
Classroom	Exercise:	
“CODE	REVIEW”	

	
1)	Preparation:	
	
	
a) Advance	reading	
	
In	 order	 to	 perform	 this	 exercise,	 you	 have	 to	 read	 the	
following	papers:	
	
[1]	Fagan,	M.	E.	,	Advances	in	Software	Inspections,	IEEE	Transactions	on	
Software	Engineering,	Vol.	12(7):744-751,	July	1986.	
[2]	 Alberto	 Bacchelli,	 Christian	 Bird,	 "Expectations,	 outcomes,	 and	
challenges	 of	 modern	 code	 review,"	 In:	 Proceedings	 35th	 International	
Conference	on	Software	Engineering	(ICSE),	IEEE,	2013.:	712-721.	
	
These	two	papers	are	the	same	papers	included	in	the	reading	
list	of	the	lecture	of	the	course	“Peer	Code	Review:	Theory	and	
Practise”	(held	on	20-03-2015).		
	

b) Project	
	
Each	 student	 should	 select	 a	 Java	 project	 implemented	 in	
his/her	past	academic/professional	experience.	
	

	
2)	Background:	
	

Code	Review	 is	 the	 “systematic	examination	by	one’s	peers	of	
computer	 source	 code	 intended	 to	 find	 and	 fix	 mistakes	
overlooked	in	the	initial	development	phase”.		

	
In	both	industrial	and	open	source	projects	 it	 is	a	well-known	
fact	 that	 bugs	 found	 later	 in	 the	 design	 cycle	 are	 more	
expensive	to	correct	than	those	found	earlier.	In	the	worst	case,	
the	 product	 ships	 with	 bugs	 that	 require	 a	 maintenance	
release,	 costly	 in-the-field	 upgrades	 and	 possibly	 can	 damage	
the	 reputation	of	 the	 company.	One	of	 the	most	 cost-effective	

ways	of	eliminating	bugs	very	early	in	the	development	cycle	is	
to	perform	source	code	reviews.	During	this	activity	developers	
study	 each	 other’s	 code	 with	 an	 eye	 towards	 finding	 coding	
problems.	The	upfront	investment	in	time	and	effort	saves	time	
and	expense	later	on.	Code	reviews	is	performed	by	developers	
of	popular	software	companies	such	as,	Google,	Microsoft	and	
Facebook.	

	
Code	Reviews	at	Google:	
"All	code	that	gets	submitted	needs	to	be	reviewed	by	at	least	one	
other	person,	and	either	the	code	writer	or	the	reviewer	needs	to	
have	readability	 in	that	 language.	Most	people	use	Mondrian	to	
do	 code	 reviews,	 and	 obviously,	 we	 spend	 a	 good	 chunk	 of	 our	
time	reviewing	code."	
Amanda	Camp,	Software	Engineer,	Google	

	
Figure	 1.	 shows	 the	 typical	 Code	 Review	 process	 (Slides	 in	
https://www.olat.uzh.ch/olat/auth/1%3A2%3A5001853181%3A4%3A0%3Aserv%3A
x/slides/SWEvol-FS15-Code_Review.pdf	 explain	 more	 in	 details	 this	
process).		

	
	

	
	

Figure	1.		Code	Review	Process.	
	

Specifically,	during	code	review,	developers	can	play	the	role	of	
reviewers	and	of	verifiers.	Reviewers	have	the	responsibility	to	
give	 feedbacks	 and	 comments	 to	 improve	 the	 quality	 of	 the	
proposed	patches.	 In	addition,	verifiers	also	evaluate	whether	
the	 patches	 are	 really	 useful	 to	 fix	 problems/defects	 without	
breaking	the	behavior	of	the	system.	Thus,	if	patches	meet	the	
defined	 criteria,	 they	 are	 automatically	 integrated	 into	 the	
master	repository	and	their	status	is	changed	to	merged.	

3)	A	Simple	Example	of	Code	Review	(from	the	Book	of	“Applied	
Software	Project	Management”	by	Andrew	Stellman	and	Jennifer	Greene):	
	
public	class	Account	{		
double	principal,rate;	int	daysActive,accountType;	
public	 static	 final	 int	 STANDARD=0,	 BUDGET=1,	 PREMIUM=2,	
PREMIUM_PLUS=3;	
}	
...	
public	static	double	calculateFee(Account[]	accounts)	
{	
double	totalFee	=	0.0;	
Account	account;	
for	(int	i=0;i<accounts.length;i++)	{	
	account=accounts[i];	

if(account.accountType==Account.PREMIUM||	account.accountType	
==	Account.PREMIUM_PLUS)		

totalFee	+=	.0125	*	(//	1.25%	broker's	fee	
account.principal*Math.pow	
(account.rate,(account.daysActive/365.25))		

												-	account.principal);	//	interest-principal	
}	
return	totalFee;	
}	
	
Improved	code:	
	
	
/**	An	individual	account.	Also	see	CorporateAccount.	*/	
public	class	Account	{	
						private	double	principal;	
					/**	The	yearly,	compounded	rate	(at	365.25	days	per	year).	*/	
				private	double	rate;	
				/**	Days	since	last	interest	payout.	*/	
				private	int	daysActive;	
				private	Type	type;	
				/**	The	varieties	of	account	our	bank	offers.	*/	
				public	enum	Type{STANDARD,	BUDGET,	PREMIUM,					PREMIUM_PLUS}	
				/**	Compute	interest.	**/	
public	double	interest()	{	
					double	years	=	daysActive	/	365.25;	
				double	compoundInterest	=	principal	*	Math.pow(rate,	years);	
				return	compoundInterest	–	principal;	
}	

/**	Return	true	if	this	is	a	premium	account.	**/	
public	boolean	isPremium()	{	
								return	accountType	==	Type.PREMIUM	||	
								accountType	==	Type.PREMIUM_PLUS;	
}	
	
/**	The	portion	of	the	interest	that	goes	to	the	broker.	**/	
public	static	final	double	BROKER_FEE_PERCENT	=	0.0125;	
/**	Return	the	sum	of	the	broker	fees	for	all	the	given	accounts.	**/	
public	static	double	calculateFee(Account	accounts[])	{	
					double	totalFee	=	0.0;	
								for	(Account	account	:	accounts)	{	
													If	(account.isPremium())	{	
																		totalFee	+=	BROKER_FEE_PERCENT	*	account.interest();	
						}	
		}	
return	totalFee;	
}	
}	
	
Problems	and	defects	discovered	and	removed:	
	1.	Many	comments	are	missing	or	are	not	informative	enough	
	2.	The	indentation	style	is	not	consistent	and	makes	it	more	difficult		
to	read	the	code.	
	3.	Some	variables	look	like	class	names.	
	4.	Some	comments	are	misleading.	
	5.	Many	methods	 are	 too	 large	 and	 should	 be	 broken	 into	 smaller	
methods.	
	6.	Some	variables	are	never	used.	
	7.	 Perhaps	 regular	 expressions	 should	 be	 assigned	 to	 strings	 to	
improve	the	readability.	
	
4)	Exercise:	
	
The	 goal	 of	 this	 exercise	 is	 to	 review,	 discuss,	 and	 provide	
constructive	 criticism	 about	 code	 a	 peer	 has	 developed.	 In	 the	 real	
world	 we	 will	 need	 to	 read/understand	 other	 people’s	 code,	
therefore	this	is	a	skill	we	need	to	develop.		
	
Please,	 follow	 the	 steps	 provided	 below	 while	 completing	 this	
exercise:			
1. Each	 student	 should	 select	 a	 Java	 project	 implemented	 in	
his/her	past	academic/professional	experience.	

2. A	 team	of	 students	 (composed	by	at	 least	3	members)	should	
exchange	the	code	to	each	of	the	member	of	the	team.		

3. Each	member	of	a	team	should	asks	the	other	members	of	the	
team	to	review	his/her	code	(1	or	2	java	classes):	

a. Each	 member	 should	 explain	 each	 of	 the	 method	
he/she	implemented.	

b. 	Provide	 a	 list	 of	 aspects	 to	 improve	 relying	 on	 a	
specific	check	list	similar	to	the	following:		
i)	
https://www.liberty.edu/media/1414/%5B6401%5Dcode_review_checklis
t.pdf	
ii)	
http://courses.cs.washington.edu/courses/cse403/12wi/sections/12wi_co
de_review_checklist.pdf		
Examples	of	criteria	to	use	can	be:	
i.	Code	Clarity	
ii.	Variable	names	
iii.	Indentation	
iv.	Do	you	feel	you	can	modify	the	code	easily?	
v.	What	is	your	opinion	about	the	style	used	in	Java			
Constructs	(e.g.,	loops,	methods,	etc.)	

c. 	As	 the	discussion	progresses,	 suggest	ways	 in	which	
the	implementation	should	be	modified/improved.	

d. The	students	must	to	use	PDM	(https://pmd.github.io/)	and	
Checkstyle	 (http://checkstyle.sourceforge.net/)	 for	 automatic	
the	finding	of	some	of	the	relevant	warnings.		
	

4. Each	 Student	 should	 write	 a	 report	 (max	 2	 pages)	 that	
include:	
a. Project	 Description:	 a	 high	 level	 description	 of	 the	
project	under	review	(specifying	the	classes	selected);	

b. Team:	the	list	of	the	team	members;	
c. Defects	Found:	A	description	of	each	 fault	 found	by	each	
team	member;	

d. 	Summary	 of	 the	 Recommendation:	 a	 summary	 of	 the	
team	recommendations	to	improve	the	code.		

e. Review	 Time	 and	 Defects	 Found:	 a	 summary	 of	 the	
effectiveness	 of	 each	 review.	 Specifically,	 the	 amount	 of	
time	that	each	reviewer	spent	reviewing	the	code	and	the	
number	of	defects	that	each	member	identified.	

5. Together	with	the	report	each	student	should	attach	the	two	
versions	of	the	reviewed	class	(before	and	after	the	reviewing	
process).	

	

