
Extinction-based Shading and Illumination
in GPU Volume Ray-Casting

Philipp Schlegel, Maxim Makhinya, and Renato Pajarola, Member, IEEE

Fig. 1. Bucky ball in a box illuminated by up to three point lights inside the volume (two white point lights in top front box corners; one
white light inside bucky ball; two examples of one white light in top-right box corner and two colored lights inside bucky ball).

Abstract—Direct volume rendering has become a popular method for visualizing volumetric datasets. Even though computers are
continually getting faster, it remains a challenge to incorporate sophisticated illumination models into direct volume rendering while
maintaining interactive frame rates. In this paper, we present a novel approach for advanced illumination in direct volume rendering
based on GPU ray-casting. Our approach features directional soft shadows taking scattering into account, ambient occlusion and
color bleeding effects while achieving very competitive frame rates. In particular, multiple dynamic lights and interactive transfer
function changes are fully supported.
Commonly, direct volume rendering is based on a very simplified discrete version of the original volume rendering integral, including
the development of the original exponential extinction into α-blending. In contrast to α-blending forming a product when sampling
along a ray, the original exponential extinction coefficient is an integral and its discretization a Riemann sum. The fact that it is a sum
can cleverly be exploited to implement volume lighting effects, i.e. soft directional shadows, ambient occlusion and color bleeding.
We will show how this can be achieved and how it can be implemented on the GPU.

Index Terms—Volume Rendering, Shadows, Ambient Occlusion, GPU Ray-Casting, Exponential Extinction

1 INTRODUCTION

Direct volume rendering (DVR) [6] is one of the most useful and pop-
ular methods for visualizing volumetric scalar field datasets without
explicitly extracting geometry. Typically the visualization of such vol-
ume datasets is a critical tool in bio-medical imaging applications for
CT, MRI or PET scan data. It is also used for the analysis of numeri-
cal simulations and occurs in visual arts. Visualizing sampled volume
data involves the reconstruction of the continuous scalar field from
the discrete dataset followed by the evaluation of the direct volume
rendering integral [19, 22]. Even though many algorithms have been
proposed to implement this, like splatting [34] and texture slicing [7],
recently GPU-based ray-casting [33] has become the preferred choice
for many scientific visualization applications due to its image quality,
performance and conceptual simplicity.

Advanced volume illumination models such as directional soft
shadows, ambient occlusion or color bleeding effects can further en-
hance the visual perception and spatial impression of GPU ray-casting.
A lot of research has been done on such advanced illumination mod-
els. Many of these are standard in classical surface ray-tracing but
not in scientific volume visualization applications. The problems with

• Philipp Schlegel, Maxim Makhinya, and Renato Pajarola are with
Visualization and MultiMedia Lab, Department of Informatics, University
of Zürich, Switzerland, E-mail: {schlegel, makhinya}@ifi.uzh.ch, and
pajarola@acm.org.

Manuscript received 31 March 2011; accepted 1 August 2011; posted online
23 October 2011; mailed on 14 October 2011.
For information on obtaining reprints of this article, please send
email to: tvcg@computer.org.

adapting such models to GPU ray-casting for DVR are numerous. Di-
rect volume rendering on the GPU should be interactive and very re-
sponsive to the user while exploring the dataset. Hence, the available
processing resources per rendered frame for evaluating an advanced
illumination model are quite limited. Furthermore, when dealing with
volumetric datasets, no explicit geometry is given and the material
properties are defined by an arbitrarily shaped transfer function (TF)
that can change at run-time. This typically prohibits an expensive pre-
processing step relying on a static TF or static light positions. Gener-
ally, expensive preprocessing is undesirable because in many domains
it is not feasible to undergo a time-consuming preprocess before data
exploration, especially for time-varying datasets. Lastly, the advanced
illumination models must be implemented on the GPU, fitting its com-
putational model and its limited on-board memory resources.

The qualifying idea of our novel approach to address these problems
is a solution based on the original exponential extinction coefficient of
the DVR integral, and an efficient GPU-based real-time summation
mechanism. Besides the more accurate evaluation of the volume ren-
dering integral, the beneficial extinction coefficient property of being
additive allows discrete summation order independently when sam-
pling along a ray. Throughout this paper special algorithms and data
structures will be elaborated based on the original exponential extinc-
tion coefficient in order to solve the above outlined lighting problems
and to get fast, plausible volume illumination and shading effects.

1.1 Related Work

Although efficient, simple Phong-Blinn volume shading does not pro-
vide enough realism and has poor global depth reproduction. While
computationally inexpensive techniques, such as semitransparent ha-
los [2] or directional occlusion [31] can easily be implemented on

pajarola
Text Box
In IEEE Transactions on Visualization and Computer Graphics 2011.

GPUs to improve depth perception, more advanced lighting models
are still a challenge. Soft shadows, ambient occlusion, light scattering
and color bleeding are desired features in GPU volume rendering [9].

Soft directional shadows that are able to incorporate infinite light
sources only, requiring an additional shadow volume, which is updated
on each light position change, were proposed by Behrens and Rater-
ing [1]. Classical shadow mapping [35] can also be applied to volume
rendering in limited scenarios to obtain hard shadows. To improve
performance for semitransparent objects, deep-shadow maps [26] use
multiple opacity layers. Shadow maps are dependent on light position
and TF with the evaluation typically done for a single light only. Half-
angle slicing [13, 14, 36] is able to produce more realistic soft shadows
with very small additional storage requirements, but also with the lim-
itation of a single directional light source support.

Obscurance and ambient occlusion (AO) methods [21, 17] provide a
simple way to approximate indirect global illumination by sampling a
limited neighborhood. Screen-space AO (SSAO) is popular in polygo-
nal shading [32] as well as in volume rendering [4] due to its simplicity
and high performance. These methods rely on the visible pixels’ depth
value estimates, are fast and have sufficient quality for opaque objects
and simple geometry. SSAO can, however, fail in complex scenarios
due to the limited 2D depth information available; they are also ineffi-
cient in the case of semitransparent objects when only one depth value
per pixel can be used. These limitations can, at an increased cost, par-
tially be solved through depth-peeling [8], where a limited number of
depth samples can be used in practice.

Object space AO provides better quality than SSAO, at the price of
extra storage and computation. Typically, an additional 3D texture for
density values is used, which has to be updated upon TF changes. De-
pending on the implementation, TF updates can introduce significant
lag, if individual neighboring voxels are sampled as presented by Ruiz
et al. [28], or it can be fast if aggregate values are considered as shown
by Diaz et al. [4]. Similar techniques [18, 23] are suitable for polygo-
nal rendering; additional 3D textures that represent voxelized objects
have to be created, updated when geometry changes, and sampled dur-
ing rendering. Another approach to dynamic AO, based on per-voxel
local histograms, was introduced by Ropinski et al. [27]. TF and light
source independent illumination are achieved by convolving local his-
tograms with the current TF during rendering to obtain an environ-
mental color of each voxel. Additional space for histogram clusters is
moderate, and rendering itself is efficient. However, the preprocessing
step requires hours even for medium size models.

Scattering of light requires the inclusion of all indirect light contri-
butions. Thus true evaluation is very expensive, yet a clever approx-
imation can provide pleasant visual quality at interactive frame rates
on modern hardware. Good results were achieved by Kniss et al. [14],
where only light contribution within a cone directed towards the light
source was taken into account at each sample position. This allowed
superimposing contributions of direct and indirect light in one render-
ing pass, using half-angle slicing. No preprocessing is required, but
only a single point light source can be used. This method was further
explored by Ropinski et al. [25], resulting in fewer sampling opera-
tions for the illumination computation and allowing integration with
GPU volume ray-casters. These benefits are achieved at the expense
of recomputing a 3D light volume upon every light position change.

Color bleeding is often integrated with obscurance methods, as it
requires only minor changes to AO [20]. Many AO and translucency
methods gather aggregate color information of the voxels’ neighbor-
hood together with the opacity, to use it for color bleeding effects
[28, 27, 11]. Similarly, color bleeding can be integrated in light scat-
tering techniques as well [14, 25].

1.2 Contributions
Our approach includes a number of contributions and advantages to
achieve more realistic and efficient volume illumination. (i) A unified
approximate model for both local ambient occlusion and directional
soft shadows, as well as (homogeneous) light scattering and color
bleeding is presented. (ii) The model is based on the summation of the
exponential extinction coefficient, exploiting a 3D summed area table

(SAT) for fast computation. (iii) Directional soft shadows can be com-
puted reusing the same SAT as for ambient occlusion, having minimal
performance impact. (iv) The proposed discrete extinction coefficient
summation supports distance weighted ambient occlusion and shadow
contributions. (v) The introduced solution requires no expensive pre-
processing and allows for interactive TF changes. (vi) Multiple as well
as dynamic point and spot light sources are supported. Moreover, ar-
bitrary light source positions are allowed also inside the actual volume
data. (vii) The model is integrated in a high-quality ray-casting based
volume visualization application and works in real-time on the GPU.
(viii) At run-time, some additional 3D texture storage is required to
hold the TF dependent extinction coefficients. This data, however, can
be adjusted flexibly for resolution accuracy and storage overhead.

2 LIGHTING WITH ADDITIVE EXPONENTIAL EXTINCTION

2.1 Additive Exponential Extinction Coefficients

Direct volume rendering is based on the emission and absorption the-
orem by Max [19], leading to the DVR integral (Eq. 1). It can be
shown [22] that the volume rendering integral cannot be solved analyt-
ically without making some confining assumptions, and consequently
needs to be approximated. This includes the commonly used develop-
ment of the original extinction coefficient into a Taylor series where
only the first two elements are considered, which is equivalent to clas-
sical α-blending [24]. However, this is a rather coarse approxima-
tion optimized for mapping to fixed-function 3D graphics hardware of
the past. Today with fast, programmable GPUs it is not required any-
more [15, 30]. A closer approximation based on the original extinction
coefficient can be chosen for a more accurate evaluation of the volume
rendering integral. In addition, the advantage of integrating over the
exponential extinction coefficient is that it corresponds to a summa-
tion, since being additive, when sampling along a ray, in contrast to
the (ordered) product of α-blending.

In Eq. 1, a ray from s = 0 at the back of the volume to s = D at the
eye position is considered. The extinction coefficient is indicated by
τ(s), and E(s) is the light reflected or emitted by a volume sample at
s. The integrated intensity along a viewing ray is now given by:

I(D) =
∫ D

0
E(s)τ(s)e−

∫ D
s τ(t)dtds. (1)

In the discretization of Eq. 1 using a step size ∆t along the ray,
instead of performing a Taylor series expansion and simplification of
the extinction term – as done in the past for fixed-function graphics
hardware α-blending – the original exponential extinction coefficient
can be retained as

I(D)≈
D/∆t

∑
i=0

Ei ·∆tτie
−∑

D/∆t
j=i ∆tτ j , (2)

where the reflected and emitted light Ei is typically replaced by a voxel
color modulated by a simple lighting model.

The formulation of Eq. 2 is sufficiently simple and can easily be
implemented on programmable GPUs. The additive property of τ al-
lows for the summation of the samples in a shader in arbitrary order,
followed by an exponential function applied to this sum, which can be
done efficiently on today’s GPUs. Hence the big advantage of Eq. 2
is not only an improved image quality compared to the less accurate
approximation using multiplicative α-blending (see also [15, 30]), but
also the fact that any attenuation calculation can be implemented by a
summation of extinction coefficients, notably in arbitrary order.

In the following we will show how this summation can efficiently
be exploited for volume shading and illumination purposes. The basic
premise is that any light occlusion and thus shadowing effects arise
from the attenuation of light traveling or being scattered through the
volume along a ray or within some specific region. Therefore, any
light attenuation stems from some extinction factor e−∑ j ∆tτ j where
the sum ∑ j ∆tτ j must be taken over a ray or region of the volume.

2.2 Ambient Occlusion and Color Bleeding

Ambient occlusion (AO) is an approximated attenuation of diffusely
reflected ambient light through occlusion. It is not physically accurate,
but since full-fledged physical illumination models such as global il-
lumination [12] are beyond interactive volume rendering, AO is a very
useful and effective approximation of the effect [17, 27, 11, 4].

The reflected light term E in the DVR integral includes an ambient
term representing diffusely reflected ambient light. In the AO light-
ing model, this term IAO is not a constant but a function taking the
occlusion in the local neighborhood of a sample s into account. It
represents the total amount of unoccluded incident light over a sphere
Ω at s, where I(s,ω ′) denotes the incoming light at position s from
direction ω ′:

IAO(s) =
∫

ω ′∈Ω

I(s,ω ′)dω
′. (3)

Instead of densely sampling the sphere Ω and tracing many shadow
rays for I(s,ω ′), as shown by Ruiz [28] and Hernell [11] respectively,
we opt for a much faster approximation. Only a well-defined local
neighborhood N(s) of s is considered for local ambient occlusion. We
assume that for all samples s a constant ambient light intensity IA is
incident over the boundary ∂N(s). IA is proportional to the sum of all
lights, expressed by an ambient light term coefficient. Hence only the
local light attenuation inside the neighborhood N(s) has to be consid-
ered. The local ambient occlusion is thus modeled by the distribution
of the extinction τ in the neighborhood N(s) as

IAO(s)≈ IA · e
−
∫

t∈N(s)
τ(t)
|s−t|2

dt
, (4)

where the inverse of the square distance accounts for the law of radial
distance based light attenuation.

Color bleeding describes the phenomenon that the color appearance
of a surface is locally affected by colored nearby objects [20]. As this
illumination effect is also primarily based on the local neighborhood
of a sample point, it can be approximated in a similar way to ambient
occlusion. For AO only the extinction coefficient has been taken into
account as an indicator for opacity at a particular position within the
volume. For the estimation of color bleeding, the color also has to be
taken into account as an additional parameter CRGB depending on the
TF. So Eq. 4 can be reformulated to

IAORGB(s)≈ IA · e
−
∫

t∈N(s)
τ(t)CRGB(t)

|s−t|2
dt

, (5)

where IAORGB is a vector describing the intensity per color.
Since the summation of the exponential extinction coefficients in

Eqs. 4 and 5 is order independent, it is possible to exploit highly effi-
cient aggregate summation methods (aggregate query q), as described
in Section 3. This yields results similar in quality at much higher
speeds as demonstrated in Fig. 2.

Fig. 2. Ambient occlusion with the neighborhood individually sampled
(left) and aggregate extinction coefficients sampling (right). There is
virtually no difference regarding image quality, but aggregate sampling
is over 45 times faster (0.22s vs 10s).

2.3 Directional Soft Shadows and Scattering

In the context of direct volume rendering, typically semitransparent
surfaces and structures are displayed, partially obstructing other sur-
faces and structures. Thus for evaluating the volume illumination
model the question is not whether a light source is obstructed or not
but to what degree the light from this source is absorbed while trav-
eling through the volume to the sample point in question. When us-
ing an extinction-based model as described in Section 2.1, this can be
achieved by casting shadow rays to the light source, densely sampling
along these shadow rays and summing up the weighted extinction co-
efficients. Applying the exponential function to this sum then results
in a factor being a measure of how much light from this light source is
attenuated before reaching the sample point.

One can imagine that densely sampling many shadow rays for each
light source from each volume sample is already very expensive, mul-
tiplying the basic volume ray-casting costs by a large factor. More-
over, light scattering describes a process where non-uniformities in the
(semitransparent) medium force the traversal of light to deviate from
the straight trajectory, caused by reflection of tiny particles. The ratio
of light hitting a particle and the reflection direction are random but can
be approximated by the Bidirectional Scattering Surface Reflectance
Distribution Function R(s,ω,ω ′), where s is the scatter position, ω the
direction of reflection (to the viewer) and ω ′ the direction of incoming
light as illustrated in Fig. 3. Max [19] accounted for this by adding a
scattering term to the volume rendering integral Eq. 1,

I(D) =
∫ D

0
(E(s)+S(s,ω))τ(s)e−

∫ D
s τ(t)dtds, (6)

where S(s,ω) = R(s,ω,ω ′)I(s,ω ′), and I(s,ω ′) is the incoming light
reaching s from direction ω ′. When scattering occurs in multiple di-
rections as it is the case in high albedo media, all directions ω ′ have to
be considered by integrating the scattering over the unit sphere.

Screen
ωi

ωj
S

S

ωj'

ωi'

Ψ

Ψ

j

i

i

j

Fig. 3. Approximating scattering effects by considering cones Ψ instead
of rays.

According to Max [19] it is overkill to compute multiple scatter-
ing for most scientific visualizations, apart from being an elusive goal
for interactive rendering. Instead of densely sampling shadow rays or
computing multiple scattering, we suggest a very fast solution that pro-
duces similar effects with sufficient quality for most applications. The
basic idea is not to cast a shadow ray from a sample to the light but a
cone [14]. Sampling this cone not only yields the necessary extinction
of the light on its way to the sample but also estimates the amount of
light scattered towards the sample as a function of the distance and the
neighborhood of the ray. A more sparsely occluded neighborhood is
an indicator that there is more light scattered to the sample, thus sup-
porting visually plausible soft shadow borders as presented in Fig. 4.

The attractive feature of our method is that the shadow cone does
not need to be sampled. To incorporate an estimate of the scatter-
ing term S into the discretized volume rendering integral of Eq. 2, we
evaluate shadow and scattering effects together by aggregating the ex-
tinction values within the shadow cone. Consequently scattering is not
a separate term, but is included in Ei.

Fig. 4. The engine with classical shadow rays (left) and our soft shad-
ows (right). Even though an entire cone is considered for soft shadows
compared to a single shadow ray, the shadow computation is 40% faster
(0.0079s vs. 0.0132s).

Commonly, the amount of light Ei reflected or emitted by a voxel
is modeled as the sum of an ambient IA, a diffuse ID and a specu-
lar term IS, where the ambient term is replaced by our AO term IAO
introduced in the previous section. The diffuse and specular terms
consist of the incoming light intensity IL from all light sources, mul-
tiplied by material properties of the voxel (i.e. color CRGB) as well as
angle-dependent diffuse and specular reflection factors respectively.
To incorporate shadows, the light intensity IL is further attenuated by a
factor τL due to any occluders between the light source(s) L and voxel
s: τL = e−

∫ L
s τ(t)dt . However, in our approach the integral is not only

evaluated along a single shadow ray but over a cone Ψ towards the
light source (see also Fig. 3): τ ′L = e−

∫
t∈Ψ

h(t)τ(t)dt where h is a weight-
ing function. Hence, the inclusion of scattering is the extension of τL
to τ ′L as an attenuation factor of IL, replacing the specific scattering
term S, giving rise to a shadowed and scattered lighting term

ISh(s)≈ IL · e−
∫

t∈Ψs h(t)τ(t)dt . (7)

The key feature of our implementation is that the summation∫
t∈Ψ

h(t)τ(t)dt is approximated by a series of aggregate extinction
queries as described in Section 3. The weighting function h(t) is the
inverse of the aggregate query size V−1

q . Due to the query size grow-
ing with the distance and the cone diameter, the influence of occlusion
and scattering in these areas decreases rapidly.

The limitation of our approximation to scattering is the assumption
that the scattering function R is constant for all directions and that the
amount of scattering is basically proportional to the extinction coef-
ficient of the medium. The rationale behind this is that the amount
of light being absorbed or reflected directionally by the medium can-
not be scattered isotropically or in a forward manner. Typically more
light is absorbed or reflected directionally by denser media, especially
when comparing gases to solids. In order to model medium specific
scattering properties a separate transfer function would have to be ap-
plied. However, adjusting the cone angle allows for a certain flexibil-
ity. A narrow cone approximates forward scattering, taking a limited
range strongly into account whereas a wider cone approximates more
isotropic scattering, taking a broad range into account but with far less
influence of individual voxels. Scattering in relation with cones is also
discussed extensively by Kniss et al. [14]. Generally, our approach
works very well for typical applications of scattering in highly ho-
mogeneous media such as smoke or a block of (wax-like) translucent
material (Fig. 9).

3 IMPLEMENTATION

The basis for our implementation is a GPU volume ray-caster [16, 29]
built using OpenGL and GLSL shaders. Algorithm 1 shows an
overview of the rendering pipeline. Basically a so-called light cache
(texture T) is computed containing the summation terms for AO/color
bleeding and the directional shadows in the different channels of the
texture. During the ray-casting pass, these terms are fetched from the

texture with a single lookup and used in the adapted illumination com-
putation. In the beginning it has to be determined if either the TF or
the light position relative to the dataset has changed. If this is not the
case, the image can be rendered immediately, fetching the informa-
tion for AO/color bleeding and the directional shadows from the light
cache texture. If the TF has changed, the light cache texture needs to
be recomputed. For this, a 3D summed area table (SAT, texture S) [3]
is constructed in a first step and then the light cache texture is com-
puted in a second step. If only the light position has changed relative
to the dataset, it is sufficient to recompute only the part of the light
cache texture containing the values for the directional shadows.

Algorithm 1 Overview of the rendering pipeline
1: for each frame do
2: if transfer function changed then
3: Apply transfer function to volume V and store result to texture T
4: /* —————————– SAT —————————– */
5: Compute SAT from texture T by
6: - Recursive doubling
7: - Using ping-pong textures S, T
8: Store SAT to S
9: /* ———— Ambient/color bleeding factors ————– */

10: for each voxel of S do
11: Sample shells from S
12: Sum up weighted shells
13: Store sum to texture T
14: if light source or transfer function changed then
15: /* ————— Directional shadow factors —————- */
16: for each light source L do
17: for each voxel of S do
18: Query cuboids towards light source L
19: Sum up weighted cuboids
20: Store sum to texture T
21: /* ————————- Ray casting ———————— */
22: for each pixel on screen do
23: Compute entry and exit point for volume V
24: Compute ray R from entry and exit point
25: for each sample position P along ray R do
26: Lookup volume V and apply transfer function
27: Lookup texture T
28: Evaluate illumination model
29: Add contribution to pixel

3.1 3D Summed Area Table for Illumination
For any illumination computation IAO or ISh, as outlined in the pre-
vious section, we need to account for an attenuation factor τL =
e−

∫
Ω

τ(t)dt that will be multiplied with the light source intensity for
ambient occlusion or directional soft shadows. In a discretized setup,
this amounts to the computation of the sum of extinction coefficients
∑Ω ∆tτ j, where the additive aggregation of extinction values τ j is done
over a voxel neighborhood ΩA = N(s) for ambient occlusion (and the
ambient light IA is modulated), along a ray ΩL = linevoxel s to light source
for hard shadows and within a cone ΩL = Ψ for soft shadows (and the
light source intensity IL is modulated). Taking ambient occlusion or
shadowing into account, the reflected light Ei in Eq. 2 of a voxel due
to a light source is basically

Ei = IA,L · e
−wA,L ∑ΩA,L

∆tτ j · k ·CRGB, (8)

where the weighting function wA = r−2
q is the inverse square of the ra-

dius of the aggregate query, and wL = V−1
q is the inverse of the aggre-

gate query size, and k simply represents a normal, gradient dependent
local illumination model factor.

For the fast extinction summation over ΩA,L, instead of using the
traditional expensive shadow ray generation and sampling approach,
we implement this aggregation operation using a summed area table
(SAT) [3] of the extinction coefficients. With a 3D SAT it is possible
to derive the sum of all elements inside an arbitrary cuboid in constant
time using at most eight table lookups. As shown below, we approxi-
mate the extinction summations over ΩA,L by cuboid SAT queries.

Since the extinction coefficients are transfer function (TF) depen-
dent, this SAT needs to be updated whenever the TF changes. How-
ever, fast SAT construction on the GPU [10, 4] can be implemented
based on the recursive doubling technique [5] using a logarithmic
number of passes, allowing interactive TF changes as demonstrated
in Section 4. We use a render-to-3D texture approach which allows
for a number of implementation synergies and avoids OpenGL-CUDA
switches. Unlike Diaz et al. [4] we are not using opacity values for the
SAT but extinction coefficients.

In order to compute our illumination model two auxiliary 3D tex-
tures are used, one for the SAT, and another as a ping-pong texture dur-
ing SAT generation becoming a light cache during rendering. These
two textures can be of arbitrary size within the OpenGL limitations,
depending on the desired quality/performance, and do not necessarily
need to match the input volume resolution, see also Fig. 11. Algo-
rithm 1 shows an overview of the rendering steps.

3.2 Ambient Occlusion and Color Bleeding

Remarkably, for approximating IAO(s) according to Eq. 4, the extinc-
tion coefficient SAT can be effectively used. The discretized extinction
coefficient summation ∑ΩA

∆tτ j in Eq. 8 is approximated by a series of
cuboid shells as indicated in Fig. 5, where the number and size of the
shells can be varied. Hence, ΩA is a set of cuboids Shi. For each shell,
its aggregate sum of extinction coefficients can be obtained quickly by
SAT lookups. A larger set of shells with varying diameters leads to
a better image quality but requires more SAT lookups increasing the
costs. According to our experiments as few as three shells are suffi-
cient to reach an image quality hardly distinguishable from individu-
ally sampling a large neighborhood, as demonstrated in Fig. 2. Only if
the radius of ΩA exceeds 10% of the radius of the entire dataset, more
shells may become necessary. The use of cuboid shells is entirely dif-
ferent from Diaz’ approach [4], where the neighborhood is subdivided
into eight adjacent octants preventing a distance based weighting.

Sample
rays

Shells

Shi+2

Shi
Shi+1

Fig. 5. Ambient occlusion computation by way of sampling the spherical
neighborhood (left) versus SAT-based lookups (right). Compared to per-
voxel sampling, the number of 3D texture fetches is a order of magnitude
smaller using the SAT method.

For AO/color bleeding, multiple shells are queried and accumu-
lated as indicated in Fig. 5. First, the innermost shell Sh0 is queried
from the SAT and weighted by the inverse square of its radius,
τSh0 = SAT (Sh0) ·

∣∣rSh0

∣∣−2. Iteratively all shells are accumulated by

τShi+1 = τShi +(SAT (Shi+1)−SAT (Shi)) ·
∣∣rShi+1

∣∣−2 until the last shell
is processed. The result of this summation is stored in the auxiliary
3D light cache texture.

Ambient occlusion is independent of the light position, but needs to
be recomputed if the TF changes. The actual values for AO are cached
together with the values from the directional shadows in the 3D light
cache texture. Consequently ambient occlusion in our solution comes
at zero cost during rendering.

Of course Eq. 5 for color bleeding can be computed similar to Eq. 4
using a SAT that stores vectors τCRGB. Since four values can be pro-
cessed per operation with OpenGL textures, the SAT for τCRGB can
be constructed at the same time with the SAT for τ , and stored in the

same 3D texture at no additional computation costs. The only down-
sides are the additional memory and memory bandwidth requirements
compared to a single channel texture that would be used when con-
structing the SAT for τ only. However, on our hardware the additional
memory bandwidth requirements do not harm rendering performance.
The typical number of shells required for color bleeding proved to be
the same as for AO. An example of color bleeding is shown in Fig. 6.

Fig. 6. The Cornell box with soft shadows and strong ambient occlusion
(left), as well as color bleeding (right). Due to the fixed light source
of the Cornell box, rendering with soft shadows and AO/color bleeding
enabled comes at near zero extra cost (one additional texture lookup).

3.3 Directional Soft Shadows and Scattering
For the directional soft shadow illumination ISh(s) according to Eq. 7,
two cases have to be differentiated. If the light sources are at a fixed
position with respect to the dataset, as it is the case with the Cor-
nell box model, the attenuation factors for directional soft shadows
only have to be computed once and are stored in the auxiliary light
cache together with the terms for ambient occlusion/color bleeding.
In this case, the total cost for evaluating our extinction-based illumi-
nation model during rendering consists of a single, additional texture
lookup per sample having only a minor impact on the overall perfor-
mance. If the light sources change their relative position with respect
to the dataset when rotating, moving and zooming, then the occlusion
factors have to be queried from the extinction SAT for every frame.

Light cone Ψ

Light cone
projection

Primary
axis

Approximated
cuboid's
projection

Secondary
axis

Secondary
axis

Approximation
threshold

Sampling
points

Fig. 7. The cone is approximated by a series of cuboids. The main
axis is determined and the cone is projected onto the planes with the
secondary axes. The intersections of the projections with lines parallel
to the secondary axes through the sample points on the main axis define
the cuboids.

When needed, the attenuation factors for directional soft shadows,
given by the discrete extinction coefficient summation ∑ΩL

∆tτ j in
Eq. 8 over the sampling cone ΩL = Ψ, are computed by a render-
to-3D-texture pass with the appropriate shader enabled. This shader
approximates the attenuation cone Ψ for each voxel and light source

Dataset Volume SAT Shells Cone Cone Lights With Without Figure
Size Size Samples Angle [Dynamic / Static] Illumination Illumination

Head 128 x 256 x 256 1923 15 n/a n/a ambient only 111fps 143fps 2
Engine 256 x 256 x 128 643 n/a 50 10◦ 1 / 0 57fps 130fps 4

Cornell box 256 x 256 x 256 2563 5 60 16◦ 0 / 1 133fps 161fps 6
Pelvis 512 x 512 x 461 643 5 50 2◦ 2 / 0 15fps 26fps 8
Feet 512 x 512 x 250 1283 3 50 2◦ 1 / 0 13fps 31fps 8

Bucky ball 128 x 128 x 128 1283 3 80 2◦ 0 / 1, 2, 3 55fps 62fps 1, 9
Skull 128 x 256 x 256 1283 5 50 2◦ 0 / 2 14fps 26fps 9

Pelvis (comparison) 512 x 512 x 461 1923 3 40 1◦, 3◦, 5◦ 1 / 0 3fps 30fps 10
Engine (comparison) 256 x 256 x 128 643, 1283 5 40 2◦ 1 / 0 26fps, 12fps 49fps 11
Engine (comparison) 256 x 256 x 128 1923, 2563 5 40 2◦ 1 / 0 5fps, 3fps 49fps 11

Table 1. Overall frame rates with and without extinction-based illumination for a 5122 pixel viewport. Except for the head, Cornell box, skull and
bucky ball, the directional soft shadows are computed dynamically for every frame.

Fig. 8. Medical datasets rendered with extinction based-shading and
illumination including directional soft shadows and ambient occlusion.
The left image is rendered using two lights and shows multiple shadows.

by a series of cuboids. The primary cone axis is defined to be the co-
ordinate axis with the smallest angle to the vector to the light source.
The sampling points on the primary axis are given by a user defined
sampling frequency and growth rate. The growth rate (growth of the
cuboids) is the change of the frequency over the distance since fur-
ther away a smaller sampling frequency may be sufficient. The cuboid
queries are then derived from this primary axis sampling and from the
projection of the query cone onto the primary-secondary axis planes as
shown in Fig. 7. Because the SAT inherently allows only axis-aligned
lookups, deriving the primary and secondary axes is required. Choos-
ing the axes in this way yields the best possible coverage of the cone
with cuboids. With the cone covered by cuboids, the summation of the
extinction coefficients can quickly be obtained by a few SAT lookups.

The shadow and scattering approximation by extinction SAT
queries makes it very fast and flexible. The number of cuboids and the
cone angle of Ψ can easily be varied, or the cuboids can be weighted
differently using h in order to strengthen or weaken the effect. Ap-
proximating the cone by exploiting the SAT allows for soft, realistic
looking, directional shadows at very low costs as shown in Fig. 4. In
contrast to the half angle slicing method by Kniss et al. [14] our solu-
tion can handle any type and multiple light sources. It is also different
from the method by Ropinski et al. [25] because we do not propagate
illumination from the outside but compute the extinction of the light
intensity for the voxels. We can therefore trivially handle light sources
even within or on the border of the dataset without any additional ef-
fort. Multiple light sources can also be easily dealt with (see Fig. 1 for
multiple point and spot light sources inside the volume).

The angle of the cone Ψ, the number of cuboids for approximation
(defined by a sampling frequency), the growth rate, and a weighting
function are parameters that can be chosen freely according to the
desired quality/performance and strength of the shadow effects (see
Fig. 10). Typically a few dozen lookups per cone and voxel are already
sufficient to approximate the attenuation cone, compared to classical
shadow rays where hundreds of samples are required to achieve a simi-
lar quality (see Section 4). Hence, even when computing these shadow

Fig. 9. Bucky ball in a smoky cube where a point light source is inside
the bucky ball and a spot light in the top right corner (left), and Skull in
thick fog or a block of translucent material with a point light source in the
back scattering light through the medium and a spot light in the top left
corner (right).

terms for every frame, the performance impact is tolerable with respect
to the achieved shading effects. To avoid duplicate shadow queries, the
computed terms are stored in the light cache texture together with the
terms for ambient occlusion/color bleeding.

4 RESULTS

All experiments have been performed on a Mac Pro 2.4GHz dual-
Xeon with NVIDIA GeForce GTX 285 graphics.

Compared to a Phong-Blinn-based GPU ray-caster, a ray-caster
with our illumination model can produce realistic looking images with
improved depth and occlusion effects (i.e. Figs. 8, 10, 11). To ensure
interactivity and responsivity, we use a 3D SAT enabling fast approx-
imation of shadow cones with cuboids and AO/color bleeding using
cuboid shells. For each change of the TF, the extinction SAT and the
AO/color bleeding terms have to be recomputed. Every time the light
source moves relative to the dataset or the TF changes, the terms for
the directional shadows will be recomputed. During the actual ray-
casting pass, one additional texture lookup per sample is sufficient to
apply the illumination terms. Other approaches [27] need two addi-
tional texture lookups for AO, not considering directional shadows.

Table 1 demonstrates the interactive performance of our extinction-
based illumination model. This includes computation of the SAT and
the ambient factors once and the factors for directional shadows in
every frame. The exceptions are the head, Cornell box, skull and bucky
ball datasets where the factors for the directional shadows have to be
computed only once due to the fixed light source(s).

The time required for constructing the 3D SAT for different sizes is
0.029, 0.067, 0.148 and 0.311s for 643, 1283, 1923 and 2563 volumes
respectively. Even though we do not use CUDA, the time is similar to
the one reported by Diaz et al. [4] for the 2563 volume and is in fact
much faster for smaller volume sizes. Moreover, our timings include
the concurrent construction of the 3D SAT comprising the terms for

Fig. 10. Pelvis rendered with no directional shadows at all (left), and with different cone angles of 1.0, 3.0 and 5.0 degrees, causing progressively
smoother shadows (from 2nd left to right).

Fig. 11. The engine dataset rendered with different SAT resolutions of 643, 1283, 1923 and 2563 and 40 cone samples (from left to right). Even lower
SAT sizes will result in more blurred shadows but not expose conspicuous artifacts.

Fig. 12. As few as 12 cone samples are sufficient until cuboid artifacts
become clearly visible for a SAT resolution of 1283. The image on the
left shows the difference to the respective image from Figure 11.

color bleeding. Hence we can see that even for dynamic TF changes
an interactive feedback can be achieved. The influence of the SAT size
on the rendering is shown in Fig. 11, demonstrating that the SAT size
can easily be set at a fraction of the size of the volume dataset itself.

Table 2 shows the time required for computing the actual terms for
ambient occlusion/color bleeding by approximating the neighborhood
of every voxel with cuboid shells. The time is only dependent on the
volume size and the number of shells but not on the neighborhood ra-
dius in contrast to explicit neighborhood sampling. Nevertheless, the
last column shows the time for explicitly sampling a neighborhood
of radius 7 (= 4

3 π73 samples) to demonstrate the large time cost dif-
ference. Thus even if not cached, ambient occlusion/color bleeding
effects can be computed in real-time for these volume models. The

AO Shadow 11 7 3 Sampled
Texture Size Shells Shells Shells Radius=7
64 x 64 x 64 0.0039s 0.0030s 0.0022s 0.2099s

128 x 128 x 128 0.0202s 0.0126s 0.0065s 0.4441s
192 x 192 x 192 0.0606s 0.0348s 0.0147s 1.4280s
256 x 256 x 256 0.1382s 0.0791s 0.0307s 3.0818s

Table 2. Time needed for computing the AO/color bleeding terms for dif-
ferent light cache texture sizes and numbers of shells. The last column
shows the time for explicitly sampling the neighborhood of radius r = 7.

head in Fig. 2 was rendered using a 1923 AO texture with 15 shells.
Note that combining SAT construction and AO computation times

for an example as in Fig. 2 results in a fairly low cost of only about
0.073s. This highly interactive SAT and AO computation avoids costly
preprocessing [27] to achieve TF independence.

Table 3 shows the time required for computing directional soft
shadows for two different cuboidal cone approximation resolutions.
The time required and the quality obviously depend on the sampling
parameters. The last column shows the time for a single, classical
shadow ray with a sampling rate of 250 samples per unit (the side
length of volume dataset). In fact, to get equally soft shadows, the cost
of a single shadow ray would have to be multiplied by a factor (� 1)
because sampling would have to be performed within an entire cone
and not only on the ray.

Soft Shadow 50 20 1 Shadow
Texture Size Samples Samples Ray
64 x 64 x 64 0.0079s 0.0061s 0.0098s

128 x 128 x 128 0.0385s 0.0270s 0.0361s
192 x 129 x 129 0.1166s 0.0816s 0.0954s
256 x 256 x 256 0.2671s 0.1821s 0.2105s

Table 3. Time required for computing directional soft shadows for dif-
ferent volume sizes and two different cone samplings. The last column
shows the time for a single, classical shadow ray with a sampling rate of
250 samples per unit (the side length of the volume).

For the engine in Fig. 4 and the first medical dataset in Fig. 8 it is
sufficient to use a 643 AO/shadow texture with 50 samples per unit,
consuming only 0.0079s/frame for shadow computations, to achieve
a very good image quality. The second medical dataset in Fig. 8
was rendered using a 1283 AO/shadow texture with 50 samples, us-
ing 0.0385s/frame for shadow computations. The Cornell box in Fig. 6
was rendered using a 2563 AO/shadow texture with 60 samples but up-
dated only upon TF changes due to the fixed embedded light source.
Fig. 10 shows the effects of different cone angles. Fig. 12 demon-
strates the artifacts from the cuboids that become visible if only very
few cone samples are used.

The scattering of light in smoke, thick fog or wax-like media with
non-zero opacity is demonstrated in Fig. 9, clearly showing the ex-
pected light shafts and diffusely scattered light propagation. Multiple

different point and spot light sources inside the volume dataset and
the corresponding illumination and shadow effects are demonstrated
in Fig. 1 and 9. Our solution can transparently and efficiently handle
any such light sources (unlike e.g. half-angle slicing).

5 CONCLUSION AND FUTURE WORK

In this paper we have presented a novel advanced illumination and
shading model for direct volume rendering based on the original ex-
ponential extinction of the volume rendering integral. The fact that
the original exponential extinction is additive allows us to exploit a
summed area table (SAT) concept for the efficient computation of any
type of ambient or directional light occlusion queries.

In our work, ambient occlusion, color bleeding, soft shadows and
scattering effects are evaluated through a series of 3D SAT queries,
thus benefitting in speed while maintaining high visual quality. The
method and its implementation take advantage of the SIMD architec-
ture of OpenGL and GLSL shaders for concurrently constructing the
SAT not only for extinction coefficients but also for color value ag-
gregation at virtually no additional cost. Interactive frame rates can
be achieved on scenes with static and dynamic lights as well as for
dynamic transfer function changes on moderate size volume datas.

A limitation of our implementation is that specific shapes of light
sources such as neon tubes are not taken into account and only basic
point, spot and area light sources are supported. We would like to
resolve this issue in future work.

We would also like to investigate scalability issues for large datasets
that do not fit on GPU. Once the GPU memory runs low, it is common
to employ bricking [6] in GPU ray-casting. Nothing prevents applying
bricking to our illumination model, where the auxiliary 3D textures
can either be kept resident in the GPU memory (if small enough) and
only the dataset is bricked, or they can be bricked as well. We expect
that the performance penalty will be proportional to bricking without
our illumination model applied.

ACKNOWLEDGMENTS

The authors wish to thank volvis.org for the engine model, the Na-
tional Library of Medicine-NIH (and Univ. Erlangen) for the VisMale
data, OsiriX for the chest, pelvis and feet DICOM images, and AVS
(Univ. Erlangen) for the bucky ball volume data. This work was sup-
ported in part by the Swiss National Science Foundation under Grant
200020-129525/1.

REFERENCES

[1] U. Behrens and R. Ratering. Adding shadows to a texture-based vol-
ume renderer. In Proceedings IEEE Symposium on Volume Visualization,
pages 39–46, 1998.

[2] S. Bruckner and E. Groller. Enhancing depth-perception with flexible vol-
umetric halos. IEEE Transactions on Visualization and Computer Graph-
ics, 13:1344–1351, 2007.

[3] F. C. Crow. Summed-area tables for texture mapping. In Proceedings of
the 11th annual conference on Computer graphics and interactive tech-
niques, SIGGRAPH, pages 207–212, 1984.

[4] J. Dı́az, P.-P. Vázquez, I. Navazo, and F. Duguet. Real-time ambient
occlusion and halos with summed area tables. Computers & Graphics,
34(4):337–350, August 2010.

[5] P. Dubois and G. Rodrigue. An analysis of the recursive doubling al-
gorithm. In D. H. L. D. J. Kuck and A. H. Sameh, editors, High Speed
Computer and Algorithm Organization, pages 299–305. Academic Press,
1977.

[6] K. Engel, M. Hadwiger, J. M. Kniss, C. Rezk-Salama, and D. Weiskopf.
Real-Time Volume Graphics. A. K. Peters, Ltd., 2006.

[7] K. Engel, M. Kraus, and T. Ertl. High-quality pre-integrated volume ren-
dering using hardware-accelerated pixel shading. In Proceedings ACM
SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware, pages
9–16, 2001.

[8] C. Everitt. Interactive order-independent transparency. Technical report,
NVIDIA Corp., 2001.

[9] M. Hadwiger, P. Ljung, C. Rezk-Salama, and T. Ropinski. Advanced
illumination techniques for GPU-based volume raycasting. ACM SIG-
GRAPH Course Notes, 2009.

[10] J. Hensley, T. Scheuermann, G. Coombe, M. Singh, and A. Lastra. Fast
summed-area table generation and its applications. Computer Graphics
Forum, 24:547–555, 2005.

[11] F. Hernell, P. Ljung, and A. Ynnerman. Local ambient occlusion in direct
volume rendering. IEEE Transactions on Visualization and Computer
Graphics, 16(4):548–559, July/August 2010.

[12] H. W. Jensen. Realistic image synthesis using photon mapping. A. K.
Peters, Ltd., 2001.

[13] J. Kniss, G. Kindlmann, and C. Hansen. Multidimensional transfer func-
tions for interactive volume rendering. IEEE Transactions on Visualiza-
tion and Computer Graphics, 8(3):270–285, 2002.

[14] J. Kniss, S. Premoze, C. Hansen, and D. Ebert. Interactive translucent
volume rendering and procedural modeling. In Proceedings IEEE Visu-
alization, pages 109–116, 2002.

[15] M. Kraus and K. Bürger. Interpolating and downsampling RGBA volume
data. In Proceedings VMV, pages 323–332, 2008.

[16] J. Kruger and R. Westermann. Acceleration techniques for GPU-based
volume rendering. In Proceedings IEEE Visualization, pages 287–292,
2003.

[17] H. Landis. Production-ready global illumination. In Siggraph Course
Notes, volume 16, 2002.

[18] M. Malmer, F. Malmer, U. Assarsson, and N. Holzschuch. Fast pre-
computed ambient occlusion for proximity shadows. Journal of graphics
tools, 12(2):59–71, April 2007.

[19] N. Max. Optical models for direct volume rendering. IEEE Transactions
on Visualization and Computer Graphics, 1(2):99–108, June 1995.

[20] A. Méndez, M. Sbert, and J. Catà. Real-time obscurances with color
bleeding. In Proceedings Spring Conference on Computer Graphics,
pages 171–176, 2003.

[21] À. Méndez-Feliu and M. Sbert. From obscurances to ambient occlusion:
A survey. The Visual Computer, 25(2):181–196, February 2008.

[22] K. D. Moreland. Fast High Accuracy Volume Rendering. PhD thesis, The
University of New Mexico, 2004.

[23] G. Papaioannou, M. L. Menexi, and C. Papadopoulos. Real-time volume-
based ambient occlusion. IEEE Transactions on Visualization and Com-
puter Graphics, 16(5):752–762, September/October 2010.

[24] T. Porter and T. Duff. Compositing digital images. In Proceedings ACM
SIGGRAPH, pages 253–259, 1984.

[25] T. Ropinski, C. Döring, and C. Rezk-Salama. Interactive volumetric light-
ing simulating scattering and shadowing. In Proceedings IEEE Pacific
Visualization Symposium, pages 169–176, 2010.

[26] T. Ropinski, J. Kasten, and K. Hinrichs. Efficient shadows for GPU-
based volume raycasting. In Proceedings International Conference on
Computer Graphics, Visualization and Computer Vision (WSCG), pages
17–24, 2008.

[27] T. Ropinski, J. Meyer-Spradow, S. Diepenbrock, J. Mensmann, and K. H.
Hinrichs. Interactive volume rendering with dynamic ambient occlusion
and color bleeding. Computer Graphics Forum, 27(2):567–576, 2008.

[28] M. Ruiz, I. Boada, I. Viola, S. Bruckner, M. Feixas, and M. Sbert.
Obscurance-based volume rendering framework. In Proceedings
IEEE/EG Symposium on Volume and Point-Based Graphics, pages 113–
120, 2008.

[29] H. Scharsach. Advanced GPU raycasting. In Proceedings Central Euro-
pean Seminar on Computer Graphics (CESCG), pages 69–76, 2005.

[30] P. Schlegel and R. Pajarola. Layered volume splatting. In Proceedings
International Symposium on Visual Computing, pages 1–12, 2009.

[31] M. Schott, V. Pegoraro, C. Hansen, K. Boulanger, and K. Bouatouch. A
directional occlusion shading model for interactive direct volume render-
ing. Computer Graphics Forum, 28(3):855–862, June 2009.

[32] P. Shanmugam and O. Arikan. Hardware accelerated ambient occlu-
sion techniques on GPUs. In Proceedings Symposium on Interactive 3D
Graphics and Games, pages 73–80. ACM SIGGRAPH, 2007.

[33] S. Stegmaier, M. Strengert, T. Klein, and T. Ertl. A simple and flexible
volume rendering framework for graphics-hardware–based raycasting. In
Proceedings International Workshop on Volume Graphics, pages 187–
195, 2005.

[34] L. Westover. Footprint evaluation for volume rendering. In Proceedings
ACM SIGGRAPH, pages 367–376. ACM SIGGRAPH, 1990.

[35] L. Williams. Casting curved shadows on curved surfaces. In Proceedings
ACM SIGGRAPH, pages 270–274, 1978.

[36] C. Zhang and R. Crawfis. Shadows and soft shadows with participating
media using splatting. IEEE Transactions on Visualization and Computer
Graphics, 9(2):139–149, 2003.

