
Eurographics Conference on Visualization (EuroVis) 2013
B. Preim, P. Rheingans, and H. Theisel
(Guest Editors)

Volume 32 (2013), Number 3

TAMRESH: Tensor Approximation Multiresolution
Hierarchy for Interactive Volume Visualization

Susanne K. Suter & Maxim Makhynia & Renato Pajarola

Visualization and Multimedia Lab, University of Zurich, Switzerland

Abstract
Interactive visual analysis of large and complex volume datasets is an ongoing and challenging problem. We
tackle this challenge in the context of state-of-the-art out-of-core multiresolution volume rendering by introducing
a novel hierarchical tensor approximation (TA) volume visualization approach. The TA framework allows us (a)
to use a rank-truncated basis for compact volume representation, (b) to visualize features at multiple scales,
and (c) to visualize the data at multiple resolutions. In this paper, we exploit the special properties of the TA
factor matrix bases and define a novel multiscale and multiresolution volume rendering hierarchy. Different from
previous approaches, to represent one volume dataset we use but one set of global bases (TA factor matrices) to
reconstruct at all resolution levels and feature scales. In particular, we propose a coupling of multiscalable feature
visualization and multiresolution DVR through the properties of global TA bases. We demonstrate our novel TA
multiresolution hierarchy based volume representation and visualization on a number of µCT volume datasets.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing algorithms I.4.7 [Computer Graphics]: Feature Measurement—Feature representation

1. Introduction

Continuing advances in 3D imaging technologies, e.g.,
phase-contrast Synchrotron Tomography (pcST) and micro-
computed X-ray tomography (µCT), and computer simu-
lations lead to ever growing and complex volume datasets.
These volumes are not only large but exhibit an increasing
complexity of internal structure, showing high variability of
spatial frequencies and patterns at different scales.

Interactive direct volume rendering (DVR) is an impor-
tant tool for explorative visual analysis of the spatial distri-
bution and structure of features within the volumetric data. A
number of algorithms are available for real-time rendering of
moderately sized volumes on desktop platforms [EHK∗06].
For larger datasets, adaptive data reduction and level of de-
tail (LOD) methods must be integrated with bricking and
out-of-core rendering techniques. Hierarchical, out-of-core
and multiresolution approaches have been applied success-
fully to trade-off visual quality for rendering performance
(e.g., [LWP∗06, GMG08, CNLE09, SIGM∗11]).

Aggregation of volume data in a spatial (octree) hierar-
chy provides multiple levels of spatial resolutions for fast

LOD based rendering solutions. The basic hierarchical av-
eraging property, however, only allows for simple blurred,
reduced resolution representations. Approaches like Fourier
(FT), discrete cosine (DCT) and wavelet transforms (WT)
can provide information about the frequency patterns of the
data at different scales. Unlike FT, DCT and WT which em-
ploy fixed-basis decompositions, however, singular value de-
composition (SVD), principal component analysis (PCA) or
higher-order tensor approximation (TA) (see [KB09]) meth-
ods derive learned basis decompositions, which may capture
more compact data-specific structures and patterns.

TA has shown to be a viable tool for compact multi-
scale volume feature representation [SZP10]. Our goal is to
combine a TA based volume representation for data reduc-
tion and multiscale feature reconstruction with a hierarchi-
cal view-dependent variable resolution rendering, eventually
supporting independent control of data reconstruction at dif-
ferent features scales as well as spatial resolutions.

In this context, we demonstrate what a good TA hierarchy
is, as it is not a straight forward solution, as well as how
it can effectively be constructed and used in an interactive
large scale volume visualization application. We identify and

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.

S. K. Suter& M. Makhynia& R. Pajarola / TAMRESH

describe the important properties of the TA framework and
its factor matrices that the solution presented in this paper is
based on.

2. Related Work

A number of methods for compact data representation as
a linear combination of bases exists that can be differenti-
ated by having predefined data-independent or learned data-
specific bases. In volume rendering, predefined bases like
FT, DCT or WT and/or learned bases like vector quan-
tization (VQ), tensor approximation (TA), or sparse cod-
ing have been successfully applied (see e.g., [GWGS02,
SW03, FM07, SIGM∗11, GIM12]). While predefined basis
decompositions may be cheaper to produce, learned bases
have the potential for improved and more compact data fit-
ting [WWS∗05,WXC∗08,SZP10]. Actually, the drawback of
computing the bases is not real-time critical since the bases
are computed in a preprocessing stage. For the above reasons
we follow a data-specific basis decomposition approach.

We use the TA framework [KB09], as previously used in-
dividually for multiscale volume visualization [SZP10] and
for multiresolution volume rendering [SIGM∗11]. So far,
no combined tensor-based multiscale and multiresolution
model has been proposed. Hierarchical TAs have previously
been developed [WXC∗08, SIGM∗11]), where subvolume
bricks are represented as tensor decompositions in the nodes
of an octree.

In this work, we present an integration of multiscale fea-
ture reconstruction and multiresolution volume rendering by
use of global TA factor matrices. For this purpose, we iden-
tify and exploit special properties of the TA framework and
its factor matrices as described in this paper. In particular,
we show how to take advantage of the spatial selectivity and
subsampling in the spatial dimension I and of the progressive
truncation in the tensor rank dimension R of factor matrices,
respectively for adaptive multiresolution (along I) and mul-
tiscale (along R) reconstruction of individual volume bricks.
In fact, we present a novel solution for a hierarchical TA
representation, including reduction of brick border artifacts,
with fully independent brick reconstruction at variable spa-
tial resolutions and feature approximation scales.

Our proposed TA decomposition is carried out in a pre-
process on datasets larger than the available main mem-
ory, demanding out-of-core computing approaches. Wang
et al. [WWS∗05] proposed a localized per brick based out-
of-core TA algorithm. Our global factor matrices, however,
require a complete full volume decomposition and thus we
optimize the process by using memory mapped files and se-
quentialized data access. Furthermore, the tensor decompo-
sition is optimized using OpenMP parallelized tensor times
matrix (TTM) multiplications. The runtime reconstruction
of bricks, is implemented similar to [SIGM∗11] by GPU ac-
celerated TTM multiplications. Hence, we can keep a few
global mipmapped factor matrices permanently in fast read-

only GPU memory, and we only need to upload and cache
the demanded core tensor data for bricks.

3. Tensor Approximation Factor Matrix Properties

In tensor approximation (TA) as summarized in [KB09],
a volume dataset can be represented as a third-order ten-
sor (multidimensional array) A ∈ RI1×I2×I3 with elements
aiii2i3 . TA is a higher-order generalization of the matrix
SVD/PCA that exhibits the nice properties of (a) rank-R
decomposition and (b) orthonormal row-space and column-
space vectors. In higher orders, the rank-R decomposition is
achieved with the so-called CP model, while the orthonor-
mal vectors are preserved in the so-called Tucker model. In
the following, we refer to the Tucker model.

The Tucker model consists of one factor matrix per mode
(data dimension) U(n) ∈ RIn×Rn and one core tensor B ∈
RR1×R2×R3 (for volumes). The core tensor B is a projection
of the original data A onto the basis of the factor matrices
U(n). In case of a volume, the Tucker model has three modes
as illustrated in Fig. 1, and defines an approximation Ã of
the original volume A (using n-mode products ×n).

U(3)U(1) U(2)I1 I2I1

I2 I3

I3

R1 R2 R3

R1

R2
R3

�A B

Figure 1: Approximation: Ã = B×1 U(1)×2 U(2)×3 U(3)

The two axes of the factor matrices represent two differ-
ent spaces: The rows correspond to the spatial dimension
in the corresponding mode, and the columns to the feature
scale (see Fig. 2). Next, we show how these properties can
be exploited for multiresolution modeling (spatial selection
and subsampling of rows) and multiscale feature visualiza-
tion (rank truncation of the columns).

1.1

1.2

Rn

In U(n)

U(n)
Jn

U(n)
↓k

2

Rn

In U(n)U(n)
Kn

Figure 2: Factor matrix properties: (1.1) spatial selectivity
and (1.2) subsampling in the spatial dimension, (2) feature
scale reduction along the rank dimension.

3.1. Spatial Selection and Reduction

3.1.1. Spatial Selectivity

For view-frustum culling and adaptive brick selection in in-
teractive multiresolution volume visualization, efficient ac-
cess to spatially restricted subvolumes is required. Since a

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

S. K. Suter& M. Makhynia& R. Pajarola / TAMRESH

TA factor matrix’s rows directly correspond to its spatial di-
mension, we can exploit this fact for the reconstruction of a
subvolume directly from the global factor matrices. We first
describe the spatial selection for a fixed resolution.

The Tucker model defines an approximation of a volume
A by the decomposition Ã = B×1 U(1)×2 U(2)×3 U(3),
and each element of Ã is defined as

ãi1i2i3 = ∑
r1

∑
r2

∑
r3

br1r2r3 ·u
(1)
i1r1
·u(2)i2r2

·u(3)i3r3
, (1)

with factor matrix and core tensor entries u(n)inrn
and br1r2r3 .

Due to the correspondence of the rows of U(n) to the spa-
tial dimension n (see Fig. 2(a)), we can define row-index
subranges Jn ⊆ [0 . . . In] to reconstruct a spatial subvolume
J1×J2×J3 using only the indices in ∈ Jn in Eq. 1. As shown
in Fig. 3, we can thus select and reconstruct a subvolume
(e.g., an octree brick) by choosing a subset of the row vec-
tors of all factor matrices. Using these row-block submatri-
ces U(n)

Jn
we can formulate the subvolume reconstruction as

ÃJ1×J2×J3 = B×1 U(1)
J1
×2 U(2)

J2
×3 U(3)

J3
. (2)

U(3)U(1) U(2)I1 I2

I2 I3

I3

R1 R2 R3

R1

R2
R3

J1
J2

J3

J1

I1

J2
J3

U
(1)
J1

U
(2)
J2

U
(3)
J3

B
�A

Figure 3: Illustration of spatial selectivity: A range of se-
lected submatrix rows reconstructs a well defined subvolume
(in brown) of the original whole dataset.

In Fig. 6 an example of two selected octree bricks (1 and
2) is illustrated. For the two different subvolumes, we se-
lected the factor matrix row vectors corresponding to the po-
sition of the subvolume in the input dataset.

3.1.2. Subsampling

In multiresolution volume rendering, lower resolutions of
subvolumes are used for view-dependent adaptive LOD ren-
dering. Due to the correspondence of factor-matrix rows to
the spatial dimensions as outlined above, we can use row-
subsampling on factor matrices before brick reconstruction
from the TA to achieve lower resolution representations.

Since the In rows of a factor matrix U(n) correspond to the
resolution of the volume Ã in that mode, we can construct
a lower-resolution reconstruction in the n-th dimension by
averaging (pairs of) rows to get a downsampled matrix U(n)

↓1

(with In/2 rows). This is possible because the columns of a
factor matrix U(n) capture the data variation along the n-th
dimension. Therefore, downsampling and averaging pairs of

level 4 level 3 level 2 level 1

U
(1)
↓0

U
(1)
↓1

U
(1)
↓2

I/2 I/4 I/8

Rn

Rn

Rn
Rn

In

Figure 4: Factor-matrix subsampling by pair-wise row aver-
aging generates a mipmapped factor matrix hierarchy.

rows correspond to halving the reconstructed volume reso-
lution. This downsampling of factor matrices is illustrated in
Fig. 4 and corresponds to the principle of mipmapping.

Fig. 7 shows the factor matrix averaging as used for a hi-
erarchical tensor representation and its effects on the visual
reconstruction. The top row uses standard scalar value aver-
aging directly on the input volume, while in the middle we
show the direct TA of these subsampled datasets. In the third
row we demonstrate the tensor reconstruction based on the
subsampled and averaged factor matrices as proposed. As
can be seen the reconstructions are extremely close.

3.1.3. Implications to Rank Truncation

The selective usage of the factor matrices, i.e., the projection
of bricks onto submatrices, affects the orthogonality proper-
ties. Notably, we loose the so-called all-orthogonality prop-
erty (see [dLdMV00a]) of the core tensor since the TA sub-
matrices do not have orthogonal columns any longer. How-
ever, it is critical to maintain the all-orthogonality property
since it allows for truncating a tensor decomposition (similar
to rank truncation within a matrix SVD).

3.2. Feature Scale and Rank Truncation

The Tucker model defines a rank-(R1,R2,R3) approxima-
tion, where a small Rn corresponds to a low-rank approxima-
tion (low feature scale with details removed) and a large Rn
corresponds to a more accurate approximation of the original
(high feature scale). The tensor rank Rn defines the number
of coefficients and bases used for the reconstruction. As il-
lustrated in Figs. 2(b) and 5, the rank indicates how many
factor matrix columns and corresponding core tensor entries
are used for a reconstruction.

U(3)U(1) U(2)I1 I2

I2
I3

I3

R1 R2 R3

R1

R2
R3

K1 K2 K3

I1

K1
K2 K3

B
�A U(1)

K1 U(2)
K2 U(3)

K3

Figure 5: Illustration of a rank truncated reconstruction:
Truncated factor matrices with corresponding fewer core
tensor entries reconstruct at the full spatial resolution, but
at a lower approximation, i.e., at a lower feature scale.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

S. K. Suter& M. Makhynia& R. Pajarola / TAMRESH

1

1 2

1 2

2

U(3)

U(1) U(2)

U
(1)
J1

U
(2)
J2

U
(3)
J3

U(3)

U
(3)
J3

U(2)

U
(2)
J2

U(1)

U
(1)
J1

Figure 6: Spatial selectivity: Selected bricks reconstructed by the corresponding selection of row-index factor matrix subranges.

 643

1283 2563

5123

8bit

U(n) U(n) U(n)

U(n)
↓2U(n)

↓1U(n)
↓0

A↓0
A↓1 A↓2 A↓3

Figure 7: Factor matrix subsampling (bottom) compared to direct TA (center) derived from original subsampled datasets (top).
R = 4R = 8R = 16R = 32R = 64R = 128R = 256

U(n)
Kn

U(n)

Figure 8: Progressive rank truncations (bottom row) compared to fixed rank-(R,R,R) TAs (top row).

The highest rank Rinit for the initial Tucker decomposition
is chosen explicitly. Still, rank truncations for ranks Kn <
Rinit can be applied after the initial decomposition (similar
to the rank truncation in the matrix SVD). Even though the
core tensor coefficients are not guaranteed to be in strictly
decreasing order, as in the matrix SVD, in practice, progres-
sive tensor rank truncation in the Tucker model works for
adaptive data visualization at different feature scales.

Fig. 8 compares the progressive rank truncation from an
initial rank-(256,256,256) decomposition (bottom) to a spe-
cific fixed rank-(R,R,R) decomposition (top) of a 5123 vol-
ume. Both representations are visually similar down to the
lowest ranks, which, however, are hardly used.

3.3. Core Tensor Hierarchy

As previously described, we can observe the different out-
comes of applying rank truncation and spatial subsampling
as shown in Figs. 7 and 8, corresponding to spatial multires-
olution modeling in the former and multiscale structure re-
covery in the latter case. From the spatial selection, subsam-
pling and rank truncation properties of factor matrices, we
derive a novel and efficient TA hierarchy for multiscale and
multiresolution volume visualization.

Our new TA hierarchy is illustrated in Fig. 9 and in princi-
ple follows an octree subdivision of the input volume dataset.
A key part of our approach is, unlike any other TA proposed
in visual computing before, that we maintain a global set of

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

S. K. Suter& M. Makhynia& R. Pajarola / TAMRESH

mipmapped factor matrices U(n)
↓k

that are small enough even
for large input datasets to be kept in CPU or GPU memory
(see also Sec. 4.3). Thus all nodes on one level l of the octree
hierarchy are reconstructed using the same factor matrices
U(n)
↓k

corresponding to that octree level (with k = lmax− l).
Unlike the factor matrix rows, the core tensors do not ex-
hibit any mapping to the spatial dimensions. Thus, we define
a small core tensor Bbrick↓k per octree node. Eventually, the
core tensors are stored in quantized form (f loat32 to uint8,
as described in [SIGM∗11]).

...

......

lowest resolution

highest resolution

B3 bricks

core
tensors

mipmapped
factor matrices U

(n)
↓k

......

............

Bbrick↓k

Abrick↓k

Figure 9: Octree based on the mipmapped factor matrices.

To solve the issue of maintaining rank-reducible core ten-
sors (see Sec. 3.1.3), we re-span the subspace of each row-
block global factor submatrix U(n)

Jn
by applying an SVD

(similar to [TS12]). The row-block matrices’ columns are
then replaced with the orthogonal singular vectors, as indi-
cated in Fig. 10. That way, we are able to define per-brick
core tensors that can be truncated. Intuitively, this recompo-
sition of the global matrices can be seen as a different repre-
sentation of the same local subspaces as defined by the initial
non-orthogonal submatrices. Jn corresponds to the brick size
(including borders) of the octree hierarchy. Due to equally
sized bricks along all spatial octree directions, the sub-block
replacements can be used for spatially-corresponding bricks.

Jn

Jn

Jn

Jn

Jn

In

Rn Rn

SVD

SVD

SVD

SVD

U
(n)
↓k

U(n)
Jn ↓k

U(n)
Jn ↓k

U(n)
Jn ↓k

U(n)
Jn ↓k

Figure 10: Processing the mipmapped initial global factor
matrices in order to obtain orthogonal localized row-block
submatrices and thus all-orthogonal per-brick core tensors.

Our TA hierarchy is hence defined by a set of global
mipmapped factor matrices U(n)

↓k
and an octree hierarchy

that stores quantized core tensors Bbrick↓k . Reconstruction
is now possible in a flexible way, according to a desired
spatial resolution by choosing the octree level, and adapt-
ing the feature scale by adjusting the rank truncation level
8≤ Rn ≤ Rinit (ranks less than 8 seem not useful).

4. Hierarchical Global TA Factor Matrices

After describing the factor matrix properties that form the
basis of our multiscale and multiresolution TA octree hierar-
chy, we now elaborate on how to compute the initial tensor
decomposition needed to (1) derive the mipmapped factor
matrices and subsequently (2) generate the core tensor oc-
tree hierarchy.

4.1. Initial Tensor Decomposition

The initial decomposition is performed as a Tucker ten-
sor decomposition of the full size input volume. The actual
method is based on an alternating least-squares (ALS) al-
gorithm implemented as a higher-order orthogonal iteration
(HOOI) [dLdMV00b]. One iteration of the HOOI ALS for a
third-order tensor (a volume) consists of three optimization
steps, one along each mode (see Alg. 1).

Algorithm 1 HOOI optimization of one mode (e.g. n = 1).
1: for mode n optimization do

2: TTM of tensor AI1×I2×I3 times U(2)
I2×R2

T
→ TI1×R2×I3

3: TTM of tensor TI1×R2×I3 times U(3)
I3×R3

T
→PI1×R2×R3

4: HOSVD on Pn (unfolded P along mode n)
5: end for

The HOOI decomposition of large datasets exhibits two
main bottlenecks: (1) the tensor times matrix multiplications
(TTMs) of large tensors as in line 2 of Alg. 1, and (2) the
HOSVD as in line 4 of Alg. 1. We addressed those bottle-
necks as follows:

1. Larger than main memory data tensors A are unfolded
in the required mode direction (→An) once and accessed
from memory mapped files.

2. The HOOI iterations are designed such that the TTM
operations access the unfoldings of An sequentially and
memory aligned.

3. The TTM operation has been implemented using parallel
multi-threaded matrix-matrix multiplications.

4. The HOSVD is computed either based on the SVD or
on the symmetric eigenvalue decomposition (EIGS), de-
pending on the size of the input tensor.

The algorithms used for the large tensor decomposition
have been integrated into an open source vector and matrix
math library vmmlib [vmm]. Specifically, we use a wrapper
to BLAS DGEMM and OpenMP for all matrix-matrix mul-
tiplications (TTMs and covariance), and LAPACK wrappers
for the SVD and the EIGS. The symmetric eigenvalue de-
composition is extended to return the first R largest mag-
nitude eigenvalues with their eigenvectors corresponding in
the Cn = Pn×Pn

T covariance matrix scenario to the R first
left singular vectors that are used as TA factor matrices
U(n) (see [dLdMV00a]). To further save computing time and
memory, we initialize the factor matrices for the ALS with
random values as in [WWS∗05].

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

S. K. Suter& M. Makhynia& R. Pajarola / TAMRESH

The choice of the initial rank Rinit is an important factor
of the computational cost of the initial tensor decomposition.
The smaller Rinit , the fewer computations in bottleneck (1)
and bottleneck (2) are needed. The typical setting for a re-
duced rank TA would be half of the dimension of the input
volume A , thus Rinit =

I
2 , see [WXC∗08,SZP10,SIGM∗11].

However, in the octree, we have much smaller brick dimen-
sions, e.g. of 64 only, thus we are aiming at final ranks in
the range of Rn ≤ 32. We could start the initial decomposi-
tion with large Rinit to get the initial global factor matrices
U(n) ∈ RIn× In

2 , only to then reduce the number of columns
from In

2 to 32. This would be costly, and moreover, our re-
construction experiments have shown that an initial rank
close to the final brick core rank was favorable. Thus we per-
form the initial tensor decomposition with Rinit correspond-
ing to half of the octree node brick size.

4.2. Octree Building

The basic multiresolution octree structure has been de-
scribed in Sec. 3.3 and is illustrated in Fig. 9. The data of an
octree node corresponding to an input subvolume AJ1×J2×J3

is given by its core tensor BR1×R2×R3 , whose coefficients
model the relationship between the global factor matrices
and the original data. Given the mipmapped factor matrices
U(n)
↓k

, with Rinit columns each, we compute the core tensor
BR1×R2×R3 per octree node by projecting the input subvol-
ume brick AJ1×J2×J3 , at the required spatial resolution, onto

the row-block SVD factor submatrices U(n)
Jn ↓k

of the appro-
priate subsampling level k as described in Sec. 3.3. The oc-
tree building follows state-of-the-art implementations and is
described for TAMRESH-specific modifications in the sup-
plementary material.

Furthermore, to reduce border artifacts between bricks
during rendering, we introduce a 6-voxel-border overlap for
the per-brick core tensor generation. 4-voxels are used to
provide the local brick TA information about the neighbor-
ing bricks; 2-voxels are used for the gradient interpolation
between bricks during rendering.

Without restricting the generality of the described con-
cepts, in the following we assume a subvolume brick size
of 643 (from J1,2,3 = 64, plus borders), thus per-brick core
tensor ranks R = 32 and core tensors of size R3. For empty
bricks, the node’s core tensor is null and skipped.

Feature Scale Parameter As part of the preprocessing, we
compute a parameter to measure the feature scale of every
octree brick. As seen in Sec. 3.2, the tensor rank truncation
can be used for multiscale feature visualization. Specifically,
the feature scale parameter is computed on the differences
of the approximations and the original at different feature
scales (i.e., different rank truncations). Therefore, we com-
pute per brick (excluding borders) the differences in terms
of the root-mean-square error (RMSE). With respect to dif-
ferent resolution approximations, we use trilinear interpola-
tion to compute the RMSE between any LOD brick and the

original. We compute for every brick a number of different
rank truncated reconstructions and store this information in a
separate file. Eventually, the visualization system adjusts the
feature scale of the multiresolution reconstruction, as shown
in Sec. 5.

4.3. Storage

The storage cost of multiresolution volume hierarchies is
dominated by the cubic growth of the volume. A simple
I3 volume octree will introduce a hierarchy overhead of
I3−1

7 and thus in total require 8·I3−1
7 elements, or ≈ 8

7 · I3.
In contrast, our representation consists of a set of global
mipmapped factor matrices U(n)

↓k and an octree hierarchy of
core tensors Bbrick↓k . Below, we present our analysis for 643

bricks (B = 64) and an initial rank Rinit = 32.

The mipmap hierarchy doubles the storage I · Rinit of a
single initial factor matrix U(n). For all three matrices, that
is 2 ·3 · I ·32 = 192 · I, thus linear in I. Since each core tensor
uses eight times less space than the original data, the total
storage cost for the core tensor hierarchy is ≈ I3

7 . Our meta

information is 56 bytes per node and sums up to 56 · I3

B3 · 8
7 =

1
642 · I3 ≈ 0.00024 · I3 over the entire hierarchy. Therefore,
we get a total storage cost of 192 · I+ 1

7 · I3 + 1
642 · I3 ≈ 192 ·

I+0.14 · I3. For large I, this is about 1
8 of the uncompressed

volume octree size.

Compared to state-of-the-art [SIGM∗11], the storage
costs differ mainly in terms of the factor matrix costs. The
model in Suter et al. [SIGM∗11] has to store three individ-
ual factor matrices for each octree node, i.e., 3 ·B ·Rinit . The
cumulated matrices of all leave nodes are of size 3 ·B ·Rinit ·
I3

B3 = 3
2·B · I3 for Rinit =

1
2 ·B. Incorporating the general oc-

tree overhead, this results in a total factor matrices size of
8
7 · 3

2·B · I3 = 12
7·B · I3 = 12

7·64 · I3 = 3
112 · I3. Thus a larger total

storage cost of 3
112 · I3 + 1

7 · I3 = 19
112 · I3 ≈ 0.17 · I3 results.

Incorporating quantization, the storage costs are affected
differently. Both store 8-bit core tensor values (logarithmic
encoding). [SIGM∗11] use a 16-bit linear factor matrix en-
coding, while we use non-quantized 32-bit float values for
the global factor matrices. Nevertheless, this results in total
storage costs for [SIGM∗11] of 2 · 3

112 · I3+ 1
7 · I3 = 11

56 · I3 ≈
0.20 · I3 and a lower storage costs of ≈ 768 · I +0.14 · I3 for
our new model with the global mipmapped factor matrices.

5. Multiscale and Multiresolution Visualization

The goal of the interactive visualization system was to de-
velop a multiresolution volume renderer that selects bricks
not only at a certain spatial resolution, but also at a chosen
feature scale. We achieved this by modeling the multiscala-
bility within the multiresolution TA octree data structure, as
shown in Sec. 4.2. The multiresolution renderer builds upon
state-of-the-art view-dependent LOD selection, out-of-core

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

S. K. Suter& M. Makhynia& R. Pajarola / TAMRESH

data loading, brick caching on the GPU, asynchronous load-
ing and rendering budgets. The bricks are decoded and re-
constructed on demand using consecutive tensor times ma-
trix multiplications, as introduced in [SIGM∗11], but using
the new global mipmapped factor matrices hierarchy.

In addition to the view-dependent screen-projection based
LOD selection, the feature scale of the reconstruction is
chosen based on a user input (see Alg. 2). The user input
is a feature scale parameter, which maps to a tensor rank.
A higher feature scale is achieved by reconstructing more
ranks, a lower feature scale is achieved by reconstructing
fewer ranks. During the actual visualization, a lower feature
scale means that we perform a coarser approximation. This
principle is exploited to steer the feature scale via the per-
brick RMSE error ranges, as described in Sec. 4.2.

Fig. 11 illustrates the multiscale adjustments to the mul-
tiresolution LOD selection given a feature scale, represented
by εtarget (Alg. 2, line 12). The minimum error front corre-
sponds to εtarget > εrank=8(Abrick↓k), which prevents further
resolution refinement; in contrast, the maximum error front
corresponds to εtarget > εrank=32(Abrick↓k), which enforces
refinement. During the brick refinement, the rank is updated
based on the εtarget (Alg. 2, line 16). As mentioned in Alg. 2,
line 10, we follow this adjusted multiresolution front as long
as we stay within the given rendering and memory budgets.

maximum
error front

minimum
error front

multiresolution
frontmultiresolution and

multiscale front

root level

leaves level

level 2

level 3

1

2

Figure 11: Multiresolution and multiscale octree front
(bold): The multiresolution front (dotted) is adjusted de-
pending on (1) the minimum error octree front (prevent re-
finement), and (2) the maximum error octree front (enforce
refinement).

6. Experimental Results

To verify the multiscale and multiresolution TA hierarchy
introduced in this paper, we implemented a volume render-
ing application in C++ based on a GPU-ray-caster using
GLSL. Interactive visualization is demonstrated on a Quad-
Core Intel i7 3.2GHz with 8GB RAM and a Geforce GTX
580 with 1.5GB memory. Preprocessing has been carried
out on an Quad-Core Intel Xeon 2.4GHz MacPro5,1 with
22GB RAM, a 500GB SSD hard disk, and a Geforce GTX

Algorithm 2 Per frame TA-error-based LOD traversal
1: rendering list L, loading queue Q, heap H (screen-size sorting)
2: assign a rank corresponding to εtarget to the root brick Abrick_1
3: if Abrick_1 is on GPU and Abrick_1 is visible then
4: push Abrick_1 to H and then push Abrick_1 to L
5: end if
6: push Abrick_1 to Q
7: while H not empty do
8: set current brick Abrick↓k to the front of H
9: remove front from H

10: if (size(Q)≥ budgetGPU) || (size(L)≥ budgetrender) then
11: break
12: else if (Abrick↓k has no children) || (εtarget >

εrank=8(Abrick↓k)) || [(εtarget > εrank=32(Abrick↓k)) &
(screen_size(Abrick↓k))< screen_size_threshold)] then

13: continue
14: end if
15: set list C to all visible children of Abrick↓k
16: assign all of C with ranks corresponding to εtarget
17: if all of C are on GPU then
18: sort C according to the rendering order
19: find Abrick↓k in L and replace it with all of C
20: push all of C to H
21: end if
22: push all of C to Q
23: end while
24: update GPU usage statistics based on Q and L
25: request missing bricks on GPU from Q to (re)load async
26: render bricks from L

285 graphics card with 1GB memory. The test datasets in-
clude three µCT volumes: a hazelnut (5123, 128MB, 8bit), a
flower (10243, 1GB, 8bit) and a wood branch (20483, 16GB,
16bit) dataset. To avoid excessive type conversions, the in-
put data is preprocessed in floating point precision and the
large data tensors (e.g. 32GB for wood branch) are accessed
from memory mapped files.

6.1. Multiresolution Model Using Global TA Bases

Our experiments show that it is feasible, first, to decompose
large initial factor matrices of a µCT volume dataset, and
second, to reconstruct the volumes at multiple resolutions
by mipmapping/subsampling of the large initial factor ma-
trices, see Fig. 12 and Sec. 3. Moreover, we could produce
all-orthogonal rank-reducible per-brick core tensors for the
multiresolution TA hierarchy from the global TA bases by
applying row-block SVDs, as outlined in Sec. 3.3.

To give an idea of how such global TA bases look like,
we visualize in Fig. 13 the mipmapped factor matrices of
U(1) of the hazelnut dataset. The intensity distributions look
similar to frequency patterns but in fact show the input data
specific distribution of the TA’s data-specific factor matrix
bases. Furthermore, similar to a matrix PCA the first rank is
represented by one major base frequency, while the frequen-
cies increase with subsequent ranks, i.e., higher frequency
details are encoded with additional ranks.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

S. K. Suter& M. Makhynia& R. Pajarola / TAMRESH

(a) original (b) leaves (c) level 3 (d) root (e) original (f) level 5 (g) level 3 (h) root

Figure 12: Different spatial resolution levels reconstructed from the mipmapped TA bases: (a-d) flower, (e-h) wood branch.

In
In

2
In

4
In

8

U(1)
#3

U(1)
#2

U(1)
#1

U(1)
#0

Rn
Rn

Rn
Rn

Rn

U(1)

Figure 13: Visualization of an initial factor matrix U(1) of the
hazelnut and its full resolution row-block SVD replacement
U(1)
↓0

. Subsampled matrices U(1)
↓k

are stretched to fit and value
coded: brown (negative), white (zero), green (positive).

In order to have smoother brick transitions, we use a 6-
voxel-border to generate the core tensors; however, we only
reconstruct 2 voxels for the gradient interpolation during
rendering (see Fig. 14).

(a) no brick borders (b) with bricks borders

Figure 14: A slice through the reconstructed flower dataset
once without (a) and once with additional brick borders (b).

The best approximation of our work, at highest resolution
and measured by the normalized RMSE (εapprox), is compa-
rable to state-of-the-art. The presented work and [SIGM∗11]
have a maximal approximation quality of εapprox = 0.00738
vs. εapprox = 0.00676 (hazelnut), εapprox = 0.00968 vs.
εapprox = 0.01012 (flower), and εapprox = 0.00702 vs.
εapprox = 0.00487 (wood branch), respectively. The gen-
eral sampling noise ratio was measured at εnoise = 0.00281
(hazelnut), εnoise = 0.00715 (flower), and εnoise = 0.00249
(wood branch). Thus the maximal approximation quality is
close to the sampling noise level.

In addition to [SIGM∗11], the multiresolution property
of the mipmapped TA factor matrices is coupled with mul-
tiscale feature visualization achieved through rank-reduced
TA bricks, as shown next.

6.2. Coupling of Multiresolution and Multiscalability

The main idea of this coupling is to have one parameter that
a user can adjust in order to balance the scale of features in
the dataset (multiscalability). We implemented this idea by

computing per brick RMSE errors, whereas we used trilinear
interpolation to match the original LOD for comparison. As
a result, we use an error parameter that automatically adapts
to a feature scale and a LOD resolution from the given error.
The average errors per LOD are visualized in Fig. 15, which
shows that the error is gradually decreasing when refining
the resolution, and it overlaps between octree levels and rank
ranges. As the rank-reduced approximations of the Tucker
model do not guarantee a strictly decreasing error, we map
the minimum-maximum error range to the range of ranks
Ri = {8,9,10, . . . ,31,32}, which works well in practice.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

rank = 8! rank = 10! rank = 12! rank = 16! rank = 24! rank = 32!

m
ea

n
no

rm
al

iz
ed

 b
ric

k
R

M
SE
!

level 1 (root) mean level 2 mean level 3 mean level 4 (leaves)

Figure 15: Mean normalized brick RMSEs for all octree lev-
els of the hazelnut. The standard deviation of the errors is
additionally indicated.

As can be seen in Fig. 16, when the feature scale parame-
ter is lowered by increasing the target error εtarget , the spatial
brick resolutions are lowered as well by adjusting the LOD
front according to our elaborations in Sec. 5.

6.3. Interactive Performance

As already shown in [SIGM∗11], the rendering from TA
compressed data is dominated by the ray-caster, see Fig. 17.
Our multiresolution and multiscale DVR system shows in-
teractive performance achieving typical volume ray-casting
levels. In particular, the timings reveal that our adaptive
online tensor reconstruction, including all bricks-to-RAM,
bricks-to-GPU and reloading tasks, constitutes only a neg-
ligible overhead with respect to the overall rendering cost.
The decompression and ray-casting are performed in paral-
lel in separate threads on the GPU. The rendering is per-
formed adaptively according to the zooming factor and the
defined error, which was chosen to be a medium error. The
bricks are loaded according to the previously defined error-
reconstruction-rank coupling.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

S. K. Suter& M. Makhynia& R. Pajarola / TAMRESH

high feature scale medium feature scale low feature scale

Figure 16: Coupling of multiresolution and multiscalability
by a feature scale metric (rank-based). The rank is color en-
coded (red–blue–green bricks correspond to few-more-many
ranks). The size of each brick indicates its spatial resolution.

6.4. Storage and Preprocessing

For all floating point factor matrices and all quantized octree
core tensors, the hazelnut dataset (128MB) requires 9MB,
the flower dataset (1GB, 8bit) needs 58MB, and the wood
branch dataset (16GB, 16bit) uses 1GB . The actual com-
pression ratio depends (a) on the voxel-bit-depth of the orig-
inal, and (b) on the amount of empty space. The flower
dataset and the wood branch dataset both have empty sur-
rounding space and are thus below the theoretical storage
costs as computed in Sec. 4.3.

The preprocessing time for the initial tensor decomposi-
tion in floating point precision to produce the large matri-
ces was around 1min for the flower and around 3min for the
wood branch. The most expensive part in the initial HOSVD
decomposition, which was 5sec per ALS iteration for the
10253 dataset and 42sec for the 20483 volume. The octree
build was around 3min for the flower dataset and around
30min for the wood branch dataset. The mipmapping and
the row-block SVD recomposition of the matrices was below
1sec for all datasets. The error computation for the LOD cou-
pling of multiresolution and multiscalability was the most
time-consuming part of the preprocessing since a trilinear
interpolation was performed for all nodes over several LODs
relative to the original data. Note that the preprocessing was
performed on the CPU. For the memory critical initial de-
composition this is the favored solution. For the octree build
and the LOD error computation, however, a parallel and/or
GPGPU version could be implemented in future work.

7. Summary

We presented a new concept to couple multiresoltuion DVR
and multiscale feature visualization. The idea exploits a
novel TA hierarchy for both, the multiresolution model-
ing and the multiscale feature representation, and is imple-
mented using a state-of-the-art GPU-based ray-caster. The
multiresolution and multiscale TA properties are coupled

0!

20!

40!

60!

80!

100!

120!

1! 51! 101! 151! 201! 251! 301! 351! 401! 451!

rendering bricks to RAM bricks to GPU reloading bricks on GPU

ms

frames

0!

100!

200!

300!

400!

500!

600!

700!

0!

10!

20!

30!

40!

50!

60!

70!

1! 51! 101! 151! 201! 251! 301! 351! 401! 451!

#bricks to RAM #bricks to GPU
#bricks reloaded on the GPU #bricks rendered

#loaded bricks #rendered bricks

frames

Figure 17: Performance measurements of the flower render-
ing. Time in ms per frame (top) as well as number of loaded
and rendered blocks per frame (bottom).

through a feature scale parameter that can be operated at run-
time by the user. The feature scale parameter is precomputed
per brick over a range of rank-reduced approximations errors
(RMSEs). By adjusting the tolerated feature scale parame-
ter, the DVR implementation automatically choses whether
to increase/reduce spatial resolutions and feature scales.

Our experiments demonstrate the feasibility of the gener-
ation of global TA bases and the spatial selectivity within
the factor matrices applied to multiresolution data modeling.
Furthermore, the coupling of multiresolution DVR and mul-
tiscale feature visualization was demonstrated successfully
on different datasets and at interactive frame rates. Com-
pared to state-of-the-art [SIGM∗11], we maintained a com-
parable maximum approximation quality, while further re-
ducing the total storage costs for the LOD data structure,
and while exploiting one set of global factor matrices that
combine multiresolution and multiscale modeling in one.

Acknowledgments

This work was supported in part by a Swiss National Science
Foundation (SNSF) grant (project number 200021_132521),
as well as by the EU FP7 People Programme (Marie Curie
Actions) under REA Grant Agreement n◦290227. We would
like to acknowledge the Computer-Assisted Paleoanthropol-
ogy group and the Visualization and MultiMedia Lab at Uni-
versity of Zürich for the acquisition of the µCT datasets,
which are available at http://vmml.ifi.uzh.ch. Fi-
nally, we thank colorbrewer.org for color schemes used in
the figures.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

http://vmml.ifi.uzh.ch

S. K. Suter& M. Makhynia& R. Pajarola / TAMRESH

References

[CNLE09] CRASSIN C., NEYRET F., LEFEBVRE S., EISEMANN
E.: GigaVoxels: Ray-guided streaming for efficient and detailed
voxel rendering. In Proceedings ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games (2009), pp. 15–22. 1

[dLdMV00a] DE LATHAUWER L., DE MOOR B., VANDEWALLE
J.: A multilinear singular value decomposition. SIAM Journal of
Matrix Analysis and Applications 21, 4 (2000), 1253–1278. 3, 5

[dLdMV00b] DE LATHAUWER L., DE MOOR B., VANDEWALLE
J.: On the best rank-1 and rank-(R1,R2, ...,RN) approximation
of higher-order tensors. SIAM Journal of Matrix Analysis and
Applications 21, 4 (2000), 1324–1342. 5

[EHK∗06] ENGEL K., HADWIGER M., KNISS J. M., REZK-
SALAMA C., WEISKOPF D.: Real-Time Volume Graphics. AK
Peters, 2006. 1

[FM07] FOUT N., MA K.-L.: Transform coding for hardware-
accelerated volume rendering. IEEE Transaction on Visualiza-
tion and Computer Graphics 13, 6 (2007), 1600–1607. 2

[GIM12] GOBBETTI E., IGLESIAS GUITIÁN J., MARTON F.:
COVRA: A compression-domain output-sensitive volume ren-
dering architecture based on a sparse representation of voxel
blocks. Computer Graphics Forum 31 (2012), 1315–1324. 2

[GMG08] GOBBETTI E., MARTON F., GUITIÀN J. A. I.: A
single-pass GPU ray casting framework for interactive out-of-
core rendering of massive volumetric datasets. The Visual Com-
puter 24, 7-9 (July 2008), 797–806. 1

[GWGS02] GUTHE S., WAND M., GONSER J., STRASSER W.:
Interactive rendering of large volume data sets. In Proceedings
IEEE Visualization (2002), pp. 53–60. 2

[KB09] KOLDA T. G., BADER B. W.: Tensor decompositions
and applications. SIAM Review 51, 3 (September 2009), 455–
500. 1, 2

[LWP∗06] LJUNG P., WINSKOG C., PERSSON A., LUNDSTROM
C., YNNERMAN A.: Full body virtual autopsies using a state-of-
the-art volume rendering pipeline. IEEE Transactions on Visual-
ization and Computer Graphics 12, 5 (Sep/Oct 2006), 869–876.
Proceedings IEEE Visualization. 1

[SIGM∗11] SUTER S. K., IGLESIAS GUITIÀN J. A., MARTON
F., AGUS M., ELSENER A., ZOLLIKOFER C. P., GOPI M.,
GOBBETTI E., PAJAROLA R.: Interactive multiscale tensor
reconstruction for multiresolution volume visualization. IEEE
Transactions on Visualization and Computer Graphics 17, 12
(Dec 2011), 2135–2143. 1, 2, 5, 6, 7, 8, 9

[SW03] SCHNEIDER J., WESTERMANN R.: Compression do-
main volume rendering. In Proceedings IEEE Visualization
(2003), pp. 293–300. 2

[SZP10] SUTER S. K., ZOLLIKOFER C. P., PAJAROLA R.: Ap-
plication of tensor approximation to multiscale volume feature
representations. In Proceedings Vision, Modeling and Visualiza-
tion (2010), pp. 203–210. 1, 2, 6

[TS12] TSAI Y.-T., SHIH Z.-C.: K-clustered tensor approxima-
tion: A sparse multilinear model for real-time rendering. ACM
Transactions on Graphics 31, 3 (May 2012). 5

[vmm] vmmlib: A vector and matrix math library.
https://github.com/VMML/vmmlib/. 5

[WWS∗05] WANG H., WU Q., SHI L., YU Y., AHUJA N.: Out-
of-core tensor approximation of multi-dimensional matrices of
visual data. ACM Transactions on Graphics 24, 3 (Jul 2005),
527–535. 2, 5

[WXC∗08] WU Q., XIA T., CHEN C., LIN H.-Y. S., WANG H.,

YU Y.: Hierarchical tensor approximation of multidimensional
visual data. IEEE Transactions on Visualization and Computer
Graphics 14, 1 (Jan/Feb 2008), 186–199. 2, 6

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

