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High Performance Stereo System
For Dense 3D Reconstruction
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Abstract—3D stereo reconstruction, a technique which esti-
mates per-pixel depth in a scene, is still a challenging problem
mainly due to some prohibitive factors that limit its performance
and computational ability. The aim of this paper is to present
a new hardware-efficient disparity map computation, which is
based on disparity space image (DSI) processing using discrete dy-
namic systems. The hardware architecture of the proposed system
was implemented on a high-end field programmable gate array
(FPGA) device, offering real-time 3D reconstruction speeds using
a hardware aware architecture based on parallelism and process
pipelining. The proposed architecture fulfills the requirements
of real-world applications regarding resource usage, frame rates
and disparity resolution, while its implementation on an Altera
Stratix IV family FPGA device can extract disparity maps of up to
1280× 1024 pixels with up to 128 disparity levels under real- or
near real-time conditions at a clock rate of 168MHz. Qualitative
and quantitative results also demonstrate its performance and
improvement over previous hardware-related studies, making our
approach a suitable candidate for applications where timing and
processing constraints are critical.

Index Terms—real-time, disparity space image (DSI), FPGA,
image processing, 3D reconstruction, stereo vision.

I. INTRODUCTION

ONE of the key sectors of computer vision is stere-
oscopy or stereo vision, which refers to the perception

of depth. Stereo vision is essential to the generation of a
three-dimensional representation of the spatial relationship and
shape of objects in our surroundings. Stereo vision systems
are widely used in a variety of applications that require
knowledge about the depth of objects, such as autonomous
vehicles steering, security and military applications. Stereo
vision uses a stereo camera setup to acquire the initial stereo
images (see also Fig. 1a), and the fundamental problem
is to compute the depth of the scene structure from these
input images. The general process of extracting the depth
information of a scene by a stereo vision system involves
the determination of corresponding pixels between the input
images, calculation of their disparities, and finally estimation
of depth by triangulating their position in space (see also
Fig. 1b).

In traditional stereo vision systems, two or more cameras
are placed in slightly different horizontal positions, in order to
obtain the scene image from different view angles, similar to
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human binocular vision. For a typical camera stereo setup as
in Fig. 1a, the distance to a point P(x, y, z) can be estimated
from the two points denoted ER and EL (i.e. epipoles) in the
two camera image planes. In order to find the corresponding
scene point EL of left image in the right one, we can exploit
the epipolar geometry in the stereo image setup. The epipolar
geometry defines a plane (i.e. epipolar plane), which is the
plane created by a scene point P(x, y, z) and the two optical
centers, OL and OR, and thus given the scene point P observed
in the left camera at EL(xL, yL). The corresponding scene
point ER(xR, yR) will be constrained to lie on that epipolar
plane as well, and thus to be on a corresponding epipolar line
of that plane intersecting the right image plane. Therefore, the
general 2D correspondence search is reduced to a 1D problem.
As a result, the relative depth information from these two im-
ages can be obtained, in the form of disparities, by calculating
only the horizontal displacement xR−xL = f ·B/Z of these
two corresponding points, which is inversely proportional to
the differences in distance to the objects.

In spite of its significance, stereo vision has some se-
rious limitations in real-life applications, due to its inher-
ent ambiguities in the matching process and its increased
computational expense. A good survey on the subject can
be found in [1], where stereo algorithms are classified into
two major categories, global and local methods, with direct
implication for hardware design complexity and robustness.
The most commonly used global methods attempt to solve the
stereo matching problem using dynamic programming (DP),
belief propagation (BP) and graph cuts (GC). On the other
hand, local correspondence methods are generally categorized
into block matching, gradient matching and feature matching
algorithms in order to address the correspondence problem [2].
Block matching algorithms are using some statistical methods
for determining similarity, like Normalized Cross Correlation
(NCC), Sum of Squared Differences (SSD) metric and Sum
of Absolute Differences (SAD), gradient matching algorithms
seek to determine small local disparities between two images
by formulating a differential equation relating motion and
image brightness, and feature matching algorithms which
attempt to match discrete features among images. Although
global methods are very accurate and can produce dense
disparity maps, they are computationally more expensive.
They often exhibit irregular data access patterns and usually
they are unsuitable for real-time applications and hardware
implementations. On the other hand, local algorithms yield
less accurate disparity maps due to their poor performance on
textureless and occluded regions, but they are better suited for
real-time stereo matching due to their reduced computational
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complexity, their limited data dependencies and their increased
suitability for hardware implementations.

P
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Fig. 1: (a) Stereo vision camera setup, and (b) the determi-
nation of corresponding scene points and the creation of the
disparity map.

However, the majority of highly-accurate real-time stereo
vision systems developed so far have focused on different
approaches for solving the stereo matching process, mainly
using global metrics and calculations, which increase the
computational cost and the processing time. In addition, the
majority of current local methods, to which the proposed
technique belongs, implement different algorithms that are
applied either in the input images, taking advantage of object
and intensity differences in order to optimize the match-
ing cost computation/aggregation step and create a plausible
disparity map, or after the matching process, in order to
optimize/refine the extracted disparity maps and improve the
resulting disparity values in a post-processing step [1], [3].
This contribution attempts to diversify from this line and
follow a new path for optimizing the stereo matching process,
presenting a novel approach for accessing the intermediate
level of the disparity estimation process and optimizing the
matching costs in a 3D disparity space image (DSI) before
the disparity selection procedure and after the application of
the similarity metric, presenting results comparable to that
of other methods in shorter time. Although it is local, the
big advantage of this approach is the ability to exploit more
information, which lie in 3 dimensions and not only in 2, as
happens in pre- or post-processing steps of other techniques,
as well as the capability to enhance the disparity maps by
correcting potential mismatches or correspondences before
the final selection of the disparity values by the similarity
accumulator, reducing the required processing/refining steps
and increasing its performance. It is also independent from
the similarity accumulators used in most local algorithms and
this advantageous feature makes it suitable for embedding
it as an intermediate optimization stage to the majority of
local window- or block-based stereo algorithms. It is also
worth noticing that the extracted results are produced without
using any kind of disparity map post-processing, meaning that
any post-processing step can further improve the extracted
disparity maps eliminating the remaining false reconstructions.

This efficient behavior is realized by accenting the capabili-
ties of local information in 3D disparity space (i.e. DSI) using

a novel local-based cellular automata (CA) matching cost
optimization technique for eliminating the false reconstruc-
tions and optimizing the disparity selection process. Although
there are inherent difficulties in refining the DSI using only
local information, the proposed technique shows that CA can
exploit quite efficiently local information and solve the stereo
correspondence problem equally as other approaches.

For the proposed technique, a scalable and highly parallel
hardware architecture is also presented, capable of producing
dense disparity maps in real-time speeds. The overall disparity
estimation process includes pre-processing (i.e. filtering for
noise reduction), correspondence matching cost computation,
DSI formation, matching cost optimization and decision mak-
ing. Regarding the scalability issue of the proposed system, it
was achieved by using intensively parallelism and pipelining,
providing very good results in terms of disparity levels and im-
age sizes. Moreover, the impact of design parameters regarding
performance and required hardware resources is explored. Due
to its performance, the proposed high frame rate hardware-
based system can be applied to many real-time stereo vision
applications, including high-speed tracking and mobile robots,
object recognition and navigation, biometrics, vision-guided
robotics in the automotive industry and many more.

The rest of the paper is organized as follows. Section II
discusses related work, Section III gives a short overview of
discrete dynamical systems and cellular automata, Section IV
presents the proposed solution, while in Section V a detailed
description of the hardware architecture and implementation
of the proposed system is provided. Section VI presents the
experimental results and their evaluation, while conclusions
and future work are discussed in Section VII.

II. RELATED WORK

Until recently, the majority of stereo vision methods was
mainly restricted to software-based techniques on custom
computers. Although these methods are extremely flexible
and easy to implement, most of them cannot easily han-
dle the outlined requirements, due to their serial operation.
The increased computational complexity and high execution
time, caused by numerous iterative calculations, make real-
time 3D reconstruction a challenging process. As a result,
most of the software-based stereo algorithms require high-end
computers and sophisticated code optimization techniques, in
order to extract disparity maps in real time. Only in the last
decade researchers started to focus on custom hardware-based
stereo vision systems implemented on field programmable
gate arrays (FPGAs) or application specific integrated circuits
(ASICs).

Some previous works that utilize specialized hardware to
reconstruct the 3D scene structure are presented in [4], [5],
[6], using Intel MMX processors, graphics processing units
(GPUs) and digital signal processors (DSPs), respectively.
However, although these approaches solve the 3D reconstruc-
tion problem in a computationally efficient manner, they are
not suitable for embedded and mobile applications due to their
increased power demands. The authors in [7] developed a
stereo vision system based on a specialized ASIC processor,
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the DeepSea, which computes the disparities at 200 frames per
second (fps) with a 512× 480 input stereo image pair and 52
different disparity levels. Another disparity estimation stereo
system, based on an FPGA architecture, is introduced in [8].
This system generates disparity maps of 512 × 480 stereo
images at a frame rate of 30fps, implementing a window-
based, scan-line correlation search technique. Another system
presented in [9] yields 20fps on 640 × 480 image sizes,
although the performance of the system is limited due to
the memory access pattern utilized, which does not provide
scalability and performance optimization. In [10] a new system
on a Xilinx FPGA platform was developed, which computes
trinocular stereopsis using a local-based method. This system
runs at approximately 30fps with 640 × 480 pixel images
within a 64 pixel disparity search range. Similar local SAD-
based techniques have been implemented in FPGAs in [11]
and [12], with different improvements and various results,
depending on their configuration and referenced work.

III. DISCRETE DYNAMICAL SYSTEMS AND
CELLULAR AUTOMATA

A discrete dynamical system (DDS) consists of an abstract
phase space (or state space) S, whose coordinates describe the
state at a set of times T , and a dynamical rule R for evolution
R : S × T → S that specifies the future of all state variables,
given only the present values of those same state variables. It
can be either deterministic, if there is a unique consequence
to every state, or stochastic or random, if there is a probability
distribution of possible consequences [13].

Cellular automata (CA) are dynamical systems with im-
proved capabilities in massive parallelism, performing com-
plex computations and modeling complicated systems with the
help of only local information. CA algorithms are basically
computer algorithms that are discrete in space and time and
operate on a lattice of sites (in image processing, pixels).
CA comprise an array of cells, where each cell can be in
one of a finite number of possible states, which is updated
synchronously in discrete time steps (clock cycles) according
to local transition rules (cell rules). A state of a cell at the
next time step is determined by its neighboring cells’ current
states.

Generally, a CA is characterized by the number of spatial
dimensions and a triple A=(S,N,F), where S is a nonempty
set called state set (usually binary), N ⊆ Z2 is the neighbor-
hood with a width w, where wj is the width of the j-th side
of the array with j=1, . . . , n, and F :SN → S is the local
transition function (rule), where the state of a cell at time
(t+ 1), is computed according to F , given the arguments of
F being the neighbor cells at a given time (t).

In this work, in order to enhance the disparity map with the
minimum loss of 3D information, an efficient CA process on
a 3D DSI was used, which produces dense disparity maps
with minimal false reconstructions. The main idea behind
the CA transition rules is that each rule is applied only to
specific places in the DSI, in order to find and normalize
the unexpected big differences between matching costs in
neighboring pixel values, assuming piecewise smooth surfaces
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Fig. 2: Block diagram of the proposed system.

and that the spatial smoothness constraint is broken at object
(depth) boundaries [1]. In [14] we have already presented a
different CA approach, where a semi-dense technique was
proposed, using CA in the post-processing stage for disparity
map refinement. Although the performance and effectiveness
of CA are quite satisfactory, it is inevitable that some wrong
replacements occur in the DSI during the iterative process,
which is typically applied no more than two or three times
in DSI. Thus after exhaustive experiments, the CA rules were
modified such that each rule operates as a complemented rule
for the previous one and each processing step to be fully
pipelined, in order to minimize the inserted errors and increase
system’s performance.

IV. DSI BASED 3D SCENE RECONSTRUCTION

In this section, an efficient DSI processing technique is
described, based on a efficient CA structure, in order to
calculate an optimized disparity map. An overview of the
proposed technique is presented in Fig. 2. After a pre-filtering
stage, the stereo correspondence matching cost is calculated
for a predefined window size, and the accumulated matching
costs are computed by a window-based correlation algorithm.
The resulting output comprises the initial DSI, which is
then refined by a 2D CA structure, in order to improve the
effectiveness of the similarity accumulator. Finally, a similarity
accumulator selects the best match for each pixel and assigns
to it the proper disparity value. All these stages are fully
implemented in hardware on a FPGA device (see Section V).

A. Pre-Filtering

Since in many practical cases the initial intensity values
of stereo input images are unreliable, a Laplacian prefilter is
applied first on the initial frames for intensity normalization.
Then, a weighted mean filter is used to reduce the wrong pixel
matches in the stereo correspondence stage. This filter can be
described by the following equation:

f ′(x, y) = 1/4(f(x−1, y) + f(x+1, y)) + 1/2f(x, y) (1)

where f is the original and f ′ the filtered image. Of course,
a two-dimensional filter produces better results, but also in-
creases the computational cost.

B. DSI Calculation and Processing

1) DSI Calculation: The most important and time consum-
ing task for stereo matching algorithms is the identification of
corresponding pixels. Although the stereo matching problem
is one of the most investigated topics in computer vision,
there are still several unpredictable factors that affect the final
results, such as noise from light variations, textureless image
regions, depth discontinuities at object boundaries and partially
occluded areas. These factors can cause lack of information
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in disparity calculation and make it impossible to synthesize
the correct view.

In order to solve the stereo correspondence problem and
compute the disparity map, we have to determine which pixels
on the left and right images map to the same point in space.
Taking into account speed issues and considering the hardware
complexity, the SAD window-based correlation algorithm was
used for the disparity map generation, although other metrics,
like NCC and adaptive support-weight, could perform better.
Assuming that the two input images are already rectified [1],
in order to find the corresponding points in the stereo image
pair, a block matching method, based on computing the sum
of absolute differences, was used:

SAD(i, j, d) =

w∑

µ=−w

w∑

v=−w
|Il(i+µ, j+v)−Ir(i+µ, j+v−d)|

(2)
where Il and Ir denote the left and right image pixel values,
d is the disparity range, w determines the window size and
i, j are the center pixel coordinates (rows, columns) of the
window for which the SAD is computed. In our case, w was
selected to be 2 for comparison reasons, although the proposed
technique can take this value as an input parameter.

The DSI is defined as a 3D space of (x, y, d), where the first
two coordinates represent the dimensions of the input images
(width and length), while the third one refers to the matching
cost for each disparity value that belongs to a predefined
disparity range dmax. Given two images, the value of the DSI
is given by:

DSI(x, y, d) = |PL(x, y)− PR(x+d, y)|
where 0 ≤ (x+d) ≤W and dmin ≤ d ≤ dmax (3)

]Each element of DSI is a confidence measure and rep-
resents the cost (likelihood) of the correspondence between
PL(x, y) and PR(x+d, y) of the same epipolar line, where
PL and PR are the summarized matching cost values of the
same epipolar line calculated by the SAD. Once the SAD is
computed for all pixels and for all disparity values and the
DSI has been formed, a similarity accumulator will indicate
the most likely disparity for each pixel.

2) DSI Processing: Although the SAD algorithm is quite
robust and simple, it does not exhibit high accuracy and in-
troduces several mismatches. Inherent ambiguities in occluded
areas, regions with periodical structure or unstructured regions,
produce random incorrect matching costs, which can be lo-
cated anywhere in the DSI. As a result, the effectiveness of the
similarity accumulator is reduced and many random incorrect
disparity values are introduced in the extracted disparity map.

Thus, a new CA approach is proposed, in order to refine the
DSI and improve the efficiency of the similarity accumulator.
Since there are numerous rules that can be applied to improve
the quality of the DSI, a considerable effort was devoted to
explore the effects of different rules and use only those that
have proven to be good in eliminating the wrong matching
costs in the DSI.

The cellular structure used in the proposed system con-
sists of k matching cost levels and is on the basis of CA
formation (I, V,N, f), where V=0, 1, . . . , k − 1 is a set of

cellular states and k the number of possible states. N rep-
resents the type of neighborhood for each transition rule,
I = (a, b)/1 ≤ a ≤W, 1 ≤ b ≤ L where W and L are the
dimensions of the disparity image, while the local transition
rule f is from Vn into V [15], where n is the total number
of neighbors for each CA rule. The value DSI(t)(i, j, d) of
a site (i, j, d), where d is the disparity value and DSI(t) the
matching cost value in disparity space image at time step t,
is a 3-dimensional cellular automata with a rule that depends
only on nearest neighbors and evolves according to equation:

DSI(t+1)(i, j, d) = f [ht(a)] (4)

where ht(a) = (DSI(t)(α+δ1), . . . , DSI
(t)(α+δn)) is the

neighborhood state function of cell α, for all α ∈W ×L× d
and δi=1,2,...,n ∈ N →W × L× d at time t.

Thus, based on the CA, the following transition rules were
considered for the DSI refinement stage:
i) For each disparity level and for each element of the same
disparity value, set as:

DSI(t+1)(i, j, d) =
1

9

1∑

m=−1

1∑

n=−1
DSI(t)(i+m, j+n, d)

where N is the Moore neighborhood of a 3× 3 pixel mask.
Since pixelwise cost calculations are generally ambiguous

and wrong matches can easily have a lower or higher cost
than the correct one, this rule eliminates the amount of cost
variations that are unrepresentative of their surroundings in
a small neighborhood of the same disparity plane. These
variations may be caused by different factors, such as the noise
in input stereo image pair.
ii) For each element of DSI with same (x, y) coordinates and
for different disparity levels,

if DSI(t)(i, j, d−1) > 1
2DSI

(t)(i, j, d) or
DSI(t)(i, j, d+1) > 1

2DSI
(t)(i, j, d) then

DSI(t+1)(i, j, d) = 0.8 ·DSI(t)(i, j, d)
else if DSI(t)(i, j, d−1) < 1

2DSI
(t)(i, j, d) or

DSI(t)(i, j, d+1) < 1
2DSI

(t)(i, j, d) then
DSI(t+1)(i, j, d) = 0.6 ·DSI(t)(i, j, d)

end if

where the neighborhood N consists of the following cells
N={DSI(t)(i, j, d−1), DSI(t)(i, j, d), DSI(t)(i, j, d+1)}.

This rule introduces a smoothness penalty for neighboring
disparity changes, based on the fact that the matching costs
between neighboring pixels that belong to the same surface
(object) should have small variations. In many cases, pixel-
wise calculated matching cost values from a local window-
based stereo correspondence algorithm yield non-unique or
wrong correspondences due to textureless areas and ambi-
guities, leading to wrongly selected disparity values by the
similarity accumulator. Assuming that the scene is formed
by piecewise-smooth and Lambertian surfaces, the intensity
differences |Il(i, j)− Ir(i, j)|, from which the matching costs
are computed, should be uniform in smooth areas, while the
disparity discontinuities that lie on object boundaries should
be aligned with equivalent intensity discontinuities (i.e. strong
matching cost variations). Using these empirically determined
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factors, it is possible to smooth the unwanted extreme varia-
tions in uniform areas but still keep them discretized in object
boundaries and in areas with local gradients.
iii) The next CA rule is applied to each element of the DSI
with the same disparity level.

1: k, p := 0;
2: for m,n := −2 to 2 do
3: if DSI(t)(i+m, j + n, d) ≤ 1

2DSI
(t)(i, j, d) then

4: k = k + 1;
5: else if DSI(t)(i+m, j + n, d) ≥ 1

2DSI
(t)(i, j, d)

then
6: p = p+ 1;
7: end if
8: end for
9: if k ≥ mod val then

10: DSI(t)(i, j, d)=0.4DSI(t)(i, j, d)
11: else if p ≥ mod val then
12: DSI(t)(i, j, d)=1.2DSI(t)(i, j, d)
13: end if

where mod val represents the number of times that the
mode value of a 5×5 Moores neighborhood appears on this
neighborhood. Furthermore, in the second and third CA rules,
the scale factors were estimated after extensive experiments,
based on observations about how the DSI modifications affect
the extracted disparity maps and what possible areas in 3D
space may cause false reconstructions. These rules target to
smoothen the matching costs in a local neighborhood, while it
should be also noted that the they were explicitly implemented
after extensive testing to produce the maximum possible
performance, according to the trade-off between accuracy and
speed of the proposed technique.

Once the processing of the DSI is completed, a similarity
accumulator indicates the most likely disparity value for each
pixel (x, y) in the plane. In order to compute the disparity
map, a search in the DSI for all disparity levels (dmin up to
dmax) is performed for every pixel. The disparity value where
D(x, y, d), with dmin≤d≤dmax, is the minimum for a pixel,
is given as the corresponding pixel value for disparity map:

D(i, j) = argminDSI(i, j, d)
d∈[dmin,dmax]

(5)

V. HARDWARE IMPLEMENTATION

The proposed system architecture follows an area-based
similarity technique to extract the final disparity maps, com-
bined with a CA DSI optimization operation. As in many
other related works [14], [4], we assume that the intensities of
corresponding points are the same and that the input images
are captured from calibrated stereo cameras.

A. System Overview

The computational complexity of stereoscopic algorithms
can easily be calculated. The main feature of stereo com-
putation methods is their repetitiveness and their time-
consumption, especially for software-based techniques on
conventional computers. These repetitive calculations cause

many memory references, making it difficult to meet real-time
stereo vision performance. Thus, in order to achieve real-time
performance while reducing the aforementioned computational
effort, a parallel-pipelined hardware-based stereo architecture
was designed, which was implemented on a single FPGA
device of the Stratix IV family of Altera Devices. The typical
operating clock frequency was found to be 168 MHz. It should
be noted here that the proposed hardware architecture is also
parametrizable in terms of the input image size, the correlation
window size of the window-based stereo matching technique,
and the levels of the disparity range of the final disparity map.
The hardware design architecture can be seen in Fig. 3.

The proposed architecture is divided into three major tasks,
pre-processing, stereo correspondence computation and DSI
processing, and consists of corresponding hardware units: the
Pre-Processing Unit (PPU), the DSI Creation Unit (DSI CU)
and the DSI Processing Unit (DSI PU). The system also
consists of a High-level Control Unit (HCU) that coordinates
the different operations performed in the architecture, opti-
mizes memory accesses through the Memory Logic module
according to the algorithm requirements, and synchronizes
data transfers between the PPU, the DSI CU and the DSI PU.
It is also used to manage the data flow of the overlapping
pixels between the internal memory and the different process
stages of the system, in order to reduce the clock cycles needed
to load image pixels into the processing units. Furthermore,
from this unit, the user can also select the configuration
parameters of the 3D reconstruction procedure, customizing
the architectures functionality.

The whole stereo system architecture is based on intensive
use of parallelism and pipelining design techniques, minimiz-
ing the area cost of the FPGA implementation and maximizing
the total throughput of the system. In most cases, these
techniques can be implemented without significant additional
FPGA resources, at the expense of some additional system
latency, due to the large amount of programmable registers
found in most modern FPGA architectures. In addition, in
order to achieve real-time throughput, many processing steps
of the algorithm have been mainly realized as simple highly
parallel dedicated processing elements, while in order to
reduce latency, the processing units of the system have been
designed with a throughput of one pixel per clock cycle.
Furthermore, the main units of the system are implemented as
combined entities, which enables data transitions between the
processing elements without requiring many bus accesses. For
data transitions between the different implemented hardware
components has been used also a multi-buffering process,
which allows the parallel and pipelined processing of data,
avoiding writing to memory elements while other components
still read from them. As a result, the final disparity output is
generated in real-time, after a small initial pipeline latency,
which is in the order of a few microseconds.

B. Pre-Processing Unit (PPU) Architecture

In order to reduce the effects of noise, a one-dimensional
weighted mean filter is first applied on the input images of the
stereo system. The simplicity of this linear filter is twofold: it
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meets the requirements for image pre-processing, as well as
the high speed imposed by the application. The architecture of
the PPU unit is shown in Fig. 4a. The two color input images
are initially stored in the internal memory of the system, in
order to eliminate the necessity for fetching data from any
external memory device. The color components of each image
(R, G and B) are separated through a bus splitter, in order to
be routed and processed in each one-dimensional weighted
mean filter in a parallel manner. Its circuitry can be seen in
Fig. 4b. Parallelizing this procedure (due to its low resource
utilization), the two images are processed simultaneously, so
six identical filters have been implemented. The main features
of this unit are its low area cost and its fully parallel-pipelined
architecture.

C. DSI Creation Unit (DSI CU) Architecture

In the DSI CU unit, the matching cost of the corresponding
pixels is calculated with the SAD window-based technique,
and the 3D space of DSI is created for the disparity optimiza-
tion procedure.

SAD can be directly implemented in hardware using only
addition and subtraction operations. Taking into account the
speed issues of real-time stereo applications, the proposed
hardware implementation of the DSI CU unit is presented in
Fig. 5. As it is shown, the DSI CU unit is divided into three
basic stages, the Color Component Analysis, the Absolute
Difference Calculation Module and the Sum of Absolute
Differences Module. The architecture in Fig. 5 also consists of
a Control Logic unit, which comprises a part of the HCU unit,
in order to read/write data from/to the different modules of
th‘e DSI CU and coordinate the accesses from/to the internal
memory. In the proposed architecture, there is also a Memory
Module with two banks of registers (window and scanline
registers) for temporarily storing the pixel values needed to
the SAD computation process, along with a collection of
intermediate pipeline registers/buffers, adders and subtractors
to calculate the SAD values.

After the pre-processing stage, the SAD for a 5×5 pixel
window is calculated and the DSI of the input stereo images
is formed. The input of DSI CU unit is the two 24-bit color
depth filtered images, where each color component has 8-bit
depth with a total of 255 different intensity values. The output
of this unit is the calculated 8-bit SAD value, for all possible
positions of the shifting window, and it is given in a single
clock cycle (after an initial latency in the pipelining stage).
To achieve this, a highly pipelined structure has been utilized,
using adder and subtractor modules in a binary tree structure.

The Control Logic of the DSI CU unit reads the pixel
data of the filtered images in a row-wise mode, until all
data needed to perform the SAD calculation along an entire
scanline are fed into the Memory Arrangement. To reduce
the computational cost and the hardware resources utilization
for the SAD calculations, each of the RGB color component
data was separately fed to the SAD Computation Unit through
a multiplexer arrangement. This architectural arrangement
improves the efficiency of the unit, minimizing the hardware
resource utilization and leading to significant reduction in
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power consumption, although a small decrease in system’s
output frame rate is unavoidable, due to an additional delay in
multiplexing stage. The DSI CU Memory Arrangement uses
three banks of 25+5 8-bit window registers for a working
window of 5×5 for the left image, for all three color com-
ponents and a bank of 3·(W+1)×L 8-bit scanline registers
for the right image inputs. Through the Control Logic of
the unit, an additional input signal is fed into the SAD
Computation Unit, in order to determine the disparity range
for the SAD calculation. In this way, the operating disparity
range is customized and the performance of the system may
be increased, when small disparity ranges are selected.

The pixel data needed for the SAD calculation, which have
been temporarily stored in Memory Arrangement, are initially
fed into the Absolute Differences Calculation module, in each
clock cycle. This stage consists of dmax subtractor modules,
which compute in a parallel-pipelined manner the absolute
differences between the fixed window of the left image and
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Fig. 5: DSI Creation Unit (DSI CU) architecture.

the shifting window of the right image. Each subtractor module
receives as input 2·W 2 8-bit data words, computes the absolute
difference of the pixel values and extracts an 8-bit vector,
which is next added bitwise using binary tree adders in the
Sum of Absolute Differences module.

On every clock cycle, the Control Logic unit shifts the
current correlation window to the right and feeds the SAD
Computation Unit with 3 ·W 8-bit new values from the bank
of scanline registers. The other pixel data from the window
and scanline registers remain the same as for the previous
operation, and the SAD calculation is performed again for the
new pixel data. After dmax right transitions, a new pixel value
is added to the bank of window registers and an old one is
shifted out in a FIFO (First-In-First-Out) pipeline architecture.

The SAD is computed for a given pixel, for all of the
disparity ranges according to Eq. (2), and the final value, which
is 13-bit long, is used to form the DSI. The created 3D space
of DSI will be optimized then in the DSI PU unit, through a
hardware-based parallel-pipelined 2D CA structure.

D. DSI Processing Unit (DSI PU) Architecture

1) CA 1 Processing Unit Architecture: The hardware imple-
mentation of the first CA structure is shown in Fig. 6. After
the matching cost computation from the DSI CU unit, the
first CA rule is applied to a 3×3 Moore neighborhood in the
first disparity image plane for DSI refinement. Since only 3
scanlines are needed to perform the operation described in Eq.
(5), an efficient memory architecture with 2 FIFO memories
which can store 2 ·(L−3) matching cost values and 9 registers
was used to increase processing speed, as shown in Fig. 7. As
the working window of the first CA rule moves over the image,
2·W overlapping pixels (where W is the width of the working
window) exist between adjacent windows. The implemented
memory architecture was used to temporarily store these pixels
to reduce the clock cycles needed to load the matching cost
values into the CA 1 PU. After an initial latency for filling
up this memory module with the first 2L+3 matching cost
values from DSI CU, in every pixel transition to the right
of the disparity image plane, only the bottom right pixel of
the working window is new and needs to be fed into the
memory module. Thus, the output of this memory architecture

is provided once per clock cycle, enabling a fast transition of
the required working window to the next adjacent pixel.

After an initial latency required for filling up the FIFO
memories and the 9 registers, the first 9 matching cost values
are stored in a parallel fashion in equivalent 13-bit registers
into the CA 1 PU, in order to be added in the PARAL ADDER
module according to Eq. (5). The addition process is fully
parallelized for faster computation, so at the input of this
module, the bitwise analyzers treat their input signals as a
vector of bits rather than a single value, helping to load
faster the input multi-line signals to the PARAL ADDER
module. As a result, 13 addition elements of 9-bit enter
to PARAL ADDER and the output value of this circuit is
given in every clock cycle. The resulting summation value is
divided in the Division module and the final output is inserted
into the DSI REP module, where the REPL Control Logic
synchronizes the replacement of the matching cost value of
the central pixel of Moore’s neighborhood with the refined
value extracted by CA 1 PU. The extracted values are fed into
the next processing stage for further refinement.

2) CA 2 Processing Unit Architecture: The second CA
structure performs the matching cost value processing along
the d axes for further DSI refinement. More specifically, three
directly adjacent neighboring pixels (d−1, d, d+1) are needed
for each comparison and a total of L×H×d iterations are
required for all DSI pixel processing. Fig. 8 shows the fully
parallel-pipelined architecture of CA 2 PU, which is divided
into four stages: DSI value fetching, matching cost analysis &
division, matching cost comparison and DSI replacement. In
addition, there are two Replacement Control Units (RCUs) for
each part of the second CA rule, replacing the corresponding
DSI values with the refined ones according to CA rule. The
main components of the proposed architecture is a Control &
Replacement Logic module, which is part of the HCU and co-
ordinates the operations performed in the CA architecture and
an on-chip memory block (bank of registers) for temporarily
storing the matching cost values of DSI.

For CA 2 PU, three adjacent disparity image planes should
be buffered, before the CA operation initiates. To achieve this,
a DSI Memory Block was used, consisting of two image
plane buffers along with four registers. Fig. 9 shows the
hardware architecture of the proposed DSI memory block.
After 2×H×L+2 clock cycles, the In Register and the two
image plane buffers of DSI memory block are fulfilled with
the first DSI values. Since CA 2 PU requires three input pixels
with the same coordinates in the x−y plane and different
disparities (i.e. pixels P (i, j, d), P (i, j, d−1) and P (i, j, d−2))
from neighboring disparity image planes, the values of the
three left top-most registers (two from the first two image
planes d−1 and d−2, and the In Register) of the DSI Memory
Block can be used to feed this unit.

The First and the Second RCU units implement the first and
the second part of second CA rule respectively, using each of
them two Binary Comparator modules for the comparison of
the middle with the other two 13-bit input signals, and one
logic OR module for the final replacement decision. Binary
comparison is one of the most computationally demanding
tasks in the proposed stereo system, so a hardware-efficient
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implementation was designed using 2 13-bit input signals.
Fig. 10 shows a simplified architecture of the proposed Binary
Comparator implementation, using a comparison example with
two 4-bit input signals, in order to demonstrate better the
functionality of the proposed architecture. It is also worth
noticing that the aforementioned circuit architecture is quite
straightforward, using only logic gates for its implementation,
and no complex calculations, like multiplications. This benefi-
cial architecture reduces the hardware complexity, simplifying
the implementation for larger scale comparators with more
inputs, and making the 3D stereo reconstruction very fast.
Moreover, the reduced size of this circuit allows for a parallel
implementation of more than one comparators, giving the
ability of comparing more than two pixel values at a time.

The output values of Analysis & Division stage are fed

Height

Width

d-2
d-1

d

Input 
DSI Values

Output

Scanline Buffer
(FIFO Memory) Image Plane

Buffer

In_Buffer

In_Register
P(i,j,d)

P(i,j,d-1) P(i,j+1,d-1)

P(i,j+1,d-2)P(i,j,d-2)
P(i,j+1,d)
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synchronously into the RCU units, they are compared in a
parallel mode and the extracted results are driven into the
DSI REP modules in order to be replaced by the proper value.

3) CA 3 Processing Unit Architecture: Following the pro-
cess described in the third CA rule, 25 pixel values of a
5×5 pixel Moore neighborhood in the same disparity image
plane are compared with the neighborhood’s central pixel,
and the extracted results are summed for further comparison
with the number of times (frequency) of the mode value
presented in the Moore’s neighborhood (mode frq). Fig. 11
shows the fully parallel-pipelined hardware architecture of the
CA 3 PU, which is divided into six stages: DSI value fetching,
matching cost Analysis & Division, mask matching cost value
comparison and counting, and DSI replacement. In addition,
according to the third CA rule, there are also two Replacement
Control Units (RCUs) and a Control & Replacement Logic
module, which is part of the HCU and coordinates the data
transfers and operations performed in the CA architecture. An
on-chip memory block (bank of registers) is also included for
temporarily storing the input matching cost values.

So, after an initial latency for filling up the memory module
with 4 FIFO memories and 25 registers (i.e. an extension of
architecture described in Fig. 7), an input register arrangement
was used to store the 25 image pixels of the 5×5 working
window. In Comp Mod of Sum Comp module the comparison
between the neighboring pixel values of the mask with the cen-
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tral pixel takes place (Comparator Blck) using the hardware
architecture presented in Fig. 10 with 25 13-bit input signals
and equivalent 2-bit outputs.

For mode frq calculation, the ModeFq Blck was imple-
mented, as shown in Fig. 12. Each Neighb Comp sub-block
is a comparator which compares one input pixel value with
the other 24 of the 5×5 neighborhood, and if it stands more
than 12 times then the output is assigned as the logic one.
The priority encoder generates an output based on the highest
Neighb Comp sub-block output that emits a logic one. The
priority encoder’s output is fed into the mux, selecting the
mode value of the neighborhood. After an initial latency of 4
clock cycles, the output of this sub-module appears once per
clock cycle, while the extracted mode value is compared with
the output of the counter in the next pipeline stage. The RCU,
which comprises the final stage of CA 3 PU, implements the
outer comparisons of the condition parts of third CA rule and
the resulting product is fed into the next processing stage.

When the DSI operation is finished, the Similarity Accu-
mulator Unit selects the proper disparity value for each pixel.

VI. EVALUATION AND EXPERIMENTAL RESULTS

The hardware architecture presented in this work has been
implemented on an FPGA device of the Altera Stratix IV
family, with Altera Quartus II schematic editor. Table I sum-
marizes the resource utilization report for the Altera FPGA.
The operating clock frequency was found to be 168 MHz
under the configuration presented in Table I, while in this
table it is also presented the overhead caused by each separate
processing unit of the device, keeping image size, window size
and disparity range (a mid-range of 70 disparity levels was
selected) constant. From Table I it is worth noticing the low
device resource utilization of the proposed architecture mainly
caused by the reduced design complexity (i.e. the majority of
circuitry consists of logic gates) and the multiplexing schema
of RGB color component in DSI computation unit.
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Fig. 12: Hardware architecture for the ModeFq Blck sub-
module.

Furthermore, the DSI calculation and refinement stages are
based on local (i.e. window-based) image processing, so the
size of the input stereo image pairs does not affect the device
utilization directly. However, the size of the input image
is directly related to the size of the on-board memory and
the total latency/delay caused by the data transfers between
the different units of the system. In addition, the operating
disparity range and the window size of SAD linearly affect the
consumed logic resources, while other resources are compar-
ingly less affected. In addition, from Table I it can be inferred
that the proposed hardware implementation leaves enough
resources in the targeted FPGA device, such as required for
the implementation of other additional processing stages that
may improve the system’s performance.

The evaluation results presented in this section are based
on the test procedure reported by Scharstein and Szeliski [1]
available at www.middlebury.edu/stereo. Many methods from
the Middlebury test procedure, although being state-of-the-art
in accuracy, have not been included in our comparison, since
this paper focuses on real-time or near real-time hardware-
based local methods, while these methods are far from such
requirements. The evaluation data that were used as bench-
marks are calibrated stereo image pairs from Middleburry’s
database, and consist of standard data sets, as well as some
new Middlebury stereo image pairs. Representative quantita-
tive and qualitative results for some image pairs from each
category are presented. In the current experiments, fixed-value
boundary conditions are applied, in which transition rules are
only applied to non-boundary cells.

The resulting disparity maps from the proposed system
are presented in Figs. 13 and 14. In Fig. 13 different stereo
image pairs of varying image sizes and different disparity
ranges are shown. As can be seen, the proposed system
provides adequate disparity accuracy, considering the real-time
performance. Fig. 14 provides a qualitative evaluation of our
extracted results against other related architectures. Although
many authors do not provided quantitative/qualitative results
for their disparity maps, Fig. 14 confirms the performance
of the proposed architecture. For example, the table and
the area around it in the Tsukuba disparity map are more
accurately reconstructed than with other approaches, as well as
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Figure 19. Resulted disparity maps of stereo image pairs Tsukuba, Sawtooth, Map, Cones 
and Teddy. (!) Input image, (") ground truth, (#) final disparity map. 

 

Fig. 13: Resulting disparity maps of stereo image pairs
Tsukuba, Sawtooth, Map, Cones and Teddy. (a) Input images,
(b) ground truth and (c) final disparity maps.

TABLE I: Resource utilization of target device.

Device
(Altera
Stratix

IV)

Total
Regis-

ters (%)
(424,960)

Logic
Utiliza-

tion (%)
(424,960)

Total
ALUTs

(%)
(424,960)

Total
LABs
(%)

(21,248)

Total
Pins
(%)

(1,112)

DSI CU 15,2 14,7 4,9 6,3 4,4
DSI PU 9,8 6,8 6,3 4,1 3,5

Total 25,6 23,2 12,6 11,4 8,5

the camera on the tripod. Of course, some errors still remain
in the final disparity maps, which are caused either by the
wrong replacements of CA rules, or by mismatches due to the
SAD algorithm. Quantitative results regarding accuracy under
various configurations are given in Table II. The evaluation
metric was the error rate ε, indicating the percentage of bad
pixels whose absolute disparity error is greater than 1. It was
calculated with respect to the ground truth maps from the
Middleburry evaluation database using the cost function:

ε =
1

N

∑

i,j

|dcomp(i, j)− dground(i, j)| > 1 (6)

The results in Table II demonstrate that as the disparity
range of the input images increases, the percentage of bad
pixels in the resulting disparity maps also increases. This
is caused mainly by the nature of the DSI calculation and
optimization procedures, which were focused on local pixel
processing. A global DSI refinement process, based also on
CA, could potentially perform better at the expense of in-

!
(a) Proposed Arch.

(Acc 90.9%)
(b) Arch. in [9]

(Acc N/A)
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Fig. 6. The simulation waveform using the Tsukuba images

Table 2. The performance of the SAD correlator v1.0 in various environments

Image size maximum disparity window size rate
(pixel) (∆) (ww×wh) (frame/sec)

640×480 64 16×16 31
640×480 64 32×32 30
320×240 64 16×16 122
320×240 64 32×32 115

process only uses a small part of each scan line at any time - specifically, ww from the
left image and ww+∆+1 from the right image. The remaining pixels are stored in shift
registers for use in subsequent cycles. Pixels in surrounding scan lines are only used
to support matching by reducing noise effects. Figure 7 shows samples of depth maps
of SAD correlator v1.2 for the same Tsukuba input images with various rectangular
windows. We can find that a ‘short and wide (wh < ww)’ window produces similar
matching quality to the square one. However, We can see that a considerable amount
of space can be saved in an FPGA by using rectangular (wh < ww) windows. Figure 8
shows a FPGA resource usage for various rectangular window sizes as well as square
ones. We can conclude that a rectangular window in SAD correlators is worth utilizing,
especially when ww is sufficiently large, since it saves lots of space (nearly 50% profit)
without sacrificing quality.

(a) 16×4 window (b) 16×8 window (c) 16×16 window

Fig. 7. Sample depth maps of the SAD correlator v1.2 with various window sizes (ww×wh)

(c) Arch. in [12]
(Acc N/A)
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TABLE II

Performance Summary of Reported Stereo Vision Systems

Implemented system Image size Matching method Disparity range Window size Rectification Frames per second
SAZAN
FPGA

320 × 240 SSAD 25 13 × 9 No 20

Kuhn et al.
256 × 192

SSD/
25

Census (3 × 3)
No 50ASIC Census Corr (10 × 3)

Darabiha et al.
256 × 360 Local weighted 20 N/A No 30FPGA

MSVM-III
640 × 480

SSAD/
64 N/A Hard-wired 30FPGA Trinocular

DeepSea
512 × 480 Census 52

Census (N/A)
Firmware 200ASIC Corr (N/A)

Software program
640 × 480 Census 64

Census (11 × 11)
Software 1.13.2 GHz, SSE2 Corr (15 × 15)

This paper
640 × 480 Census 64

Census (11 × 11)
Hard-wired 230FPGA Corr (15 × 15)

TABLE III

Evaluation Result of the Proposed System Using Middlebury Stereo-Pairs

Stereo-pair Ground truth Disparity Bad pixels (δd = 1.0, nonocc) Percent of
bad pixels

nonocc: 9.79
all : 11.56

disc : 2029

nonocc: 3.59
all : 5.27

disc : 36.82

nonocc: 12.50
all : 21.50

disc : 30.57

nonocc: 7.34
all : 17.58

disc : 21.01

Average percent of bad pixels: 17.24

whether the selected disparity is a unique minimum, double
minimum or non-unique minimum [22], [24].

If a disparity result passes the LR-check and uniqueness test,
sub-pixel estimation and spike removal are applied to increase
the reliability and accuracy. The sub-pixel estimation again
utilizes C(di), C(di − 1) and C(di + 1), which was tracked in

the uniqueness test module, with C(di−2) and C(di +2) giving
additional precision. By using the parabola fitting method
in (7), the sub-pixel estimation is performed with ease. To
decrease the complexity and latency of the operations, the
combination of shifting, addition, and subtraction is used for
each performance of multiplication and division, as shown in

(d) Archi. in [16]
(Acc 88.44%)

Table 1. Quantitative comparison of the proposed method with other approaches using the benchmark Middlebury stereo database.

Algo rithm
T sukub a S awto o th Venus Map

no no cc . untex. d isc . no no cc . untex. d isc . no no cc . untex. d isc . no no cc . d isc .

SSD+M F [1 ] 5.23 3.80 24.66 2.21 0.72 13.97 3.74 6.82 12.94 0.66 9.35

Our Algori thm 7.60 12.76 14.82 2.41 2.19 8.23 9.27 20.15 9.94 0.67 8.22

M ax Flow 2.98 2.00 15.10 3.47 3.00 14.19 2.16 2.24 21.73 3.13 15.98

Scanline  Opt. [1 ] 5.08 6.78 11.94 4.06 2.64 11.90 9.44 14.59 18.20 1.84 10.22

Dynamic  P rog. [1 ] 4.12 4.63 12.34 4.84 3.71 13.26 10.10 15.01 17.12 3.33 14.04

Gradient-guided [5 ] 4.91 5.86 12.60 2.38 2.82 7.92 9.43 19.39 20.71 1.24 9.96

M IP  [3 ] 7.07 10.4 13.3 2.33

AW 4 [3 ] 9.68 5.79 15.7 0.91

(a)

(c)

(b)

(d)

Fig. 4. Our estimated disparity maps for Middlebury test data set.

has a good performance near depth discontinuities (see Fig. 4), be-
cause of our adaptive selection of four truncated SA-LAP kernels.

To test the execution speed on the GPU, we follow the same ap-
proach [3] by varying the stereo images’ size and the disparity search
range. Our optimized implementation runs on an Nvidia GeForce
7900 graphics card with 512 MB video memory, housed in a 3.2 GHz
PC with 1 GB RAM. The results in Table 2 show that our method can
reach 668 Mde/s including the overhead to download images (up to
17%) and read-back the disparity map (up to 10%), which is several
times faster than today available stereo methods on GPUs.

We have also evaluated the benefits of two important GPU opti-
mization schemes, i.e., Texture coordinate interpolation and Z-test.
As depicted in Fig. 5, they reduce the algorithm time on our GPU
by a ratio of 22% (or 11%), and 19% (or 32%), respectively. They
jointly reduce the algorithm time by a ratio of about 34% (or 46%).

5. CONCLUSION AND FUTURE WORK

We propose a novel high-speed stereo algorithm based on a trun-
cated separable approximation to the isotropic Laplacian kernel. Our
method achieves quality results for both homogeneous regions and
depth discontinuities, while its optimized implementation on the GPU
is significantly faster than the existing GPU-based approaches.

Future work will focus on further improving the quality and the
speed trade-off of our method on programmable graphics hardware.
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stereo data sets and quality metrics compiled and used, re-
spectively, by Scharstein et al. [4].

5.1. Accuracy

Disparity results have been evaluated based on visual inspec-
tion, root mean squared and bad matching pixel metrics. It is
noted that results are comparable to those of the Cox DPML
algorithm and far superior to Sum of Squared Difference (SSD)
and Correlation approaches. Figure 6 presents a visual com-
parison of disparity results with respect to the aforementioned
algorithms. Further details regarding these results may be
found in [6] and [2].

(a) Ground Truth (b) SSD (c) Correlation

(d) DPML (e) Hardware

Fig. 6. Stereo correspondence results for the Tsukuba im-
age sequences. (a) Ground Truth; (b) Sum of Squared Dif-
ferences (SSD), 9x9 window, (c) Correlation, 9x9 window,
(d) Dynamic Programming-Maximum Likelihood (DPML),
(e) Hardware DPML

5.2. Timing Analysis

A summary of runtime performance is shown in Table 1 for
maximum disparities: D = 16 and D = 128. At a frame
rate of 63.54 fps and an image resolution of 640 × 480 pix-
els (M = 640, N = 480) over a 128 pixel disparity range,
the FPGA implementation discussed in this paper vastly out-
performs existing correspondence algorithms. At slightly lower
input image resolutions a significantly higher frame rate of
225.03 fps is achieved, a speedup factor of over 200 when
compared to the Cox software implementation. Note that tim-
ing results from four different implementations are shown:
FPGA (pipe) refers to the fully pipelined implementation dis-
cussed in this paper; FPGA (ppipe) refers to an implemen-
tation without the PBUF pipelining register; FPGA (npipe)
refers to a purely serial implementation [6]; SW (cox) refers
to the original algorithm developed by Cox et al.; and FPGA
(pipe*) refers to a presently theoretical implementation that
optimizes circuit routing delays to achieve a higher clock speed.

Equation 3 is the result of a worst case timing analysis of
the pipelined hardware implementation presented in this pa-

Algorithm D Fclk Resolution FPS

FPGA (pipe*) 128 125 Mhz 640 × 480 99.28
FPGA (pipe) 16 100 Mhz 640 × 480 81.16
FPGA (pipe) 128 80 Mhz 640 × 480 63.54
FPGA (pipe) 16 100 Mhz 384 × 288 225.03
FPGA (ppipe) 128 67 Mhz 640 × 480 53.22
FPGA (ppipe) 16 67 Mhz 384 × 288 166.29
FPGA (npipe) 16 47 Mhz 384 × 288 20.24
SW (cox) 16 2.6 Ghz 384 × 288 1.07

Table 1. A timing comparison of various implementations of the
DPML algorithm. Results show that a fully pipelined architecture
has the highest frame rate (FPS). Note that these are worst case
frame rates obtained from a maximum operating clock frequency,
Fclk. Depending on the incoming image data, performance may be
better than this worst case.

per. It should be noted that timing performance can be im-
proved by duplicating existing hardware to process two or
more scanlines simultaneously at the expense of additional
FPGA resources. N and M indicates the width and height of
the input image. D indicates the maximum disparity and Fclk

the maximum allowable clock frequency of the circuit.

FPS(N, M, D, Fclk) =

[(
4N +

D

2
− 1

)
M

Fclk

]−1

(3)

An important point to note is that while the circuit pipeline
at PBUF reduces the longest combinational path and hence
improves performance between the FPGA(ppipe) and FPGA
(pipe) implementations it does not take routing delays into
account. As parallelization increases this routing delay in-
creases resulting in lower maximum clock frequency, Fclk.
Furthermore large fanouts from a few signals feeding several
parallel components necessitates the use of signal boosting
buffers. These buffers increase routing times between com-
ponents along the PBUF, PMIN, CMUX and CBUF pipeline.
In practise these routing delays amount to 5.739 ns. It is be-
lieved that these delays can be optimized further, especially
in ASIC designs, to achieve clock frequencies of over 125
Mhz (a 1.274 ns routing delay). The performance resulting
from this improvement is shown in Table 1 in the row la-
beled FPGA(pipe*). Typical ASIC designs can improve per-
formance significantly more, in terms of routing and logic de-
lays, at the cost of development and prototyping time. Fur-
thermore architectural retiming [7] can be used to insert addi-
tional pipelining registers within the PMIN block thus allow-
ing a greater speed up. This retiming firstly reduces combi-
national delay even further and secondly reduces the require-
ment for signal boosting buffers. However, to do this, cost
values from the previous cycle must be predicted so that the

001465

(f) Archi. in [18]
(Acc N/A)

!
(g) Proposed Arch.

(Acc 74.6%)
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Fig. 6.10 Disparity maps generated from the Middlebury dataset’s teddy images using different
block sizes. Top left: 3×3. Top right: 5×5. Middle left: 7×7. Middle right: 9×9. Bottom: 11×11.

software-based SAD implementations very well, being less suitable for FPGA im-
plementations due to the integral images’ high memory consumption. The test plat-
form was an Intel Pentium 4 with 3 GHz clock frequency and 1 GB memory. The
processing time for one image pair was 673 ms resulting in a frame rate of 1.48 fps.
This is about 400 times slower than our hardware implementation and it seems obvi-
ous that even with the algorithmic and software optimizations, the processor-based
system cannot outperform the FPGA-based solution.

(h) Archi. in [8]
(Acc N/A, 5x5

mask)
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TABLE II

Performance Summary of Reported Stereo Vision Systems

Implemented system Image size Matching method Disparity range Window size Rectification Frames per second
SAZAN
FPGA

320 × 240 SSAD 25 13 × 9 No 20

Kuhn et al.
256 × 192

SSD/
25

Census (3 × 3)
No 50ASIC Census Corr (10 × 3)

Darabiha et al.
256 × 360 Local weighted 20 N/A No 30FPGA

MSVM-III
640 × 480

SSAD/
64 N/A Hard-wired 30FPGA Trinocular

DeepSea
512 × 480 Census 52

Census (N/A)
Firmware 200ASIC Corr (N/A)

Software program
640 × 480 Census 64

Census (11 × 11)
Software 1.13.2 GHz, SSE2 Corr (15 × 15)

This paper
640 × 480 Census 64

Census (11 × 11)
Hard-wired 230FPGA Corr (15 × 15)

TABLE III

Evaluation Result of the Proposed System Using Middlebury Stereo-Pairs

Stereo-pair Ground truth Disparity Bad pixels (δd = 1.0, nonocc) Percent of
bad pixels

nonocc: 9.79
all : 11.56

disc : 2029

nonocc: 3.59
all : 5.27

disc : 36.82

nonocc: 12.50
all : 21.50

disc : 30.57

nonocc: 7.34
all : 17.58

disc : 21.01

Average percent of bad pixels: 17.24

whether the selected disparity is a unique minimum, double
minimum or non-unique minimum [22], [24].

If a disparity result passes the LR-check and uniqueness test,
sub-pixel estimation and spike removal are applied to increase
the reliability and accuracy. The sub-pixel estimation again
utilizes C(di), C(di − 1) and C(di + 1), which was tracked in

the uniqueness test module, with C(di−2) and C(di +2) giving
additional precision. By using the parabola fitting method
in (7), the sub-pixel estimation is performed with ease. To
decrease the complexity and latency of the operations, the
combination of shifting, addition, and subtraction is used for
each performance of multiplication and division, as shown in

(i) Archi. in [16]
(Acc 78.50%)

Fig. 14: Qualitative evaluation for Tsukuba and Teddy stereo
image pairs for different approaches.

TABLE II: Quantitative results of the proposed system, re-
garding accuracy under various configurations.

Disparity range Error ε (%)
Tsukuba (384×288 pxl) 16 9.1
Sawtooth (434×380 pxl) 20 10.7

Map (284×216 pxl) 30 17.3
Cones (450×375 pxl) 65 24.7
Teddy (450×375 pxl) 65 26.4

creased computational complexity. More specifically, changing
the features, and particularly, the size of the cell neighborhood
(in order to have a global behavior), the size of the CA
rule will change according to equation Rulesize=22

n

. This
means that the rule space will increase exponentially as the
cell neighborhood size increases, leading to similar increase
in computing complexity of the hardware design.

Tables III and IV list the performance evaluation results
of the proposed system compared to other stereo vision
systems with similar window matching techniques or with
other disparity computation methods, respectively. Configu-
ration parameters such as image size and disparity range are
also provided, while a normalized performance index (NPI)
in terms of image size×disparity range×fps/frequency
is calculated for evaluation purposes. As demonstrated, the
proposed hardware implementation shows improvements over
the majority of previous systems in terms of performance and
processing rates, including those that produce real- or near
real-time results with high disparity levels. Although there
are other systems that achieve better performance indices,
e.g. [11], [17] and [21], other factors, such as the different
configuration parameters, the total amount of calculations per
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TABLE III: Performance evaluation results of the proposed system compared to other related hardware-based stereo vision
systems with similar window matching techniques.

Implemented
Device

Matching
Method Image Size Disparity

Range Window Size Frequency
(MHz)

Frames per
Second (fps)

Normalized
Performance

Index
Hile [8] N/A SAD 521×480 32 N/A N/A 30 N/A

Miyajima [9] FPGA (Xilinx) SAD 640×480 80 5×5 40 26 15.97
Arias-

Estrada [19] FPGA (Xilinx) SAD 320×240 16 7×7 66 71 1.32

Lee [11] FPGA (Xilinx) SAD 640×480 64 32×32 10 30 58.98
Hariyama [12] FPGA (Altera) SAD 64×64 64 8×8 86 5063 15.43

Kuhn et al. [20] ASIC SSD/Census 256×192 25 Census & Corr. 75 50 0.81
Ambrosch [21] FPGA (Altera) SAD 450×375 100 9×9 110 600 92.04

DeepSea [7] ASIC Census 512×480 52 N/A 60 200 42.59
Jia et al. [10] FPGA (Xilinx) SSAD 640×480 64 N/A N/A 30 N/A

Gudis et al. [22] FPGA (Altera) Pyramid
decomposition 2k×2k N/A N/A 200 N/A N/A

Proposed Arch. FPGA (Altera) SAD 640×480 70 5×5 168 114 14.59

TABLE IV: Performance evaluation results of the proposed system compared to other hardware-based stereo vision systems.

Archit.
in [23]

Archit.
in [24]

Archit.
in [16]

Archit.
in [17]

Archit.
in [18]

Archit.
in [25]

Archit.
in [26]

Archit.
in [27]

Proposed
Archit.

Device
FPGA
(Altera

Stratix S80)

FPGA
(Xilinx

Virtex II)

GPU
(Nvidia
GeForce

7900)

FPGA
(Xilinx

Virtex II
Pro)

FPGA
(Xilinx

Virtex V)

FPGA
(Xilinx

Virtex II
Pro)

FPGA
(Xilinx

Virtex V)

FPGA
(Xilinx

Virtex IV)

FPGA
(Altera

Stratix IV)

Image Size 640×480 1280×690 512×512 640×480 640×480 640×480 1280×720 640×480 640×480

Disp. Range 128 9, 15, 29 64 128 128 25 96 64 128
Frames/sec 30 52 38 63.54 30 8.9 2.5 230 47

Norm. Perform. Index N/A 14.95 N/A 30.96 8.86 0.68 1.1 18.41 11.27

second (i.e. processing rate) or the complexity-accuracy and
quality-performance trade-offs should also be taken into ac-
count. For example, from Table III, our architecture produces
640×480 disparity maps with 70 disparity levels and 114 fps,
which makes a total amount of about 2.45 billion disparity
calculations per second, while from Table IV arises that it
makes around 1.85 billion calculations per second. Other
architectures that their performance (i.e. NPI) outperforms
the proposed one several times, such as the system in [11]
(almost 4 times) and the system in [17] (almost 3 times)
have a total amount of almost 590 million and 2.5 billion
calculations per second, respectively, which shows that our
system can process almost 4 times more data than the system
in [11] and only about 25% less than the system in [17]. In
addition, with respect to other approaches, the proposed one
maximizes the trade-off between accuracy and performance,
producing more accurate disparity maps than almost all other
techniques with higher NPI or processing rates. For example,
although the system in [21] outperforms the proposed one
several times, the error rate of its extracted disparity maps for
Teddy image pair is almost 44% (against 25% of the proposed
one). Furthermore, comparing the Tsukuba image pair results
with the results extracted by systems in [11] and [17], it is
obvious that they are more cluttered and the object boundaries
are more distorted than the proposed one, since they suffer
from inter-scanline inconsistencies. The proposed technique
can eliminate these errors using an efficient CA architecture,
proving that it exhibits high potentials for real-time applica-

tions with tight time constraints and increased processing and
accuracy demands.

Our observations show, that the frequency decreases as the
disparity range increases, suggesting that if we want to allow
more than 40 disparity levels, we need to introduce more
pipeline stages at the expense of increasing the resource usage.

In Table V, the impact of the input image size on the
performance of the proposed system is presented, keeping
the disparity range and window size constant. Bandwidth
limitations affect also significantly real-time systems, so the
performance of the system’s processing units is also evaluated
when the bandwidth is 32-bits/cycle. It can be observed that
the performance (i.e. output frame rate) of the system is
almost inversely proportional to the input image size, while
it exhibits real-time response even for large size input stereo
images. However, increasing the disparity range will lead to
a decrease in the system’s frequency, indicating that more
hardware resources and more pipeline stages are necessary for
using more disparity levels. More specifically, Table VI shows
the DSI CU’s and DSI PU’s resource and performance results
for different disparity level configurations up to 128. As it is
shown, there is an almost linear increase in the utilization
of the FPGA resources, which is caused mainly from the
additional elements used for calculating the SAD values,
which are increasing when disparity range becomes larger,
and the additional parallel components (e.g. comparators,
slice registers, buffers, etc.) used for the different pipelining
stages and the CA operations. The operating frequency is also
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TABLE V: Frame rate output (fps) of the proposed architec-
ture.

System’s unit performance
Image Size

(pixels) DSI CU DSI PU Overall FPGA
System

320×240 1467 461 455
640×480 398 120 114
800×600 259 79 73
1024×768 163 50 45
1280×1024 98 32 27

TABLE VI: Resource utilization for different disparity level
configurations.
(Image size = 1024×768, window size = 7×7)

Disparity range 20 40 70 128
Total

registers(%) 22,7 23,4 24,1 25,2

Logic
Utilization(%) 18,6 19,4 20,5 22,3

Frequency
(MHz) 177,2 174,3 168,1 156,4

TABLE VII: Resource utilization for different window size
configurations.
(Image size = 1024×768, disparity range = 70)

Window size 3×3 5×5 7×7 9×9

Total
registers(%) 22,8 23,5 24,1 24,8

Logic
Utilization(%) 19,5 19,9 20,5 21,4

Frequency
(MHz) 186,1 178,7 168,1 154,7

TABLE VIII: Resource utilization for different image size
configurations.
(window size = 7×7, disparity range = 70)

Image size 320×240 640×480 800×600 1024×768 1280×1024

Total
registers(%) 21,2 22,3 23,2 24,1 25,4

Logic
Utilization(%) 17,6 18,5 19,2 20,5 22,7

Frequency
(MHz) 172,1 171,4 170,1 168,1 165,7

provided, indicating that when the disparity range increases,
the frequency decreases, meaning that the hardware overhead
becomes higher at high disparity ranges.

It is also worth noticing that keeping the disparity range and
image size constant while increasing the window size, there
is also an increase in the utilization of the FPGA, since more
image lines are needed in every processing stage to be fed to
the bank of scanline registers and to the memory arrangements,
in order to compute the SAD values and the results from
each CA PU. Table VII illustrates the systems resource and
performance results for different window size configurations
while image size and disparity levels remain the same.

As it is indicated, an increase in the resource utilization
components is caused mainly by the increase of the window
size of the correlation mask, and more scanline register, buffers

and other hardware components (i.e. adders, subtractors, etc.)
for the intermediate pipeline stages are needed. The operating
frequency also decreases as the correlation window size in-
creases. In addition, Table VIII shows the systems resource and
performance results for different image size configurations,
keeping window size and disparity range constant. In this
case, we notice also an increase to the resources of the system
as the image size increases, since image size affects strongly
the amount of hardware components used in the system. The
system clock frequency is also slightly affected, having a small
decrease as the size of input images increases.

With respect to I/O bandwidth, it affects the performance of
the proposed system mainly when an external data resource
(e.g. memory) is used, where the delay to fill the scanline
buffers with the temporarily stored pixels needed for the
window correlation is almost proportionally connected to the
bandwidth of the system. In addition, the performance of the
system is also decreased as the I/O bandwidth decreases, since
the data flowing into the system limits its throughput.

VII. CONCLUSIONS

In this work, a new hardware based architecture for real-
time disparity map computation was developed, targeting real-
time 3D reconstruction applications. A fast stereo matching
algorithm was used for DSI formation and an efficient DSI op-
timization technique, based on a highly effective CA structure,
was implemented on a single FPGA device. Despite the simple
construction of CA, it has been shown that they are capable
of highly complex behavior, due to their inherent parallelism
and local interconnection.

Timing and processing constraints for real-time applications
were met using a fully parallel-pipelined architecture, adding
only to output latency of the system and ensuring increased
output frame rates with accurate disparity maps. Both qualita-
tive and quantitative experimental results verify the efficiency
of the proposed stereo vision system under a variety of
configurations concerning the quality of the produced disparity
maps and the frame rate output.
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