHNSON A., LEIGH J., MORIN P., VAN KEKEN
P.: GeoWall: Stereoscopic visualization for geoscience research
and education. IEEE Computer Graphics and Applications 26, 6
(November-December 2006), 10–14.

[LDC96] LI P. P., DUQUETTE W. H., CURKENDALL D. W.:
RIVA: A versatile parallel rendering system for interactive scien-
tific visualization. IEEE Transactions on Visualization and Com-
puter Graphics 2, 3 (1996), 186–201.

[Lev02] LEVENBERG J.: Fast view-dependent level-of-detail ren-
dering using cached geometry. In Proceedings IEEE Visualiza-
tion (2002), Computer Society Press, pp. 259–266.

[LPT03] LARIO R., PAJAROLA R., TIRADO F.: Hyperblock-
QuadTIN: Hyper-block quadtree based triangulated irregular net-
works. In Proceedings IASTED International Conference on
Visualization, Imaging and Image Processing (VIIP) (2003),
pp. 733–738.

[MCEF94] MOLNAR S., COX M., ELLSWORTH D., FUCHS H.:

A sorting classification of parallel rendering. IEEE Computer
Graphics and Applications 14, 4 (1994), 23–32.

[PG07] PAJAROLA R., GOBBETTI E.: Survey on semi-regular
multiresolution models for interactive terrain rendering. The Vi-
sual Computer 23, 8 (2007), 583–605.

[Pom00] POMERANZ A. A.: ROAM Using Surface Triangle Clus-
ters (RUSTiC). Master’s thesis, University of California at Davis,
2000.

[VR91] VEZINA G., ROBERTSON P. K.: Terrain perspectives on
a massively parallel SIMD computer. In Proceedings Computer
Graphics International (CGI) (1991), pp. 163–188.

[YJSZ06] YIN P., JIANG X., SHI J., ZHOU R.: Multi-screen tiled
displayed, parallel rendering system for a large terrain dataset. In
International Journal of Virtual Reality, 5(4) (2006), pp. 47–54.

c� The Eurographics Association 2010.

