
Continuous Refactoring in CI: A Preliminary Study
on the Perceived Advantages and Barriers

Carmine Vassallo, Fabio Palomba, and Harald C. Gall
University of Zurich, Department of Informatics, Switzerland

{vassallo,palomba,gall}@ifi.uzh.ch

Abstract— By definition, the practice of Continuous Integra-
tion (CI) promotes continuous software quality improvement. In
systems adopting such a practice, quality assurance is usually
performed by using static and dynamic analysis tools (e.g.,
SonarQube) that compute overall metrics such as maintainability
or reliability measures. Furthermore, developers usually define
quality gates, i.e., source code quality thresholds that must be
reached by the software product after every newly committed
change. If certain quality gates fail (e.g., a maintainability metric
is below a settled threshold), developers should refactor the
code possibly addressing some of the proposed warnings. While
previous research findings showed that refactoring is often not
done in practice, it is still unclear whether and how the adoption
of a CI philosophy has changed the way developers perceive and
adopt refactoring. In this paper, we preliminarily study—running
a survey study that involves 31 developers—how developers
perform refactoring in CI, which needs they have and the barriers
they face while continuously refactor source code.

Index Terms—Continuous Integration; Quality Assurance; Refactor-
ing.

I. INTRODUCTION

Continuous Integration (CI) is a development practice aim-
ing at continuously building new software [7]. When de-
velopers push changes to a shared repository, CI requires
to compile, test, and quality assure the modified software
product so that developers can immediately know how their
changes fit with the software being developed. One of the
most promising features of CI concerns the possibility to
make the identification of bugs as well as the improvement
of source code quality easier [6]. Specifically, developers and
stakeholders have the possibility to define the so-called quality
gates [23], namely a set of constraints on the quality of the
built software that are expressed through thresholds on certain
metrics (e.g., the number of code smells [8] at each build
should be lower than a predefined threshold).

Such quality gates are de-facto the way to control for
maintainability degradation [22]: if a newly committed change
fails a quality gate, the developer needs to take action to let the
build pass again. One of the possible actions to improve source
code quality is refactoring [8], which consists of changing
the internal structure of the source code while preserving the
external behavior of the system [8].

In the last decade, a number of researchers have investigated
refactoring practices from several perspectives [3], [11], [15],
[18], [19], [20], [24], [28], finding that its application not only
positively affects adaptability, maintainability, understandabil-
ity, re-usability, and testability [1], but also developers’ pro-

ductivity [16]. However, despite its usefulness refactoring is
often perceived as a fault-prone activity [2], [11] or simply not
frequently performed by developers when improving source
code quality [3].

While the studies conducted so far provided some important
insights on how developers perform refactoring and what are
the main concerns leading them to not do it, there is still
a lack of knowledge on whether and how CI has changed
the way developers adopt refactoring. Indeed, CI advocates
performing continuous code quality improvement, meaning
that developers might be willing to search for refactoring
opportunities at every completed change and to perform refac-
toring immediately, without postponing it. Thus, it is worth
analyzing whether Continuous Refactoring (i.e., applying, if
any, suitable refactoring operations at every performed change)
is an actual practice adopted and needed in CI. As Continuous
Refactoring is not listed yet among the CI best practices [7],
our goal is to study its applicability, usefulness, and its
possible introduction as a best practice in CI, with the aim
of stimulating new research in supporting developers while
doing it.

In this paper, we provide a preliminary overview of the
way refactoring is applied in CI, performing a survey study
that collects the opinions of 31 developers. In the context of
CI, we investigate (i) how frequently developers refactor, (ii)
whether developers need to perform refactoring continuously
(i.e., Continuous Refactoring), and (iii) which are the current
barriers faced by developers while refactoring at every build.

Key findings of our study report that most of the surveyed
developers tend to perform refactoring continuously as they
feel the need for it to improve maintainability and testability
of source code. At the same time, however, our participants re-
vealed the presence of several barriers while doing refactoring
in CI context: these are not only related to time-constraints
or the fear to break a build, but also concern team-related
aspects. Finally, developers clearly point out the need for
reliable refactoring tools as well as highly-effective test suites
to use when testing for regression.

II. METHODOLOGY

The goal of this preliminary study is to understand (i) how
developers perform refactoring and (ii) what are the pros and
cons of adopting Continuous Refactoring through a survey
study involving developers that actually adopt CI. Hence, the
context of our study includes (i) as subjects the participants of



our survey and (ii) as objects the specific refactoring practices
that they adopt when developing software.

Our study is structured around three research questions:
RQ1 How do developers perform refactoring in CI?

In the first research question, we are interested in in-
vestigating the frequency of refactoring tasks. Specif-
ically, we aim at understanding whether refactoring
is applied continuously.

RQ2 Do developers need to refactor continuously?
This research question studies to what extent devel-
opers consider Continuous Refactoring as a crucial
practice and why.

RQ3 Which are the barriers to Continuous Refactoring?
The last research question is about the barriers faced
by developers to apply Continuous Refactoring.

A. Survey Design

Our questionnaire starts clarifying some terms (e.g., “Con-
tinuous Refactoring”). It consisted of 14 questions, which
include 5 multiple choices (MC), 6 checkboxes (C) and 3
open questions (O). In the case of checkboxes, our participants
could leave further comments. Table I reports the specific
questions, which were grouped into four topics: (i) Back-
ground (omitted in Table I), (ii) Current Practice, (iii) Need
for Continuous Refactoring, and (iv) Barriers to Continuous
Refactoring.

In the Background section, we profiled our participants
according to (i) development experience, (ii) domain of the
organization where they work, (iii) CI expertise, and (iv)
adopted tools (i.e., build and static analysis tools integrated
into their CI pipeline). The Current Practice section concerns
the usage of refactoring in CI context. We were interested in
understanding how frequently developers perform refactoring
and pay attention to code quality (Q1.1, Q1.2, Q1.3) and
which are their motivations for doing (Q1.4) refactoring. In the
section Need, we encourage our participants to tell us whether,
in their opinion, there is a need for Continuous Refactoring
(Q2.1, Q2.2) and which are the factors or needs empowering
its applicability (Q2.3). In the last section (Barriers), we
explore why developers tend to avoid Continuous Refactoring.

B. Recruitment and Survey Participants

Our survey was implemented using GOOGLE FORMS.1 To
recruit participants, we posted our questionnaire on REDDIT2,
targeting three specific sub-forums dedicated to LearnPro-
gramming, DevOps, and JavaScript: we selected these com-
munities as they (i) allow users to post surveys (e.g., suitable
communities as Java forbid questionnaires), (ii) have a large
number of active subscribers, thus increasing our potential
audience (e.g., the JavaScript subreddit has approximatively
300 members that are online daily), and (iii) possibly include
members having experience with CI. Due to time constraints,
we kept the survey accessible for one week. In the end, 31

1https://docs.google.com/forms/u/0/
2https://www.reddit.com/

developers answered the entire survey. 32.3% of them started
to develop more than 10 years ago. 48.4% have between 5 and
10 years’ development experience and 19.4% less than 5 years.
Furthermore, our respondents come from various domains (we
collected 18 different domains). 25.8% of them work in soft-
ware development consulting, 12.9% in organizations focusing
on content platform providers. The same percentage (9.7%)
deal with telecommunications and framework development.
Regarding their CI experience, the majority of our participants
(48.4%) started adopting CI between 2 and 5 years ago, 32.2%
of them even more than 5 years ago. The two most used CI
build tools are MAVEN (29%) and GRADLE (22.6%) (in line
with previous work [26]), while ESLINT (51.6%) is the most
adopted static analysis tool.

C. Limitations and Threats to Validity

The methodology adopted to conduct our study might
suffer from some limitations. These are mainly related to the
recruitment process: we obtained 31 answers to the survey,
despite the potential audience available on REDDIT. While
the limited time period set to gather answers might have
played a role in the response rate obtained, it is worth noting
that generally most of the answers to scientific surveys are
collected in a short-time period [14], [25]. This means that,
overall, we are pretty confident of the fact that we gathered
most of the potential answers we could have obtained.

Another possible issue might be related to the general-
izability of the opinions obtained by the study participants.
On the one hand, we collected answers from people having
different backgrounds and working in different development
environments. On the other hand, we are aware that this
study highlights some preliminary observations that should
definitively be confirmed by further quantitative and qualitative
analyses.

Finally, the focus of our analysis was consciously targeted
on the developers’ perception of the phenomenon: we are
aware that the opinions collected might differ from the actual
practices performed by the participants.

III. CURRENT PRACTICE OF REFACTORING IN CI

In the first place, our findings suggest that in CI, accord-
ingly to its best practices [6], developers tend to assess code
quality continuously (53.3%) or at least before merging their
feature branch (i.e., a branch opened to implement a specific
development task) into the master branch (56.7%).

Such a continuous code quality assessment is often (33.3%)
or always (20%) accompanied by a refactoring, according to
the participants’ point of view. In other words, our preliminary
findings seem to highlight that refactoring is rather spread in
the CI environment, differently from what is usually done in
other contexts [3], [11]. While further studies should be carried
out to verify our findings, a key emerging result is that CI
has the potential to change the way software code quality
assessment and refactoring can be applied in practice.

As a further evidence of this point, the majority of our
participants (63.3%) reported to refactor (if necessary) at every



TABLE I
SURVEY QUESTIONS ON CONTINUOUS REFACTORING. (MC: MULTIPLE CHOICES, C: CHECKBOXES, O: OPEN ANSWER)

Section ID Question Type Answer

Current Practice

Q1.1 How frequently do you perform refactoring? MC Never — Rarely — Sometimes — Often — Always

Q1.2 When do you assess the code quality? C

At every committed change.
Before a release.
Before merging a feature branch in the master branch.
Never.
At the end of a sprint or development iteration.

Q1.3 When do you perform refactoring? C

I perform refactoring at every change (when it is needed).
I perform refactoring when some quality gates fail.
I perform refactoring when I have time.
I perform refactoring after assessing code quality (if it is necessary).
An IDE warning suggests to do it.

Q1.4 Which are your motivations for refactoring? C

Refactoring helps me to improve the overall code quality.
Refactoring increases the code comprehension.
Avoid to fail quality gates (and cause build failures).
I’m forced to do refactoring.
I do not perform continuous refactoring.

Need
Q2.1 In your opinion, is Continuous Refactoring needed? MC Yes — No — Maybe
Q2.2 Why do you think Continuous Refactoring is needed or not? O Open Answer
Q2.3 Which are the factors that can be used to properly schedule refactoring tasks? O Open Answer

Barriers Q3.1 Which are your motivations to avoid Continuous Refactoring? C

Refactoring is a tedious task and/or I am not paid for doing it.
Lack of knowledge about refactoring tactics.
Lack of proper automated-refactoring tools.
Not enough time during development.
Absence of a proper test suite that catch possible bugs introduced by refactoring.

committed change or generally after assessing code quality
(46.7%). The motivations for refactoring can be summarized
in three points: code quality improvement (86.7%), better code
comprehension (76.7%), and green (i.e., passed) quality gates
(33.3%). This result is still only partially aligned with previous
findings: indeed, recent studies showed that developers either
tend to not remove design issues from source code [3] or
apply refactoring just to make the development task they
should work on easier [20], [24]. Instead, our participants
explicitly pointed out that the improvement of code quality
and comprehension represents the main motivation for doing
refactoring. This further strengthens the conjecture that CI can
represent a precious practice to allow developers to perceive
the value of code quality improvement.

At the same time, it is interesting to note that 33.3% of
respondents declared that the main motivation to refactor is
to avoid quality gates’ failures. Continuous refactoring is per-
ceived as a practice that should be done at every new change
to avoid to fail quality gates. Automated Static Analysis Tools
(ASATs) have the potential of being the tools that suggest
developers refactoring operations [29]. Thus, given the fact
that they are invoked during the CI process [27], ASATs could
be a useful instrument for suggesting developers refactoring
tasks at every new build.

When asked about factors making the scheduling of refac-
toring possible, our respondents provided us with several
insights confirming the usefulness of static and dynamic
analysis. For instance, S113 reported that she usually schedules
refactoring in presence of “warnings raised by static analysis
tools”. Perhaps more interestingly, some developers are moti-
vated to do refactoring when there is “lack of test coverage”
(S8) when the aim is to remove unused code that might
decrease the test coverage indicator. Similarly, S18 argued that
she starts to look for refactoring opportunities when “code
complexity” is high. Thus, they use such tools to schedule
refactoring tasks. Likely, our findings go toward the direction

3The respondents are numbered S1 to S31.

of having more contextual and/or developer-oriented warnings
to enable developers to just deal with those that make sense
in a certain situation and avoid false alarms [26].

IV. THE NEED FOR CONTINUOUS REFACTORING

The majority of our respondents (71%) agree with the fact
that Continuous Refactoring is needed. As mentioned by S33,
Continuous Refactoring is crucial because “code is not the
best in the first version”. Thus, after implementing a certain
code change, developers should immediately reason in terms
of the refactoring opportunities that might be applied. In that
way, developers “can constantly address tech debt” (S19) and
keep the quality gates always green, without failing them.

Interestingly, S14 advocated Continuous Refactoring in or-
der to improve the overall “testability of production code”.
In other words, according to the opinions of our participants,
refactoring can have a positive influence on “software reliabil-
ity” (S11), that is one of the main goals of CI [6]. Indeed, the
CI pipeline provides early feedback about defects included in
the codebase and also in case of refactoring “one should fix
issues as near to a problem and as quickly as possible” (S25).
Furthermore, most of the respondents agreed on the positive
effects that refactoring might have on the overall structure of
the source code. For instance, S30 argued that “code is like a
building site and refactoring is cleaning up the rubble”.

On the other hand, it is worth mentioning that 29% of
the participants were less convinced about the need for con-
tinuously refactoring the code. More specifically, 16.1% of
them said that Continuous Refactoring is maybe needed and
12.9% that is not a crucial activity at all. There are two major
motivations behind these answers: (1) risks associated with
the re-structuring of a portion of source code and (2) effort
required to actually apply the transformation. As an example,
S4 reported that “continuous program transformations can
decrease the understandability of the overall architecture of
the system”: this seems to be particularly true in presence of
development teams working together on a portion of source



code, as in that cases it might be critical to modify too much
the structure because it can decrease its understandability, as
also clarified by S6: “Not the best approach but it works on
small teams with large software to build”. This finding seems
in line with what reported by Hall et al. [9] on the risks
associated with, for instance, the big-bang re-modularization.

S6 also reported that “refactoring-as-you-go” can be benefi-
cial but “takes time and requires re-testing”: “it’s really more
a matter of trade-offs and balancing risk and reward”. Simi-
larly, S23 explained that the effort required for “remov[ing]
tech debt may be higher than available for a given task”.
Thus, some developers believe that refactoring should not
be necessarily continuous, but performed only when the gain
(in terms of quality/understandability/etc.) is higher than the
pain (e.g., the excessive complexity of a refactoring solution).
In our opinion, this is an important insight, as it somehow
represents a call for new methodologies and techniques able
to recommend or prioritize refactoring operations taking into
account effort-related and community-related information.

V. BARRIERS TO CONTINUOUS REFACTORING

Despite the findings discussed so far, 35.5% of developers
still sometimes perform refactoring, mainly when they have
time. In general, while CI can naturally contribute to improv-
ing source code quality, we observe that both developers who
frequently and not frequently refactor face several barriers
while applying refactoring.

The main barrier (50%) is related to the lack of time. As
expected and as happens in traditional development processes,
developers always give higher priorities to functional tasks
rather than source code quality improvement because of time
pressure, high workload, or upcoming deadlines. This is es-
pecially true in agile projects: when developers are pushed to
deliver new changes fast, there is not so much time left for
activities considered at a lower priority.

The second barrier is the absence of a proper test suite
(36.7%). Refactoring code that works can be dangerous. As
shown by Bavota et al. [2], it might induce new bugs: to avoid
their introduction, developers need a strong test suite as well as
to keep it updated to be sure that no errors can be introduced
during refactoring actions. This finding further motivates the
research on how to make test suites more effective.

The third barrier is the lack of tools for automatic refactor-
ing (16.7%). This is in line with previous findings achieved
in other contexts [11]. In any case, CI advocates automation:
developers see the benefits of performing refactoring contin-
uously, however they want support while doing it because it
might be dangerous. Similarly, another barrier cited by some
developers (10%) is the poor knowledge about refactoring
tactics. This suggests not only the need for tools able to
automate refactoring tasks but more importantly for novel
techniques that can explain to developers the rationale and
the benefits behind a refactoring recommendation.

VI. DISCUSSION AND IMPLICATIONS

Despite preliminary, our study revealed some relevant find-
ings and provided a number of implications.

Continuous Refactoring as a CI Best Practice. Compared
to the results of previous work, it seems that CI is the right
context for making Continuous Refactoring possible to apply.
Indeed, our respondents indicated it as a useful methodology
to keep under control the increasing complexity of the changes
applied in a CI scenario. This recalls the possibility to include
Continuous Refactoring among the patterns [7] to follow in
order to fully benefit from the adoption of CI.

Avoid to Fail Quality Gates. A clear research oppor-
tunity is preventing instead of fixing serious quality issues.
Starting from just-in-time techniques to promptly spot design
issues in source code [21] until approaches for recommending
refactoring operations. The research in those directions still
requires notable advances to be able to support developers
when working in a CI context.

Developer-Oriented Static Analysis Tools. As observed
in our study, developers would like to consider the output
of static analysis tools while deciding whether to refactor.
However, static analysis tools still generate false alarms [10],
preventing them from being fully trusted by developers. This
immediately recalls the need of improving the way such tools
provide suggestions: it is important to assist developers by
raising the “right” warnings that can be actually perceived as
a symptom of the need for refactoring. To this aim, developer-
oriented static analysis tools should be conceived.

Effort- and Community-Aware Refactoring Recom-
menders. We revealed how CI developers need to perform
refactoring continuously. However, such an operation can
be very time-consuming and/or dependent on the surround-
ing development team allocation. Thus, refactoring recom-
menders and prioritization approaches should exploit effort-
and community-related factors when suggesting which refac-
toring operations are suitable in a given development context.

Summarization of Refactoring Opportunities. Some of
our study participants declared a lack of knowledge about
refactoring tactics. We clearly envision further research oppor-
tunities, aimed at finding solutions to make the reasons why a
certain recommender is suggesting to perform a refactoring
operation understandable to developers. For instance, this
might go in the direction of refactoring summarization, as also
initially explored by Bavota et al. [4].

Automated Regression Testing of Refactoring Oper-
ations. The presence of effective test suites is perceived
as a key factor to help developers while refactoring. As
some refactoring operations might require to update the tests
(e.g., when applying an Extract Class refactoring, the tests
should reflect the new allocation of responsibilities), it is of a
paramount importance to assist developers with ripple-effect-
aware regression analyses and methods, such as automatic
refactoring of test suites based on the refactoring applied to
the production code.

VII. RELATED WORK

Previous studies analyzed why developers perform refactor-
ing. Silva et al. [24] found that refactoring is often driven by



changes rather than by the necessity to fix code smells. Our
participants confirmed the willingness of refactoring at every
change instead of as a consequence of failed quality gates.

Other researchers have investigated how developers perform
refactoring. Among the findings obtained by Murphy-Hill et
al. [17], it is interesting to note how developers (i) perform
at least one refactoring session in more than 40% of develop-
ment activities, (ii) rarely (less than 10% of times) configure
refactoring tools, and (iii) often perform floss refactoring (i.e.,
interleaving refactoring with other programming activities).
Instead, our preliminary results show that refactoring in CI
is performed very frequently, but confirm how developers
perform refactoring while doing functional tasks. Furthermore,
our work confirms that developers lack proper automated tools
while refactoring. Kim et al. [12] reported a high perceived
risk of introducing bugs while refactoring. Our participants
confirmed the fear of breaking the code or introduce bugs
while refactoring.

Previous work adopted the term “Continuous Refactoring”.
Lindvall et al. [13] claimed that XP encourages Continuous
Refactoring although it is a controversial practice because it
runs contrary to the widespread principle of “if it isn’t broken,
don’t fix it”. Chen et al. [5] discussed the impact of continuous
small refactoring on software architecture, but neither define
the frequency of such changes or studying them in the CI
context. Zazworka et al. [30] analyzed how frequently bachelor
students of an XP course performed Continuous Refactoring.
They found different results from us, i.e., the majority of them
did not continuously refactor. Our findings possibly suggest
that experience and context (i.e., CI) matter. To summarize,
the previous work (i) did not provide a shared definition
of Continuous Refactoring, (ii) did not investigate it in CI
context, and (iii) provided conclusions only based on novice
developers.

VIII. CONCLUSION

This paper has presented a preliminary investigation of the
refactoring practices in CI. Our findings showed that develop-
ers tend to perform refactoring at every new build and need
Continuous Refactoring. However, developers still face several
barriers while continuously refactoring. For this reason, in our
future research agenda we plan to (i) strengthen our initial
results through interviews and quantitative data from open-
source and industrial projects, and (ii) conceive approaches for
supporting developers while applying Continuous Refactoring.

IX. ACKNOWLEDGMENTS

C. Vassallo and H. C. Gall acknowledge the support of the
Swiss National Science Foundation for their project “SURF-
MobileAppsData” (SNF Project No. 200021-166275).

REFERENCES

[1] M. Alshayeb. Empirical investigation of refactoring effect on software
quality. Information and software technology, 51(9):1319–1326, 2009.

[2] G. Bavota, B. De Carluccio, A. De Lucia, M. Di Penta, R. Oliveto, and
O. Strollo. When does a refactoring induce bugs? an empirical study.
In SCAM 2012, pages 104–113.

[3] G. Bavota, A. De Lucia, M. Di Penta, R. Oliveto, and F. Palomba. An
experimental investigation on the innate relationship between quality and
refactoring. Journal of Systems and Software, 107:1–14, 2015.

[4] G. Bavota, M. Gethers, R. Oliveto, D. Poshyvanyk, and A. d. Lucia.
Improving software modularization via automated analysis of latent
topics and dependencies. ACM Transactions on Software Engineering
and Methodology (TOSEM), 23(1):4, 2014.

[5] L. Chen and M. A. Babar. Towards an evidence-based understanding
of emergence of architecture through continuous refactoring in agile
software development. In WICSA 2014, pages 195–204.

[6] P. Duvall, S. M. Matyas, and A. Glover. Continuous Integration:
Improving Software Quality and Reducing Risk. Addison-Wesley, 2007.

[7] P. M. Duvall. Continuous integration. patterns and antipatterns. DZone
refcard #84, 2010.

[8] M. Fowler and K. Beck. Refactoring: improving the design of existing
code. Addison-Wesley Professional, 1999.

[9] M. Hall, M. A. Khojaye, N. Walkinshaw, and P. McMinn. Establishing
the source code disruption caused by automated remodularisation tools.
In ICSME 2014, pages 466–470.

[10] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge. Why don’t
software developers use static analysis tools to find bugs? In ICSE
2013, pages 672–681.

[11] M. Kim, T. Zimmermann, and N. Nagappan. A field study of refactoring
challenges and benefits. In FSE 2012, pages 50–61.

[12] M. Kim, T. Zimmermann, and N. Nagappan. An empirical study of
refactoring challenges and benefits at microsoft. IEEE Transactions on
Software Engineering, 40(7):633–649, 2014.

[13] M. Lindvall, D. Muthig, A. Dagnino, C. Wallin, M. Stupperich,
D. Kiefer, J. May, and T. Kahkonen. Agile software development in
large organizations. Computer, 37(12):26–34, 2004.

[14] K. Mao, L. Capra, M. Harman, and Y. Jia. A survey of the use of
crowdsourcing in software engineering. RN, 15(01), 2015.

[15] T. Mens and T. Tourwé. A survey of software refactoring. IEEE
Transactions on software engineering, 30(2):126–139, 2004.

[16] R. Moser, P. Abrahamsson, W. Pedrycz, A. Sillitti, and G. Succi. A case
study on the impact of refactoring on quality and productivity in an agile
team. In Balancing Agility and Formalism in Software Engineering,
pages 252–266. Springer, 2008.

[17] E. Murphy-Hill, C. Parnin, and A. P. Black. How we refactor, and how
we know it. Transactions on Software Engineering, 38(1):5–18, 2011.

[18] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, and
A. De Lucia. On the diffuseness and the impact on maintainability of
code smells: a large scale empirical investigation. Empirical Software
Engineering, pages 1–34, 2017.

[19] F. Palomba and A. Zaidman. Does refactoring of test smells induce
fixing flaky tests? In ICSME 2017, pages 1–12.

[20] F. Palomba, A. Zaidman, R. Oliveto, and A. De Lucia. An exploratory
study on the relationship between changes and refactoring. In ICPC
2017, pages 176–185.

[21] J. Pantiuchina, G. Bavota, M. Tufano, and D. Poshyvanyk. Towards
just-in-time refactoring recommenders. In ICPC 2018.

[22] D. L. Parnas. Software aging. In ICSE 1994, pages 279–287.
[23] G. Schermann, J. Cito, P. Leitner, and H. C. Gall. Towards quality gates

in continuous delivery and deployment. In ICPC 2016.
[24] D. Silva, N. Tsantalis, and M. T. Valente. Why we refactor? confessions

of github contributors. In FSE 2016, pages 858–870.
[25] K. T. Stolee and S. Elbaum. Exploring the use of crowdsourcing to

support empirical studies in software engineering. In ESEM 2010, pages
35–44.

[26] C. Vassallo, S. Panichella, F. Palomba, S. Proksch, A. Zaidman, and
H. C. Gall. Context is king: The developer perspective on the usage of
static analysis tools. In SANER 2018, pages 38–49.

[27] C. Vassallo, G. Schermann, F. Zampetti, D. Romano, P. Leitner, A. Zaid-
man, M. D. Penta, and S. Panichella. A tale of CI build failures: An
open source and a financial organization perspective. In ICSME 2017,
pages 183–193.

[28] Y. Wang. What motivate software engineers to refactor source code?
evidences from professional developers. In ICSM 2009, pages 413–416.

[29] F. Wedyan, D. Alrmuny, and J. M. Bieman. The effectiveness of auto-
mated static analysis tools for fault detection and refactoring prediction.
In ICST, pages 141–150. IEEE Computer Society, 2009.

[30] N. Zazworka, K. Stapel, E. Knauss, F. Shull, V. R. Basili, and K. Schnei-
der. Are developers complying with the process: an XP study. In ESEM
2010.


