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Abstract

We present a method to automatically segment indoor scenes by detecting repeated objects. Our algorithm scales
to datasets with 198 million points and does not require any training data. We propose a trivially parallelizable
preprocessing step, which compresses a point cloud into a collection of nearly-planar patches related by geometric
transformations. This representation enables us to robustly filter out noise and greatly reduces the computational
cost and memory requirements of our method, enabling execution at interactive rates. We propose a patch similarity
measure based on shape descriptors and spatial configurations of neighboring patches. The patches are clustered
in a Euclidean embedding space based on the similarity matrix to yield the segmentation of the input point cloud.
The generated segmentation can be used to compress the raw point cloud, create an object database, and increase
the clarity of the point cloud visualization.

1 Introduction

Indoor reconstruction is an active research topic that has just
recently gained a lot of attention in the computer graphics
community [KMYG12, NXS12, SXZ∗12]. Recent improve-
ments in portable 3D scanners enable the acquisition of 3D
point clouds of entire floors in a matter of hours: for example,
the dataset in Fig. 1 consists of 18 rooms and 198 million
points; it was acquired in 10 hours.

Despite the advances in acquisition technology, effective
processing techniques are still needed to transform these
datasets into a high-level representation that can be used in
practical applications, such as automatic floor plan generation,
interior design or creation of virtual environments. Even plain
navigation and visualization of these datasets is challenging.
At a first look, it is not obvious what the raw point cloud
rendered in the top of Fig. 1 depicts. The major challenge
in indoor room scans is the presence of noise and heavy
occlusions, even when multiple scanpoints are used (Fig. 2).
In addition, the acquired raw data of a typical indoor scan is
vast in size (e.g., an entire floor containing tens of rooms),
requiring out-of-core processing even for tasks as simple as
interactive exploration.

Interestingly, in typical working environments inside office
buildings, one can commonly find sets of repeated objects of
a limited number of types. Lamps, chairs, desks, cupboards,
trash bins, windows, doors, etc., are often identical across

Figure 1: Our object segmentation approach (bottom) im-
proves the visual clarity and enables fast object classification
when interacting with complex indoor 3D point clouds (top).
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Figure 2: Indoor scans look free of noise and occlusions
when seen from a viewpoint that is close to a scan position
(left), but exhibit heavy occlusions and cluttering (middle,
right) when the camera is moved away from such locations.

different rooms or can be grouped into a small number of cat-
egories. Recent works [KMYG12, NXS12, SXZ∗12] exploit
these object repetitions to infer a segmentation of the scene
and improve the reconstruction: a high-quality, detailed scan
of a single object in a class can be used to learn its geome-
try, and then identify and replace multiple instances of this
object in the scene using for instance partial matching. The
limitation of this approach is the need to carefully acquire
and learn the 3D geometry of each type of object one wishes
to detect, which prolongs the scanning time. Also note that
such an acquisition process might not always be a feasible
option (e.g., if only a raw point cloud is provided, without
access to the original scanning site). Our goal is to avoid the
need for acquiring and using special training data altogether,
inferring the segmentation directly from the raw point clouds
of the scanned environment.

We propose an algorithm that exploits the similarities
within a scene to segment point clouds of building interi-
ors into clusters of similar objects, and segment individual
objects within each cluster. Our segmentation provides a high-
quality and compact geometric representation that is suitable
for interactive exploration and experimentation with alterna-
tive furniture styles. Due to occlusions in the original scans,
most copies of a single object have incomplete geometry as
shown in Fig. 3. By recognizing the objects that belong to the
same class one can “fill the holes”, for example by replacing
each instance of an object with a model that has the least
occlusions. This does not only improve the quality of the
generated reconstruction, but also significantly reduces the
size of the dataset representation, simplifying all subsequent
processing steps. As a positive side effect of our reconstruc-

Figure 3: Multiple instances of the same chair model in an
office scan (extracted with our method). Each instance suffers
from undersampling and occlusion artifacts.

tion, we also generate a database of all clustered objects, as
demonstrated in Section 4.

We define a similarity metric between patches that does not
only consider the shape of the patches, but also the geometric
relationship between them. We then use spectral clustering to
identify and extract object classes. Our algorithm allows the
user to interactively adjust the clustering parameters, while
robustly filtering noise and large occlusions that are often
present in indoor datasets.

We apply our algorithm to three large datasets
containing tens of rooms. To foster future research
activities in this field, these datasets will be pub-
licly available at http://www.ifi.uzh.ch/vmml/
publications/ObjDetandClas.html.

2 Related work

There is an extensive amount of literature on segmentation of
3D points clouds and range images. Here we review some of
the works that can be applied to indoor segmentation and we
focus in particular on reconstruction and analysis of buildings
and indoor scenes.

Object recognition using learning algorithms has been
applied to exterior [GF09, GKF09] and indoor environ-
ments [BN10, HHF10, TDS10, KAJS11, SF11, KMYG12,
LBRF12, NXS12, SXZ∗12]. While most of these methods
have been tested on small datasets, they can potentially be
applied to large point clouds [GKF09, KM11]. These meth-
ods exhibit high accuracy even in the presence of clutter
and noise, but require a training phase that is different for
each building, since they need to learn the shape of all the
contained objects that are to be segmented. This leads to an
elaborate acquisition and analysis process for the training set.

Unsupervised learning methods rely on the presence of
repetitions and symmetry to automatically detect similar ob-
jects [SvKK∗11, KLM∗13]. In scenes where symmetries or
structure repetitions are dominant, such methods can com-
press and complete scans [PMW∗08], which is especially ef-
fective for facades [CML∗12]. However, such regular patterns
are less common in indoor scenes, where the arrangements
of tables and chairs are usually not sufficiently regular. A
method for detecting good object candidates in indoor scenes,
based on a set of indicators like repetition, has been proposed
recently by Karpathy et al. [KMFF13]. This method first seg-
ments the input scene using standard geometric properties,
and then applies object detection on the found segments. In
our algorithm, object segmentation and classification are per-
formed simultaneously, since semantic information is needed
for both tasks.

Geometric descriptors can directly be used on the point
cloud [BBW∗09, TSS10, STS10], followed by a clustering
stage in the extracted feature space, and they can be extended
to large datasets [KBWS13]. We instead apply geometric
descriptors to a patch-based representation of the scene, capi-
talizing on the high-level information provided by the patches
and resulting in a highly scalable method. Another reason for
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our particular choice of patch-based scene discretization and
descriptors is that traditional approaches like curvature-based
descriptors [MGP06], which we tried as a first approach, are
not working well in the challenging indoor setting.

For indoor or outdoor reconstruction, it is common to
represent objects as collections of planar patches. This is
done by Arikan et al. for building exteriors [ASF∗12], where
RANSAC is used to fit planes to the input data. Planes have
also been used to help the reconstruction of arbitrary objects
that contain both planar and non-planar regions [LA13]. A
wider range of primitives is used by Li et al. [LWC∗11] to
detect global relations in order to increase the quality of
the reconstructed mesh. In our method, we also use planar
patches as a compressed representation of the point cloud,
which enables us to efficiently find repetitions even in datasets
with many millions of points (Section 3.1).

High-quality indoor 3D data is challenging to extract, both
due to the expensive equipment required and because the
building must be empty during the acquisition, which might
last tens of hours. A few public datasets are available for
RGBD images [JKJ∗11, LBRF11, SHKF12], but to the best
of our knowledge, our paper is the first to segment large scale
indoor scenes that consist of tens of rooms.

3 Method

Our algorithm takes as input a set of raw point clouds (with-
out normals), each representing a room and generated from
panoramic range-maps (we used at least 2 per room in our
experiments). The normal of each point is estimated using
PCA on a set of 200 nearest neighboring points. We produce
as output a set of object clusters, where each object is a col-
lection of patches and each patch has an associated subset
of the input point cloud. Since some patches are discarded
during processing, the segmentation we generate does not
cover the entire input point cloud.

Our algorithm is divided into three steps (see also Fig. 4):

1. Preprocessing. The point cloud is converted into a collec-
tion of nearly-planar patches. This greatly reduces the size
of the data, enabling our algorithm to process very large
point clouds.

2. Patch embedding. Patches are embedded in a high-
dimensional Euclidean space where similar patches are
close to each other with respect to the Euclidean metric.
Two patches are similar if they have similar geometric
properties, or if they are in a consistent geometric config-
uration with respect to other similar patches.

3. Clustering. Close patches are clustered together, defining
a segmentation over the set of patches, and consequently
over the original point cloud.

Steps 2 and 3 only use the patch representation and can be
executed at interactive rates. In the following, we describe
each step in detail.

Figure 4: The 3 steps of our method: A point cloud (top,
left) is converted into a collection of fitting rectangles (top,
right). Each rectangle is embedded in feature space, where
the distances between points measure the dissimilarity be-
tween patches (bottom, left). Finally, we partition the patches
into clusters representing similar objects (bottom, right).

3.1 Preprocessing

As a preprocessing step, we convert the point cloud into a
collection of near-planar patches. Each patch is associated
with a set of points from the original data and an oriented
fitting rectangle. The problem of robust planar region extrac-
tion has been extensively studied [ASF∗12], but in our case
a simple and efficient greedy patch growing strategy is suffi-
cient, since the patch representation is only needed to reduce
the complexity of the data, rather than to faithfully represent
planar regions. Our only requirement is that similar objects
are subdivided into patches in a similar way.

Patch growing. We sort the points by ascending measure
of curvature. Specifically, we use λ1/(λ1 +λ2 +λ3), where
λ1,λ2,λ3 are the three eigenvalues obtained from the normal
PCA. We grow a patch starting from a seed point s that has
the lowest curvature measure and has not been assigned to a
patch yet. Given a new point p in the t2-nearest neighborhood
of a point already in the patch, we add p to the patch if the
following conditions are satisfied:

np ·ns > t0 (1)
(p− s) ·ns < t1 (2)

where np is the normal of p and ns is the normal of the
seed point s. The first condition accepts only points p with
a similar normal, and the second measures the distance of p
from the plane through s. We found that fine-tuning t0 – t2
is not required, since it does not significantly affect the final
results (see also Sec. 3.4).

PCA Ours

Patch descriptors. For
each patch, we compute a
feature descriptor based on
the geometric properties
of its points. Note that the
correct alignment of the
fitting rectangle is crucial for
the generation of meaningful
descriptors. The inset figure
shows that simple methods
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Figure 5: Unlike vertical surfaces, horizontal surfaces are
prone to undersampling when the elevation of the patch is
similar to the height of the scanning device (top row), leading
to large variations in scan quality (bottom row).

like PCA cannot directly be used, since they are sensitive
to missing data. We exploit the characteristics of indoor
scenes to robustly orient the fitting rectangle, even in the
presence of noise or large occlusions, as discussed below.
The features used are described in Tab. 1; they are derived
from an oriented fitting rectangle of the patch. Additionally,
we add F6 as a measure of non-planarity of a patch, which
is not captured by the fitting rectangle representation (e.g.,
consider the curved patches of a trash bin).

Computing the fitting rectangle. The fitting rectangle of
a patch is obtained by taking an oriented bounding box of the
patch and projecting it onto the plane spanned by its first two
dominant axes. Our key observation is that the orientation
of the bounding box is easy to define for planar patches that
are vertical. This is due to two factors: first, vertical patches
are less likely to be severely occluded, and secondly, they are
sampled more uniformly by the laser scanner, leading to a
more stable computation of the orientation. On the other hand,
due to the nature of the scanning process, horizontal patches
can suffer heavily from undersampling. The laser rays emitted
by the scanner have constant angular spacing; horizontal
patches are therefore hit by only a few rays, especially when
the height of the patches is close to the height of the center
of the scanning device as illustrated in Fig. 5. For a more
detailed discussion of this problem we refer to Boulch and
Marlet [BM12].

We thus divide the patches into two categories by mea-
suring the unsigned angle between the average normal of
every patch and the up-vector (we assume that the floor of the
rooms is always the xy-plane). If the angle is smaller than 45
degrees, we mark the patch as horizontal, and vertical other-
wise. We attach a unique orthonormal frame to each vertical
patch using the normalized projection of the average normal
onto the xy-plane, the up-vector, and their cross product m
(Fig. 6). The horizontal patches are oriented using the orienta-
tion of the closest vertical patch, rotated by 90 degrees about
the third axis m (Fig. 6). Note that we use this classification
only to orient the reference system of each patch: the patch
descriptors (Tab. 1) are then used for all the remaining steps
of the algorithm.

At this point, the compressed representation consists of
the patch descriptors, and it is used for all the subsequent

x
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w = (nx,ny, 0)

u = (0, 0, 1)
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n = (nx,ny,nz)

Figure 6: Construction of the fitting rectangle reference sys-
tem for vertical patches (P′) and horizontal patches (P).

F Definition

F1 Area: wl
F2 Ratio of width to length: w/l
F3 Ratio of areas: CHULL/wl

F4 Height of centroid of rectangle
F5 PCA normal of the points in patch
F6 Non-planarity: d/(w+ l +d)

w

I
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h

CHULL

C

B

d

Table 1: Feature descriptors of a fitting rectangle (gray).
CHULL (in blue) denotes the area of the concave hull of the
patch. The concave hull is computed with α-shapes [EKS83].

computations. The original point cloud data is only used for
visualization purposes.

3.2 Patch similarity measure and embedding

We define a similarity measure between patches that depends
on the geometric properties of each patch and on the spatial
relationship between them. The similarity is used to map
each patch to a point in a high-dimensional Euclidean space
where similar patches are close with respect to the Euclidean
norm. The embedding is used to efficiently cluster patches at
interactive rates.

Shape similarity measure. To measure the similarity be-
tween patches, we combine the geometric descriptors com-
puted in the preprocessing step with an additional term that
depends on the spatial relation between patches. We exploit
spatial consistency to compensate for missing information

P 0 geometric similarity

spatial 
consistency

adjacency

P Q

Figure 7: In our similarity measure, we take into account
spatial consistency between neighboring patches to detect
imperfect similarities (between the chair seats).
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due to occlusions and noise. For example, it is very common
for chairs to have some parts hidden below desks. However,
the back of a chair is typically at least partially visible, and
the pieces connected to a similar instance of the chair are very
likely to represent similar objects, e.g., chair seats. Consider
the situation as depicted in Fig. 7, where P is adjacent to
P′, Q is adjacent to Q′, and P′,Q′ are geometrically similar.
If the same local transformation that relates P′ and Q′ also
relates P and Q, we consider P and Q to be similar as well,
because P,P′ are in a similar spatial configuration to Q,Q′.

We start our analysis by finding patches that are geometri-
cally similar. We then estimate the optimal rigid transforma-
tion to register them, and try to use the same transformation
for all neighboring patches to assess the spatial relation-based
similarity.

In the following, we will establish geometric relationships
between each pair of patches and use them to compute a
global similarity matrix. Ideally, we would like to test all
possible pairs. This, however, would lead to quadratic com-
plexity and would not scale well to large datasets. Instead, we
use the descriptors in Tab. 1 to find similar patches according
to the following similarity measure:

Ψ(P,Q) =
6

∑
k=1

(
log
(

min
(

Fk(P)
Fk(Q)

,
Fk(Q)

Fk(P)

)))2

(3)

where P,Q denote two patches. Taking the minimum of the
ratios in the formula above always results in a number be-
tween 0 and 1, effectively bringing the values of the different
descriptors Fk into the same range and making them suitable
for comparison. We can rewrite the expression above to avoid
the min operator and recast it as an L2 norm in an Euclidean
space:

log
(

min
(

Fk(P)
Fk(Q)

,
Fk(Q)

Fk(P)

))
=−| logFk(P)− logFk(Q)|

Thus, Ψ(P,Q) in Eq. 3 can be seen as the squared L2

distance between two points x(P), x(Q) in a 6-dimensional
Euclidean space, with coordinates x(P) = (log(F1(P)),
log(F2(P)), . . . , log(F6(P)))

T , and similarly for x(Q).

By performing this coordinate transformation, finding
patches of similar shape reduces to finding nearest neigh-
bors in R6. We use the flann library [ML09] to speed up
queries. Our strategy is similar to the one used in [KBWS13].

We say that two patches P and Q have similar shape if Q is
contained in the first t3 nearest neighbors of P. We denote the
set of patch pairs with similar shapes as G. Testing all possible
pairs corresponds to setting t3 =∞. We use t3 = 100, as a
compromise, in all our experiments. In Fig. 8, we show the
effect of different choices of t3. If there are more objects of a
type than t3 it is still unlikely that a similar object is missed
because of the transitive relations found by the subsequent
diffusion process.

Spatial consistency measure. Having defined pairwise
shape similarity above, we now define a patch similarity mea-
sure that is based on the similarity of spatial configurations

Figure 8: Patches of similar shape. We show the 5 (left), 25
(middle) and 100 (right) closest patches to the back of the
chair in the bottom left corner.

between patches. We denote byN (P) the set of patches that
are close to P in the global coordinate system. The distance
between two patches is measured by the minimal distance
between any two points in either patch. In order to compute
this set we take for each point contained in patch P the points
in a radius of t4, and add toN (P) all the patches that contain
one of these extracted points. In practice the size ofN (P) is
small: the average in our experiments is 5.

We note that indoor scenes commonly contain large sur-
faces, like tables, with a plethora of small objects on top of
them. These objects typically do not have any special order-
ing or arrangement on the surface, hence looking for their
spatial relationships with the table is not useful. For this rea-
son, for all patches P with area greater than t5 = 1.2m2 we
do not consider relations to adjacent patches, that is, we set
N (P) = ∅ and do not add them to the N (Q) of any other
nearby patch Q.

Let T (P,Q)∈R3×3 be the unique rigid transformation that
maps the projection onto the xy-plane of the normal of P to the
projection of the normal of Q. Since we assume a consistent
up-direction for all objects, T is always a rotation about the z
axis. We will use T to represent geometric relations between
patches. Note that the normals are not unique; they are defined
up to a change of sign, since the same planar regions can be
scanned from different sides in different instances of the same
object. We thus remove this ambiguity by always considering
the set of transformations

T(P,Q) = {T (F5(P),F5(Q)), T (F5(P),−F5(Q))}, (4)

where F5(P) is the PCA normal of the points contained in the
patch P (see Tab. 1). We always consider both orientations
when exploring the space of possible rigid transformations,
but only the one that also matches the orientation of the
other patches in the same object is relevant. This guarantees
correct clustering despite the normal ambiguity, and naturally
handles thin planar surfaces that are scanned from both sides.

For every pair of patches (P,Q) ∈ G, we extract the two
sets of patchesN (P) andN (Q). For every possible combina-
tion of patches in these two sets, we measure how well they
can be transformed one into the other by T(P,Q) by using
the similarity measure ζ(P,Q,T). ζ is defined using a set of
descriptors similar to the ones used in Tab. 1, but adapted to
be applied to a pair of patches, see App. A for the details.

c© 2014 The Author(s)
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Similarity matrix S. We construct two similarity matrices
Sg,Sl ∈Rn×n, where n is the number of patches and a matrix
entry with indices (K,L) corresponds to similarity between
patches K and L.

A B

C D

E F

(A, B) 2 G

(E, F ) 2 G

N (A) N (B)

N (E) N (F )

The matrix Sg measures the similar-
ity between patches that belong to
different objects, while Sl measures
the similarity between patches that
potentially belong to the same in-
stance of a certain object. They are
defined element-wise as:

Sg
KL = max

(P,Q)∈G,
K∈N (P),L∈N (Q)

ζ(K,L, T(P,Q)) (5)

Sl
PK = max

(P,Q)∈G,
K∈N (P),L∈N (Q)

min{ζ(P,Q,T(P,Q)),ζ(K,L,T(P,Q))}

The two matrices are then combined in a single matrix S:

Si j = max{Sl
i j,S

l
ji,S

g
i j,S

g
ji}. (6)

S is then sparsified by setting all elements smaller than t6
to zero (see also Sec. 3.4). To give intuition for the similar-
ity definition above, consider the figure in the inset, where
(A,B) ∈ G and (E,F) ∈ G. The local similarity between the
patches (C,D) is defined as:

Sg
CD = max{ζ(C,D,T(A,B)), ζ(C,D,T(E,F))},

that is, the max is taken over all the candidate transformations
of similar objects that are nearby the patches C and D, and for
every candidate we measure the similarity after the transfor-
mation is applied. The similarity between patches of the same
object is defined by estimating how well a joint configuration
of a patch and its neighboring patches is mapped to other
similar configurations. For example, the similarity between
the patches A and C (as well as B and D) is defined as:

Sl
AC = Sl

BD = min{ζ(A,B,T(A,B)), ζ(C,D,T(A,B))}.

The minimum operator bounds the maximal similarity,
making our estimation conservative by disallowing two
patches to be more similar than the two patches used to define
the candidate transformation. Since we do not know a priori
where each patch could be mapped, we map it to all candidate
patches and use the highest similarity.

Generating the embedding. We take the t7-th power of
the matrix S to diffuse the similarity information, similarly
to Lipman et al. [LCDF10]. We show in Fig. 9 the results for
different powers. Higher values of t7 more strongly reduce the
embedding distance between similar patches. We compute a
diffusion-based embedding by using the first t8 eigenvectors
of St7 as coordinates for the patches. We used a fixed t7 and
t8 for all our experiments (see Sec. 3.4).

3.3 Clustering

We cluster patches in the diffusion embedding using DB-
Scan [EKSX96]. The algorithm is fast and allows us to inter-

Figure 9: Color-coded visualization of the diffusion distances
to the patch in the white frame for increasing values of t7
(from left to right, t7 = 1,50,100). Notice how spatially close
but dissimilar parts are not getting closer in diffusion dis-
tances.

actively display the clustering result after its distance thresh-
old parameter t9 is set. The other parameter of DBScan, which
is the minimal number of points in the neighborhood to be
considered as part of a core cluster, is not used and fixed to 1.
Results for different values of t9 are shown in Fig. 10.

Figure 10: DBScan clustering examples. On the left (t9 =
0.01), the chair clusters are still separated, but with a higher
value (t9 = 0.05) all chairs can be merged.

Each extracted cluster contains a collection of patches that
describe multiple instances of the same object. We extract the
individual objects from each cluster in two steps:

1. We group together all the patches in a cluster whose bound-
ing boxes overlap.

2. For each detected object, we extend its oriented bounding
box to the floor, and we add to the object all the patches
(even outside the cluster) that overlap by more than 50%
with the bounding box. This allows to correctly classify
parts like legs of chairs and tables.

An example of the clustering and the two-step object ex-
traction is shown in Fig. 11.

Figure 11: A cluster that contains patches belonging to
chairs (left) is split into separate objects by finding over-
lapping patches (middle). The complete point cloud of each
chair is extracted by extending the bounding boxes to the
floor and including any overlapping patches.

c© 2014 The Author(s)
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Model #Pt #R #P #C #Ob j TP TE TC

OFF.1 198M 18 9811 42 866 15m 33s 2.3s
OFF.2 129M 12 4927 38 456 10m 26s 0.7s
OFF.3 110M 10 4707 39 294 10m 21s 0.5s
Fig. 18 1M 1 20 2 7 0.1s 0.1s 4ms

Table 2: Statistics for our experiments: number of points in
the data set (#Pt), number of scanned rooms (#R), number
of patches (#P), number of clusters (#C), number of detected
objects (#Ob j), preprocessing time (TP), time spent on sim-
ilarity matrix and embedding computation (TE ), clustering
time (TC).

3.4 Parameters

Our algorithm depends on 10 parameters t0, . . . , t9. The first
three are used in the preprocessing step to generate the planar
patch representation. We found that fine-tuning them does not
alter the quality of the results but only the efficiency of the
algorithm, since they affect the number of generated patches.
We found that t0 = 0.2, t1 = 0.002 and t2 = 100 generates
a number of patches sufficient to distinguish most furniture
objects, and fixed them for all experiments.

While t3 affects the number of neighbors used for the
search of similar patches in feature space, t4 controls the size
of the neighborhood used to find patches that could be part
of the same object. Similarly to t3, this parameter should be
ideally set to infinity, to check all possible combinations of
patches. This, however, has quadratic complexity and cannot
scale to large datasets. We found that setting t4 > 20cm does
not affect the results but only slows down the computation,
and we therefore limited it to 20cm. Parameter t5 controls
the sparsity of S and filters the noise introduced by patches
that are loosely similar to others, and we fixed it to 0.1 for
all experiments. The threshold t6 = 1.2m2 is used to remove
large surfaces, which do not transform with other objects
(e.g., consider a table with a screen on top), from the neighbor
finding process.

Parameters t7 and t8 control the embedding. In particular,
t7 controls the power applied to the matrix S and is fixed to
t7 = 15, while t8 determines the number of dimensions of
the embedding. Smaller datasets can be computed accurately
using only a few dimensions, but we fixed t8 to 800 to accom-
modate for all our datasets. Such a high number increases the
computation time but yields very accurate results even for
our biggest dataset with 18 individual offices.

The clustering process is controlled by t9 (Fig. 10). For
our results in Section 4 we fixed all but this parameter, which
can be considered the most important one. Its adjustment
is simple, however, since its effect can be computed and
displayed interactively.

4 Results

We tested our algorithm on three datasets acquired using
a Faro Focus 3D laser range scanner using at least 2 scan

Object Count. Detect. F. Neg. F. Pos. Recall Prec.
Screen 65 43 22 0 0.66 1.0
Chair 1 42 44 2 4 0.96 0.91
Lamps 40 40 0 0 1.0 1.0
L-Sh. Table 31 28 3 0 0.90 1.0
Chair 2 29 32 0 3 1.0 0.91
Trashbin 1 27 32 0 5 1.0 0.84
Trashbin 2 22 33 0 11 1.0 0.67
Cupboards 16 24 0 8 1.0 0.67
Chair 3 13 12 2 1 0.85 0.92

Table 3: Quantitative evaluation of the classification results
for the OFFICE1 dataset of Figure 1.

Figure 12: Closeup view of some rooms in OFFICE1 where
it is easy to identify the chairs, cupboards, tables, trash bins
and screens.

Figure 13: Visualization results from datasets OFFICE2 (top)
and OFFICE3 (bottom). Each object cluster is rendered in a
single color.
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Figure 14: Our method automatically generates a library of detected objects in datasets OFFICE1 (left), OFFICE2 (middle) and
OFFICE3 (right).

Figure 15: Top: the original dataset (OFFICE2). Bottom:
dataset obtained by replacing all repeated objects with a
single model. The size of this compressed dataset is reduced
to 55% of the original size.

positions per room for all our results. Our method could also
be applied to data coming from hand-held scanners [NZIS13],
but we cannot guarantee the same performance due to the
expected lower quality of the input data. The datasets, which
we will refer to as OFFICE1-3 in the following, contain 18,
12, and 10 rooms, respectively. We also ran our algorithm on
the data used by Nan et al. [NXS12]. Detailed information for
all datasets and running times of every step of our algorithm
are shown in Table 2.

All our results were generated using a single core of an
Intel i7 processor clocked at 3.5GHz with 8GB of memory.
The GPU was only used for rendering purposes.

Table 3 shows a quantitative evaluation of the classifica-
tion results for the OFFICE1 dataset. The columns show the
number of actual counted objects and detected objects, the
number of false negatives and false positives, and the cor-
responding values of recall and precision. Note that all the
ceiling lamps in the scene were detected, but they were split
into two clusters corresponding to different heights.

Point-set visualization. Visualization of large point clouds
is a challenging and active research topic. In the case of indoor
scenes, large amount of clutter poses an additional challenge
in terms of visual clarity. In Fig. 1, the input point set is
rendered as it is (with only the tops of the individual rooms

Figure 16: Given a user-defined replacement map, we are
able to replace the furniture in OFFICE3 (top row) and OF-
FICE2 (bottom row) with the models automatically extracted
from OFFICE1.

removed) with the original color information, which makes
it difficult to identify all the objects in the scene. By using
our segmentation (see Fig. 1, 12 and 13), we can highlight
each class of objects, allowing for an easier exploration of
the dataset. Note that for clarity, we also removed the patches
corresponding to the room walls and replaced them with
transparent glass panels.

Shape database. Our method can extract large databases
of shapes from point clouds. In Fig. 14 we show the biggest
objects groups extracted from all our datasets. The object
database is the basis for other applications discussed next.
Another interesting application for this data is the consol-
idation of the partial information contained in each object
to generate a single, high-quality model for each class, as
discussed in Sec. 5.

Compression. In Fig. 15, we replace all the point clouds
that represent the same object with instances of one single
point cloud I. This requires to compute the rigid transforma-
tion that maps I to all the other elements of the cluster. We
estimate the transformation by maximizing the similarity be-
tween the replaced object and the transformed I. We measure
the similarity between the patches extracted from the point
clouds using ζ, but other more sophisticated methods could
also be used [AMCO08]. While the objects that have been
clustered together share the same geometry, the dimension
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Figure 17: The segmented objects in the dataset OFFICE2 have been replaced with CAD models. We show the original point
clouds in the top row, and the CAD models in the bottom row.

of the objects might still differ (consider cupboards consist-
ing of the same elements, but of different height). To avoid
any inconsistencies, we replace a point cloud with I only
if the bounding boxes of the two instances have sufficient
overlap after applying the transformation. The representative
instances of each class in Fig. 15 were manually selected. We
achieve a compression factor of approximately 2 (we reduced
the datasets to 53% of its original size for OFFICE1, and
55% for OFFICE2). This can also improve the visual quality
(Fig. 15, bottom) by reducing the undersampling problem.

Furniture transfer. We showed that the objects in a dataset
can be replaced by similar objects of the same dataset. In
Fig. 16, we show that the same principle can be used to re-
place the furniture of one building with that of a different
one. This result was obtained by first segmenting the datasets
OFFICE1-3 using our algorithm, and then manually defin-
ing the correspondences between the detected object clusters.
Our method thus allows to experiment with different furni-
ture styles and evaluate the impact of the change on existing
indoor environments. Note that for a learning-based method,
this application would require a separate acquisition of all
objects of interest in each dataset.

Generation of high-quality interior models. Finally, our
segmentation can be used to (semi-)automatically generate
a high-quality CAD model. A user-defined map can replace
all instances of an object group by clean CAD models. To ac-
count for the dimension mismatch between the CAD models
and the corresponding point clouds, we scale them appro-
priately. The scaling factor is the ratio (on each axis) of the
bounding boxes. We show the result of this procedure in
Fig. 17. Note that our algorithm is able to faithfully recon-
struct most furniture except for the badly sampled cupboard
in the rightmost room of Fig. 17.

Comparison. We compared our unsupervised segmenta-
tion method to the supervised method proposed by Nan et
al. [NXS12] by running our algorithm on their input dataset.
As shown in Fig. 18, our method generates a similar result,
detecting two classes of objects but without relying on any
training data.

5 Limitations and concluding remarks

We presented a practical approach to process large indoor
point clouds. Our segmentation can be used to compress the
data, to perform replacement of object classes and also to
drastically improve the clarity of visualization. While the
parameter space has 10 dimensions, we fixed 9 of them for
all tested datasets, and adjusted only one parameter to inter-
actively control the granularity of the clustering as shown
in Fig. 10.

We assume that all objects of the same class have a consis-
tent up-direction. This assumption greatly reduces the search
space we have to explore, increasing the efficiency and ro-
bustness of our algorithm.

Our patch representation enables efficient processing of
large point clouds, but it is not expressive enough to repre-
sent small objects with many planar regions, like computer
keyboards or desk lamps. Note that even though our represen-
tation is based on planar patches, we can naturally represent
large cylindrical shapes, like trash bins. Each cylinder is con-
verted to a collection of planar patches, each one covering a
slightly curved segment. Since the threshold for the patch seg-
mentation is chosen globally, cylinders of the same size will
be decomposed and clustered consistently. In future work, it
would be interesting to explore a hybrid representation that
combines patches and purely point-based shape descriptors.
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Figure 18: Our algorithm applied to the dataset from
[NXS12] extracts two object classes without any prior train-
ing.

Some of our heuristics, such as excluding transformations
for large-area objects (e.g., tables), are too simple for cer-
tain situations. We would like to devise more sophisticated
measures in future work.

Our algorithm automatically generates large collections of
objects, represented as incomplete point clouds due to the
occlusions present in each scan. An interesting and challeng-
ing problem is the fusion of these partial scans into a single,
complete object. We experimented with the method of Pauly
et al. [PMG∗05], but our setting is more challenging due
to the presence of noise in the data and possible outliers in
each cluster. Computation of correspondences between all
the objects in a single class [HZG∗12, OBCS∗12, SvKK∗11]
could also be used to consolidate color information captured
during the scanning process.
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A Similarity measure for a pair of patches

We measure how well a patch P can be transformed into a
patch Q with respect to the set of rigid transformations T by
using the following similarity measure:

ζ(P,Q,T) = max
T∈T

e−2 ∑
6
i=1 ζi(P,Q,T )

The descriptors ζi are based on the single patch descriptors
in Table 1 and defined as:

ζi(P,Q,T ) =


min

{
Fi(T (P))

Fi(Q)
,

Fi(Q)
Fi(T (P))

}
if i = 1,2,6,

Φ(T (P),Q) if i = 3,
|F4(T (P))−F4(Q)| if i = 4,
|F5(T (P))

T F5(Q)| if i = 5,

where Φ(P,Q) is the area of the intersection between the
fitting rectangle of Q and the projection of the fitting rectangle
of P onto Q.
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