In Proceedings IEEE ITCC Conference, pages 206-211, 2003.

Fast Prefix Code Processing

Renato Pajarola
Information & Computer Science
University of California, Irvine
pajarola@acm.org

Abstract

As large main memory becomes more and more avail-
able at reasonable prices, processing speed of large data
sets becomes more important than reducing main memory
usage of internal data structures which are small compared
to the available main memory capacity. In this paper we
describe the use of a finite state machine for fast processing
of prefix codes that significantly improves decoding perfor-
mance in practice, and that is easy to implement. We present
an intuitive explanation of this method, an extension to dis-
cover symbol boundaries in compressed data, implementa-
tion details, and we also provide experimental performance
results.

Keywords: variable length coding, data compression, fast
decoding, Huffman codes, prefix codes

1. Introduction

Data compression research constantly attracts the interest of
many researchers both in theoretical foundations of computing
and in application oriented fields. In the last two decades the
fundamentals of data compression have been laid [4, 8, 11, 12,
19, 20, 21, 27] and efficiently applied to text and image com-
pression [10, 14, 24]. Currently data compression is of increas-
ing interest again because of the growing amount of data
processed in applications and transmitted over the internet. In
particular compression of geometric data is currently an active
research area [5, 15, 25, 26], and it is also important to perform
operations on the compressed data directly — working in the
compressed domain — instead of decompressing prior to any
processing [1, 2, 6,9, 17, 18].

There has been some work on memory efficient and fast
construction of Huffman and prefix codes but only little on fast
and efficient decoding (see also [7]). However, with increasing
network transmission rates and disk access speeds, fast decod-
ing and scanning through compressed data is more important
than code construction and encoding. Prefix decoding time cost
is linear in the size of the compressed data stream and bounded
by the number of symbols it has to output. However, this theo-
retical cost estimate does not sufficiently take into account
actual CPU time used to process and decode every single com-
pressed data bit. It is quite a difference in speed if every single

bit has to be processed individually, compared to processing
bytes (8 bits at once) or even larger machine words. Also if a
search in a compressed file only involves identifying the
boundary between two symbols at some location in the com-
pressed file it is important to quickly skip through the file —
reading and processing bytes instead of single bits — and only
examine individual bits adjacent to the actual symbol boundary
if necessary.

Our interest in an efficient Huffman or prefix-code decoder
is motivated by research in geometry compression [15], where
a fast decompressor is crucial, and by research in pattern
matching in compressed files [17], where it is important to
quickly find symbol boundaries at arbitrary positions in the
compressed data stream. The idea of the presented fast prefix
code decoding data structure and algorithm is theoretically the
same as the approaches presented in [3] and [23]. However, we
present a much more intuitive approach based on the binary
code tree itself, we extend the data structure in such a way that
it allows to test for symbol boundaries in constant time, provide
analysis of the time and space costs, and we present experimen-
tal run-time results. Also a very fast decoder based on a differ-
ent canonical coding [22] is presented in [13].

The paper is organized as follows: In Section 2 we shortly
describe Huffman and prefix coding and the problem of effi-
cient decoding. Section 3 presents the basic data structures and
algorithm for fast prefix code decoding, and Section 4 extends
the approach to efficient symbol boundary recovery. Actual
run-time experiments of fast prefix code decompression are
presented in Section 5, and Section 6 concludes the paper.

2. Problem

Huffman coding [8] creates minimal redundancy codes for a
given set of symbols of the source alphabet, and their respective
occurrence frequencies in a data stream to be compressed. It
constructs a binary code tree where each leaf represents a sym-
bol of the alphabet, and the path from the root to the leaf
defines the variable length code for that symbol. The connec-
tions in the binary tree represent bits in the code, here we
assume that a pointer of a node to its right successor represents
a 1 and the pointer to the left child is a 0. Decoding is per-
formed by starting at the root node of the code tree, and recur-
sively traversing the tree according to the bits from the

compressed input data stream, i.e. going to the left child for a 0
and going right for a 1, until reaching a leaf node which signals
that a certain symbol has been fully decoded. Generally this
involves testing every single bit and branching in the tree
accordingly.

The basic Huffman code data structure is a binary tree with
no other information in the inner nodes than two pointers to the
left and right child nodes, and the leaf nodes only storing the
source symbol corresponding to the binary code represented by
the path from the root node to this leaf node. For m source sym-
bols in the alphabet the binary code tree has m-1 inner nodes
and m leaf nodes, thus storage cost is O(m). A theoretically
optimal decoding algorithm starts at the root node, tests a single
bit and branches accordingly to the left or right child node until
a leaf node is reached. At the leaf node the stored source sym-
bol is outputted, and the decoding process is reset to the root
node. Therefore, decoding cost is linear O(n) in the number of
bits 7 of the compressed data stream.

While theoretically optimal, bit-wise processing is obvi-
ously not optimal with respect to actual hardware architectures.
Due to parallelism in digital logic design, microprocessors can
process multiples of bits (i.e. bytes) as fast as individual bits.
For example, although the theoretical cost of reading data
sequentially bit per bit is the same as reading bytes, actual hard-
ware implementation makes reading bytes up to 8 times faster.
Such constant speed-up factors which are theoretically negligi-
ble, nevertheless are very important in practical implementa-
tions. In this paper we address this problem of improving actual
CPU processing time of prefix codes for decoding and retriev-
ing symbol boundaries in the compressed data stream.

3. Fast prefix code decoding

Considering the basic binary code tree data structure and
decoding algorithm outlined in the previous section it is clearly
required to take into account every single bit during the decod-
ing process. Not considering any particular bit for decoding
will result in a non-deterministic traversal of the binary code
tree. However, to speed up decoding performance we want to
read and process the data by multiples of bits, i.e. bytes or
larger words, to take advantage of microprocessor architec-
tures, and reduce most of the testing for the tree traversal. In
this section we show how a binary code tree can be enhanced
for word-wise tree traversal for improved decoding perfor-
mance.

Given a current node in the binary code tree and a sequence
of bits from the compressed data stream, the resulting end-node
from traversing the tree according to these bits is defined
uniquely by actually traversing the binary code tree itself bit by
bit, and restarting at the root node whenever reaching a leaf.
Thus for a fixed size sequence of bits, and a start-node in the

binary code tree, all possible end-nodes can be precomputed as
shown in Figure 1 and stored in a node transition table as
shown in Figure 2. Note that leaf nodes have all the same node
transition table as the root. For a fixed word size of k bits, 2k
possible bit sequences or node transitions must be considered at
every node. This allows us to jump efficiently from any node to
another in the code tree by processing multiple bits simulta-
neously instead of single bits.

FIGURE 1. Binary prefix-code tree with node
transitions using a word size of 2 bits for the codes
A=00, B=01 and C=1.

words

00 | 01 | 10 | 11
o| 3| 4|12

3
g1 2|12
2l a| 4| 7| 2
Sl g 4| 7| 2
oly|l 3| 4| 7| 2

FIGURE 2. The complete node transitions table for all

nodes indicating the end-node for any given

combination of start-node and data word. Note that all
leaves have the same node transition table as the
root node and can be omitted out to save storage.

The presented data structure, binary code tree with node
transition table, is not sufficient for decompression. Besides all
possible node transitions for arbitrary bit-sequences, also the
output symbols have to be known for every node transition.
Any node transition may implicitly pass one or multiple times
through a leaf of the binary code tree. For every visit of a leaf
node, even implicitly given by a node transition, a decoded
source symbol can be outputted. In the example of Figure 1, if
starting from node 1 and reading the 2bit-word 01 we end up in
node 2, however, we also decoded the symbols A and C as we
implicitly passed through leaf node 3 (symbol A) and explicitly
ended in leaf node 2 (symbol C). Decoded symbols, if any, can
be captured for every node transition in a symbol output table.
Similar to the node transition table, this table can be con-
structed by a bit-wise traversal of the binary code tree, initializ-
ing the traversal at the start-node for each node transition and
restarting at the root node whenever reaching a leaf. An entry in
the symbol output table for a given node transition consists of
all source symbols corresponding to leaf nodes that have been
traversed for this node transition. Figure 3 depicts the symbol
output table for the same encoding and binary code tree as used
in Figure 1.

fromnode word symbols
0 00 A
0 01 B
0 10 C
0 11 CC
1 00 A
1 01 AC
1 10 B
1 11 B, C

FIGURE 3. Table listing the output symbols for every
node transition. Note that the leave nodes are
identical to the root node and can be omitted.

The decoding procedure is very simple and outlined in
Algorithm 1 below. Using the given data structures described
above, the decoder can process the compressed data stream
reading multiple bits in one step, and update the current posi-
tion in the binary code tree according to the node transition
table. Prior to actually updating the current node, the output
symbols have to be determined from the symbol output table
and written to the output stream. Note that the binary code tree
itself is not used anymore in this algorithm, the node transition
table and output table fully specify the decoding process. How-
ever, the binary code tree is needed to construct the two tables
at initialization in a preprocessing step as indicated above. In
Algorithm 1, InputStream and OutputStream refer the file
objects that read from and write to files, and Code Tree is an
object that stores the node transition and symbol output tables
as two-dimensional indexed arrays.

PROCEDURE Decode
Stream; code:
VAR byte:
BEGIN
cur := code.root;
WHILE NOT in.EOF () DO
byte := in.readByte() ;
out.print (code.outputSymbols [cur] [bytel) ;
cur := code.nextNode [cur] [byte] ;
END;
END Decode;

ALGORITHM 1. Pseudocode for the fast prefix code
decoding algorithm using bytes. CodeTree is the data
structure with the transition and symbol output tables.

(in: InputStream; out:
CodeTree) ;
Byte; cur: Node;

Output-

Lemma 1 Using the node transition and symbol output
tables, Algorithm 1 correctly decodes a bit stream of prefix
codes in O(n+n) time with respect to the compressed file size
n and the number n of actually encoded symbols in the bit
stream. (Node transition and symbol output tables are
derived from the same binary code tree that generated the
prefix codes in the bit stream.)

Proof Correctness of the decoding algorithm follows from the
construction of the data structures. Due to the construction of
the node transition table which incorporates all possible 2 bit
combinations of a fixed word size k at every node, the word
based traversal of the binary code tree is guaranteed to be cor-
rect. Also due to the construction of the symbol output table
which records for every possible node transition all symbols
that have been decoded passing through a leaf node of the

binary code tree, the decoding algorithm finds all encoded sym-
bols.

Reading the input stream requires O(n) time in the while-
loop. Processing a byte requires constant time to determine the
next node in the binary code tree using a table look-up in the
node transition table. Constant time is also required to find the
corresponding entry in the symbol output table, however, out-
putting the symbols requires time proportional to the number of
symbols, amortized over the entire input stream O(n) time.
Thus the overall time cost is O(n+n). OJ

Note that the theoretical optimal running time O(n) of a bit-
wise traversal of the binary code tree actually incorporates also
outputting O(n) symbols. However, since n is the number of
bits in the compressed data stream, and because no more than
one symbol can be decoded per bit (1 » n), the overall running
time is linear in n. Although theoretically bounded by O(n+n),
since constant factors are omitted, the presented algorithm
practically runs much faster. This is due to the fact that reading
and decoding the bits — traversing the binary code tree — from
the input data stream exactly requires n/k steps compared to n
steps for a bit-wise tree traversal, a speed-up factor of & for tra-
versing the binary code tree. Additionally to reading and decod-
ing, O(n) time is required to output the n decoded source
symbols. Experimental results are reported in Section 5.

The proposed algorithm does not need the actual binary
code tree, however, requires main memory storage space for
the node transition and symbol output tables. For a given set of
m source symbols in the alphabet, and a word size of k bits the
node transition table is of size O(m-2%), and the symbol output
table has a worst case space cost of O(m~2k~k) since at most k
symbols may be decoded by a bit-sequence of length k for pre-
fix codes. For a fixed constant word size k the storage require-
ment is thus linear in the number of symbols m in the source
alphabet. The node transition and symbol output tables do not
have to be stored along with the compressed bit stream as they
can be reconstructed in a preprocessing step before decoding.

4. Recovering symbol boundaries

Processing compressed data files by words instead of bits is not
only important for raw decompression speed but also when the
task is to quickly skip through the compressed file and stop at a
certain position. In particular, in [17] the problem was to
sequentially read the compressed data, without actually decom-
pressing it, and keeping track of how many symbols have been
encountered at any given position. Furthermore, it was also
required to stop at any arbitrary position in the compressed data
stream, and to know where the last symbol ended in the bit
stream relative to the stopping position.

The basic method for fast processing of the compressed
data stream has already been outlined in the previous section.
Additionally, it is required to know the number of symbols
encoded in the bit-stream up to the current position, and the

ending of the last complete symbol code. Note that the maximal
number of symbols encoded in & bits is k. Therefore, a bit-field
of size k is sufficient to indicate symbol boundaries of variable
length codes within a word of size k bits. The bit-field actually
records every passing of a leaf node with respect to a bit-wise
code tree traversal. Such a bit field is required for every node
transition to allow recovery of the bit-positions where the
skipped encoded symbols end in the last word that has been
processed. This bit-field can be recorded in a table (see also
Figure 4) similar to the symbol output table presented in the
previous section. Furthermore, to count the encoded symbols
without actually decoding them, the activated bits in the symbol
ending bit-field could be counted for every node transition.
However, an additional integer entry per node transition that
stores the number of bits that are set in the bit-field provides
faster access to this information, see also Figure 4.

fromnode word endings field #
0 00 [0,1] 1
0 01 [0,1] 1
0 10 [1,0] 1
0 11 [1,1] 2
1 00 [1,0] 1
1 01 [1,1] 2
1 10 [1,0] 1
1 11 [1,1] 2

FIGURE 4. The bit field of the third column indicates

symbol endings in the processed word for a particular

node transition. The last column represents the
number of encoded symbols that ended in the word
that has been read.

The following Algorithm 2 shows fast scanning through a
compressed file without decompressing and outputting any
decoded symbol, however, counting the source symbols that
have been encoded. It also shows how to determine in constant
time whether and where a symbol ended in the last word that
has been read. Note that Algorithm 2 can be extended to
include an application dependent stopping criterion such as for
example stopping after m symbols. In addition to Algorithm 1,
the CodeTree data structure includes two additional two-
dimensional arrays to get the information on the number of
encoded symbols, and the symbol boundaries for each node
transition.

Lemma 2 Algorithm 2 processes the compressed bit-stream
in O(n) time with respect to the compressed file size n. It
correctly counts the encoded symbols, and reports the last
bit of the last entirely represented symbol in the compressed
bit stream with respect to the stopping position.

Proof Reading the input stream requires O(n) time in the
while-loop. Updating the current node in the binary code tree
requires constant time for a node transition. Furthermore, also
updating the symbol count and keeping track of the current bit-
field are performed in constant time per node transition, both
operations only require a table look-up. After halting the file
processing, at most k steps are required using a word size of k
bits to find the ending of the last entire symbol in the current

bit-field, and k is an implementation dependent constant. Thus
the overall time cost is O(n).

The algorithm is correct since for each possible node transi-
tion the bit-field records all endings of symbols in the k-bit
word of the node transition, thus also the derived symbol
counter per node transition is exact. [

The theoretical running time O(n) is optimal, however, the
actual number of steps performed in the while-loop is only n/k
for a compressed bit stream of n bits. Note that in practice this
is much faster than decoding the prefix code bit by bit which
would require actually n steps. The storage requirement of the
bit-field table is O(m~2k'k), which for a fixed constant & is linear
in the number m of symbols in the source alphabet.

PROCEDURE Counting (in: InputStream; out: Out-
putStream; code: CodeTree) ;
VAR count, n, i: Integer; field: BitField;
byte: Byte; cur: Node;
BEGIN
cur := code.root;
count := 0;
n := 0;
WHILE NOT condition to stop DO
byte := in.readByte() ;
INC (n) ;
count := count +
code .numberOfSymbols [cur] [byte] ;
field := code.endingsField[cur] [byte];
cur := code.nextNode [cur] [bytel];
END;
out.print (count, “ symbols encoded so far”);
i := 8;
WHILE NOT field[i] DO DEC(i) END;

IF i > 0 THEN

out.print (“last symbol at “, (n-1)*8+i,
“-th bit in data stream”) ;
ELSE
out.print (“no symbol ends in last word”) ;
ENDIF;

END Counting;

ALGORITHM 2. Pseudocode for fast counting and
symbol boundary test. The CodeTree data structure is
enhanced with the described endings bit-field and
symbol counts for every node transition.

5. Experiments

We conducted several experiments using various data types,
and sources. The main purpose is to show the decoding time
performance improvement of the presented prefix codes decod-
ing algorithm compared to standard bit-wise decoding. For ref-
erence, we also included comparisons to the pack and unpack
programs, available on unix machines, which are based on
canonical Huffman codes [22], and which are known to be very
fast Entropy coders (see also [28] for comparisons among sev-
eral compression methods). All tests were performed on a SGI
02 workstation with a 300MHz MIPS R12000 microprocessor
running an IRIX 6.5 operating system.

The first experiment presented in Table 1 reports decoding
time performance of a bit-wise Huffman decoder, called HBit,
compared to our word based approach, called HByte, and com-
pared to the unpack program. HByte uses a word size k of 8§
bits. The data structures holding the Huffman code tree in HBit

are three integer arrays for the left, right and parent relations of
the nodes in the binary code tree, and decoding is performed
traversing this tree top-down starting at the root for every vari-
able-length symbol. The node transition information for HByte
is maintained in a table of nodes with each having an array of
node transition records. A node transition record consists of
two integers for the next node and the number of symbols, and
a list of output symbols. The decoding performance is
improved by a factor between 4 and 5, and our approach is also
competitive in decoding speed with unpack. As expected, effi-
ciency in terms of compression ratio is equal to the pack pro-
gram.

TABLE 1. Decompression time performance,
and compression efficiency.

Files HBit |HByte [Unpack | | Size |Compressed |Packed
Binary |0.255| 0.075 | 0.09s || 268K | 177K 78K |
Man pages [5.59s | 1.32s | 1.53s ||5782K 3555K 3554K
PDF |1.05s| 0.28s | 0.28s || 754K 728K 729K
Postscript | 2.8s | 0.62s | 0.74s | [2860K 1847K 1847K

Note that Table 1 does not include set-up time of the HBit
and HByte decoders for constructing or loading the binary code
tree. The decompression time that includes loading of the code
tree data structures are 0.3s, 5.8s, 1.2s and 2.9s for HBit, and
0.1s, 1.38s, 0.33s and 0.68s for HByte. Thus even if the data
structures have to be read from disk, the decoding performance
of HByte is still competitive to unpack, and highly superior to
the bit-wise Huffman decoder.

Compared to a binary prefix-code tree, the presented decod-
ing approach imposes a significant space overhead for the node
transition tables which is inefficient for fairly small files, and in
the case that every file uses different variable-length codes. For
large files, or environments where the same variable-length
codes are applied to multiple files the proposed method is very
efficient. An uncompressed binary representation of the node
transition tables used in the experiments above requires 640K
bytes. However, using unix gzip compression, a LZ77 [11]
implementation, the node transition table only needs 156K
bytes and can be loaded and decompressed in 0.07s, almost as
fast as loading the uncompressed tables which takes about
0.05s. For larger files such as the man pages example, this
enlarges the compressed file insigificantly to 3711K, and
decoding in 1.39s, including reading and decompressing the
node transition table, is still faster than the unpack program in
that case. Note that the tables do not necessarily have to be
transmitted in case of a network communication because they
can efficiently be reconstructed by sender and receiver from the
binary code tree, which requires only 2 bits per node to encode
1t.

Entropy coders are most efficient for prediction error cod-
ing as widely used in image compression. We used the
approach presented in this paper in our work [16] to speed up

the overall decompression performance of decoding com-
pressed progressive triangle meshes [15] by a factor of two.
Efficient image and geometry compression methods using pre-
diction error coding generate prediction error frequency distri-
butions that are exponentially decreasing with larger errors.
Such prediction error distributions are very similar to the
Laplace distribution L, (x) = (1/42v)e~2/vk-ul with
variance L and mean [(0 for symmetric error distributions).
Figure 5 shows the Laplace distribution for variances 0.7, 0.3,
and 13.0.

0 05 1 15 2 2.5 3 35 4 45 5 55 6 6.5 7 7.5 8 85 9 9.5 10

iV =0.7 eV =3 s V=13

FIGURE 5. Laplace distribution

L(x) = 1/2ve*""™ for three different variances

0.7,3.0 and 13.0.

In our second experiment reported in Table 2, we applied
the presented fast decoding method to random numbers gener-
ated according to the Laplace distribution L,(x). This experi-
ment simulates the use of the presented approach in a
prediction error coding system as used in image and geometry
compression. The simulation generated 1°000°000 random
numbers for various Laplace distributions with variances v
ranging from 0.01 up to several hundreds. The performance
improvements vary from a factor of 2 for very large variances
(extremely flat distributions) to a factor of 9 for small variances
(very skewed distributions). As with compression efficiency,
the decoding speed improvements increase with smaller vari-
ances (which is equal to better approximation accuracy of pre-
diction calculations in prediction error coding).

TABLE 2. Prediction error coding
decompression time performance.

Method | V=0.03 | V=0.6 | V=1.7| V=13.2| V=99.5
HBit | 0.67s | 1.08 | 1.175] 2.155 | 2.878 |
HByte | 0.08s [0.15s5|0.17s| 0.75s | 1.16s

6. Conclusions

As large main memory becomes more and more available at
reasonable prices, processing speed of large data sets, i.e. from
secondary storage, becomes more important than techniques for
memory efficient internal data structures which are small com-
pared to the available main memory size. The proposed fast
prefix code decompression method significantly improves
decoding performance at the expense of main memory usage.

Nevertheless, the space cost for the node transition tables is still
small compared to typically available main memory configura-
tions. While reading the compressed data stream in bytes using
the presented approach still requires O(n) time, for n being the
size of the compressed data in bits, the main CPU time spent
for testing and branching in the binary code tree is reduced by a
factor of k for word sizes of k bits.

The proposed algorithms and data structures are very easy
to implement, and significantly improve the processing speed
of prefix code decompression as shown in our experiments. In
particular, the presented method supports the development of
real-time geometry decompression, a current issue in graphics,
multimedia and internet based computing. Furthermore, opera-
tions performed in the compressed data domain, such as pattern
matching, counting or random access, can also take advantage
from the proposed algorithms.

References

[11 ~ Amihood Amir and Gary Benson. Efficient two-dimensional com-
pressed matching. In James A. Storer and John H. Reif, editors,
Proc. Data Compression Conference, pages 279-288. IEEE, 1992.

[2] ~ Amihood Amir, Gary Benson, and Martin Farach. Let sleeping files
lie: Pattern matching in Z-compressed files. In Proc. of the 5th
ACM-SIAM Symposium on Discrete Algorithms, pages 705-714.
ACM, 1994.

[3] Y. Choueka, S.T. Klein, and Y. Perl. Efficient variants of huffman
codes in high level languages. In Proceedings of 8th ACM SIGIR
conference, pages 122-130. ACM, 1985.

[4] John G. Cleary, Radford M. Neal, and Ian H. Witten. Arithmetic
coding for data compression. Communications of the ACM,
30(6):520-540, June 1987.

[5] Michael Deering. Geometry compression. In Proceedings SIG-
GRAPH 95, pages 13-20. ACM SIGGRAPH, 1995.

[6] M. Farach and M. Thorup. String matching in Lempel-Ziv com-
pressed strings. In Proc. Symposium on Theory of Computing,
pages 703-712, 1995.

[7]1 Daniel S. Hirschberg and Debra A. Lelewer. Efficient decoding of
prefix codes. Communications of the ACM, 33(4):449-459, 1990.

[8] D. A. Huffman. A method for the construction of minimum redun-
dancy codes. In Proc. Inst. Electr. Radio Eng., pages 1098-1101,
1952.

[9] Guy Jacobson. Random access in huffman-coded files. In James A.

Storer and John H. Reif, editors, Proc. Data Compression Confer-

ence, pages 368-377. IEEE, 1992.

Weidong Kou. Digital Image Compression: Algorithms and Stan-

dards. Kluwer Academic Publishers, Norwell, Massachusetts,

199s.

Abraham Lempel and Jacob Ziv. A universal algorithm for sequen-

tial data compression. IEEE Transactions on Information Theory,

23(3):337-343, May 1977.

(10]

(11]

(12]

(13]

(14]

(15]

(16]

[17]

(18]

(19]

(20]
(21]
(22]
(23]
(24]

(25]

(26]
(27]

(28]

Abraham Lempel and Jacob Ziv. Compression of individual
sequences via variable-rate coding. IEEE Transactions on Informa-
tion Theory, 24(5):530-536, September 1978.

Alistair Moffat and Andrew Turpin. On the implementation of min-
imum redundancy prefix codes. IEEE Transactions on Communi-
cations, 45(10):1200-1207, October 1997.

Arun N. Netravali and Barry G. Haskell. Digital Pictures: Repre-
sentation, Compression and Standards. Plenum Press, New York
and London, second edition, 1995.

Renato Pajarola and Jarek Rossignac. Compressed progressive
meshes. IEEE Transactions on Visualization and Computer Graph-
ics, 6(1):79-93, January-March 2000.

Renato Pajarola and Jarek Rossignac. Squeeze: Fast and progres-
sive decompression of triangle meshes. In Proceedings Computer
Graphics International CGI 2000, pages 173-182. IEEE, Com-
puter Society Press, Los Alamitos, California, 2000.

Renato Pajarola and Peter Widmayer. Pattern matching in com-
pressed raster images. In Third South American Workshop on
String Processing WSP 1996, International Informatics Series 4,
pages 228-242. Carleton University Press, 1996.

Renato Pajarola and Peter Widmayer. Spatial indexing into com-
pressed raster images: How to answer range queries without
decompression. In Proc. Int. Workshop on Multi-Media Database
Management Systems, pages 94-100. IEEE, Computer Society
Press, Los Alamitos, California, 1996.

Jorma Rissanen. A universal data compression system. [EEE
Transactions on Information Theory, 29(5):656-664, September
1983.

David Salomon. Data compression: the complete reference.
Springer-Verlag, New York, 1998.

Khalid Sayood. Introduction to data compression. Morgan Kauf-
mann Publishers, San Francisco, California, 1996.

E.S. Schwartz and B. Kallick. Generating a canonical prefix
encoding. Communications of the ACM, 7(3):166-169, 1964.
Andrzej Sieminski. Fast decoding of the huffman codes. Informa-
tion Processing Letters, 26(5):237-241, January 1988.

James A. Storer, editor. Image and Text Compression. Kluwer Aca-
demic Publishers, Norwell, Massachusetts, 1992.

Gabriel Taubin and Jarek Rossignac. Geometric compression
through topological surgery. ACM Transactions on Graphics,
17(2):84-115, 1998.

Costa Touma and Craig Gotsman. Triangle Mesh Compression. In
Proceedings Graphics Interface 98, pages 26-34, 1998.

Terry A. Welch. A technique for high-performance data compres-
sion. [EEE Computer, pages 8-19, June 1984.

Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing
Gigabytes: Compressing and Indexing Documents and Images.
Morgan Kaufmann Publishers, San Francisco, 1999.

