
Un-Break My Build:

Assisting Developers with Build Repair Hints

Carmine Vassallo, Sebastian Proksch, Timothy Zemp, and Harald C. Gall

University of Zurich, Department of Informatics, Switzerland

{vassallo,proksch,gall}@ifi.uzh.ch, timothy.zemp@uzh.ch

Abstract
Continuous integration is an agile software development practice.

Instead of integrating features right before a release, they are con-

stantly being integrated in an automated build process. This short-

ens the release cycle, improves software quality, and reduces time

to market. However, the whole process will come to a halt when a

commit breaks the build, which can happen for several reasons, e.g.,

compilation errors or test failures, and fixing the build suddenly

becomes a top priority. Developers not only have to find the cause

of the build break and fix it, but they have to be quick in all of it

to avoid a delay for others. Unfortunately, these steps require deep

knowledge and are often time consuming. To support developers

in fixing a build break, we propose Bart, a tool that summarizes the

reasons of the build failure and suggests possible solutions found on

the Internet. We will show in a case study with eight participants

that developers find Bart useful to understand build breaks and

that using Bart substantially reduces the time to fix a build break,

on average by 41%.

Keywords
Software Engineering, Agile Software Development, Software De-

velopment Tools, Build Break, Summarization, Error Recovery

ACM Reference Format:
Carmine Vassallo, Sebastian Proksch, Timothy Zemp, and Harald C. Gall.

2018. Un-Break My Build: Assisting Developers with Build Repair Hints.

In ICPC ’18: 26th IEEE/ACM International Conference on Program Compre-
hension, May 27–28, 2018, Gothenburg, Sweden. ACM, New York, NY, USA,

11 pages.

1 Introduction
Continuous integration (CI) is an agile software development prac-

tice that advocates frequently integrating code changes introduced

by different developers into a shared repository branch [11]. An

automated system builds every commit, runs all tests, and verifies

the quality of the software, e.g., through automated static analysis

tools [6]. This helps to detect issues earlier and locate them more

easily [12]. CI is widely adopted in industry and open source envi-

ronments [36] and has already proven its positive effects on release

frequency, software reliability, and overall team productivity [10].

Despite its undisputed advantages, the introduction of CI in

established development contexts is anything but trivial. Hilton

et al. [9] found that build breaks are a major barrier that hinders

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use.

Not for redistribution. The definitive Version of Record was published in ICPC ’18:
26th IEEE/ACM International Conference on Program Comprehension, May 27–28, 2018,
Gothenburg, Sweden, .

CI adoption and various reasons exist for a build to break [35],

e.g., compilation, testing, code quality, or dependency resolution.

Developers need to learn how to efficiently identify the reasons for a

build break and, unfortunately, the required skill set is still different

to traditional debugging. Established techniques that are widely

used in the development environment [22], like setting breakpoints

to investigate a program right before a crash, are not applicable,

which makes it difficult and time consuming to remove a build

break [9]. As a result, developers spend a significant amount of

their working time comprehending and solving build breaks. It

takes on average one hour to fix build breaks [12].

Those results motivate the need for new ways to support devel-

opers in understanding build breaks and in deriving a fix. Existing
works have already proposed automatic build-fixing techniques,

e.g., [15]. However, such approaches are typically limited to a spe-

cific type of build break (i.e., fixing unresolved dependencies). In

this paper, we propose a developer-oriented assistance system that

supports build break fixes by summarizing available information

and linking to external information. We do not focus on a specific

build problem, but empower the developer by providing relevant

information in a wide range of build failures. To the best of our

knowledge, we are the first to propose such an information-centric
developer support during build breaks. We will investigate to which

extent generated summaries can help developers with comprehend-

ing build logs. We will also empirically analyze the effect of a build

summarization tool on the time needed to understand and fix a build

break. More specifically, we will answer two research questions:

RQ1 Are summarized build logs more understandable?

RQ2 Does a semi-automated support system influence the time

that is required to fix a broken build?

We have implemented the Build Abstraction and Recovery Tool
(BART) to study these questions. Bart is a Jenkins plugin that sum-

marizes failed build logs and that links related StackOverflow dis-

cussions to help solve the build failure. To answer both research

questions, we deployed Bart in an empirical study with eight de-

velopers. Our results show that developers consider the generated

summaries helpful for fixing build breaks; as a further result, the

resolution time for fixing the build can be significantly reduced.

In summary, this paper makes the following contributions:

• Presentation of a novel idea to support build fixing through build

log summarization and linking to StackOverflow resources.

• Proof-of-concept implementation for Bart.
• Investigation of the effect of understandability of build failures

on the fixing and validating of builds.

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Carmine Vassallo, Sebastian Proksch, Timothy Zemp, and Harald C. Gall

Build Summary

Build Status Failed

Failed Goal org.apache.maven.plugins:maven-compiler-plugin:2.1:compile

Error Cause Compilation Failure

Reactor

ActiveJpa SUCCESS

test SUCCESS

core FAILURE

utils SKIPPED

Reason for Build Failure: Compilation Failure

Hint: Compilation

Your build contains a compilation error. Please check the following
file:

File: Model.java
Line: 224
Reason: Model is abstract; cannot be instantiated

Done

Build Server

Build
Passed?

Repository

Build
Log

Notification

Hint Generators

1 2

3

4

[INFO] Scanning for projects...
[INFO] Inspecting build with
total of 1 modules...
[ERROR] To see the full stack
trace of the errors, re-run
Maven with the -e switch.

5

7

Developer

Compilation

Testing

Code Analysis

Dependencies

6
BART

8
StackOverflow Discussions

9

Figure 1: Overview over the Build Summarization Approach

2 Overview
To understand our vision of developer-oriented assistance, it is im-

portant to reflect on the typical CI workflow that is illustrated

in Figure 1. Developers working in such a workflow synchronize

their working copy frequently with the central repository that is

shared by all team members (1). They pull changes from others

and push their own contributions. The repository is being mon-

itored by the build server. Every time a new commit is pushed

to the repository, the build server will update its working copy

and build the project (2). This typically includes multiple stages

of a Maven build, for example, compiling the sources, running the

tests, generating documentation, or validating the software quality

through static analysis. If all these stages have passed (3), the build

is considered to be successful, which typically results in the release

of the software. If the build fails, on the other hand, developers are

being notified by the build server about the error. This typically

happens through sending an email or by visiting the web frontend

of the build server (4). The developers have to consult the build

log (5) to understand the problem and provide a fix, a difficult and

time-consuming task that typically consists of three steps.

Log Inspection The developer investigates the build log to get

further information about the build failure. While it is often

simple to spot the part in which the build failed, it is very often

difficult to read the log and to understand the failure reason.

Hypothesis Once the developer has an intuition about the root

cause for the break, the problem should be replicated, if possible

on the developer machine and ideally by providing a test. This

makes it possible to use a debugger to inspect the failure.

Fix If the root cause of the build failure is identified, fixing it is

usually the easy part. The developer implements the fix, pushes

it to the repository, and waits for the result of the new build. All

the steps are re-executed if the build fails again.

Executing these three steps is difficult and deriving a hypothesis

about the root cause of the failure requires experience. If the de-

veloper gets stuck, a common strategy is to ask more experienced

team members [13] or to search on the Internet for solutions [33].

In this paper, we present Bart (6), the Build Abstraction and
Recovery Tool that supports developers by enriching the build log

through summarization and linking of external resources. We have

designed Bart as a support tool forMaven builds andwe have created
a proof of concept implementation for the build server Jenkins. Our
solution is complementary to the existing workflow that we have

discussed before. Bart does not replace the inspection of the build

log, instead, the build log is embellished with further information to

facilitate a faster and better decision making of the developer. For

example, our screenshot (7) shows the Build Summary (a general

summary of the build result) as well as a list of hints, in this case

details about a compilation error. These hints are included in the

Jenkins build overview page.

Bart facilitates the generation of these hints with two reusable

parts. First, it parses the build log, extracts all relevant sections

(e.g., keywords, commands, built modules), and stores this prepro-

cessed information in a meta-model (8). Second, Bart is extensible
through additional Hint Generators (9). We have built five differ-

ent hint generators that summarize the information found in the

build log, as well as hint generators that use information from the

build log to search for solutions in the Internet. For example, our

proof-of-concept implementation can link to related discussions on

StackOverflow.
We will introduce these individual parts in the remainder of this

section. Section 2.1 introduces our build-log meta model and de-

scribes our parsing. Section 2.2 contains the extension point mech-

anism for hint generators and a description of the four different

hint generators that summarize build log information. Section 2.3

discusses the hint generator that links build failures to external

information, such as discussions on StackOverflow.

Un-Break My Build: Assisting Developers with Build Repair Hints ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

StartedAt: Date
Duration: TimeSpan
Name: string

Module
1 *
Modules

SUCCESS,
FAILURE,
SKIPPED

BuildResult
«enum»

Result

Goal

Vendor: string
Plugin: string
Goal: string

GoalName

Name

Content: string

LogLine

UNKNOWN,
INFO
ERROR,
WARNING,
NONE

LogLevel
«enum»

Level

1 *
Goals

1 *
Payload

Result

StartedAt: Date
Duration: TimeSpan
TotalMemory: int

Build

GetResult(): BuildResult
GetLastExecutedGoal(): Goal
GenerateSummary(): string

Figure 2: Meta-Model that Is Available to Hint Generators In Bart

2.1 Detecting Failure Information in the Log
Build tools typically log all their actions in a detailed log that allows

developers to reconstruct their actions after the fact. Such a build

log is typically stored as plain text. All details about the build are

contained, but such logs are very large, e.g., even the build log of

the relatively small Maven build tool itself (∼ 130K LoC) results in a

build log of more than 1,500 lines. To make the creation of new hint

generators in Bart straight-forward, we preprocess these logs. We

provide an abstraction over a Maven build log that makes it easy to

find exactly the information that the hint generators need. While

we are going to focus on the Maven build system [17], the most

used build tool among Java developers [16], the underlying idea is
general and can also applied to other build systems. In this section,

we will first briefly describeMaven’s building concept, the structure
of its build log, and our parsing. We will then introduce our meta

model that we use to store the relevant build information.

Maven follows the concept of convention over configuration. It

provides a standard build configuration that defines several phases
that are run one by one in the default build lifecycle (e.g., compile,

test, verify). The set of phases is fixed and most of them are empty

by default. A concrete build job can now add specific goals to the
different phases, if needed. So, for example, a project could add the

invocation of a static analysis tool to the verify phase. In practice,

build files contain the configuration for many of such goals that
range from dependency resolution in the very beginning of builds

to packaging or deployment that typically take place at the end.

Maven builds can be hierarchically organized. In addition to the

goals that are configured in the build file for the current module,
parent configurations can be references, from which all configu-

ration options are inherited. In addition, it is possible to refer to

submodules that are then build together with the current module.
At each build and starting from the module for which the build

was triggered,Maven creates the dependency tree between all (sub-)

modules and schedules the individual builds in an order that does

not violate their dependencies. In Maven terminology, this build
plan that contains the names of all modules is called the reactor.
During the build, one section is dedicated to each module. This
section contains entries for each executed goal, which might also

prints additional output to the log. At the end of the build, Maven

generates a reactor summary, which again contains the individual

build results. In addition, the reactor summary will also list the con-

sumed memory, and -in case of a build failure- further information

about the module and goal, in which the build broke.

A developer that has to read such a build file, has to navigate

through a big log to find the relevant information. This is also a

hard task for an automated processor, because the individual parts

need to be parsed or otherwise processed with string utilities.

To simplify the access to the contained information, we imple-

mented a parser that, taking a build log as input, fills themeta-model

that we have created, as depicted in Figure 2. The model follows the

structure that we have introduced before. The root entity of a build

log is a Build, which has basic properties like the required memory

for the build. A build refers to several Module definitions that are

part of the build. In addition to timing information, each module

has a unique name and a result. It also contains information about

the different Goals that were executed while building it. Each Goal

combines the GoalName (i.e., a reference to the tool that was run),

the BuildResult or the invocation, and a Payload, which contains

all output that was generated for this Goal. Each line is annotated

with a LogLevel and contains some content as a string.

The original build log contains a reactor summary at the very

end that can be requested by calling Build.getSummary(). We do

not explicitly store the contained information in the meta-model,

because it can be fully inferred from the stored data. In general, this

meta-model does not lose any information of the original log. It

splits information into individual sections and provides easy access,

but it could be transformed back into the original log file.

Please note that the parser, which we built for this paper, does

not support the complete meta-model yet. We have focused our

implementation on the parts that were required for the experiments

in the remaining sections of the paper. This does not represent a

conceptual limitation of the meta model though and can be solved

by spending more implementation effort on the parser.

2.2 Summarizing Build Log Information
Understanding the extensive build logs generated through a Maven
build is tedious. The reactor summary that is automatically gener-

ated at the end of a build contains basic information about a build

failure and represents a first step in the right direction. However,

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Carmine Vassallo, Sebastian Proksch, Timothy Zemp, and Harald C. Gall

the information is presented as plain text without any highlighting

and it is hard to read by developers. In addition, only the lines of the

failing goal that are marked as error are included in the summary,

surrounding information, which could further explain the error, is

omitted. We are convinced that this current build summarization is

not sufficient. Thus, we propose an improved summarization and a

highlighting of the important pieces to ease life of developers, and

we make them more efficient in understanding the build log.

Inspecting the failing section of the build log should provide

all required information to understand the cause of the failure,

so it represents the starting point of any investigation of a build

failure. However, the actual information that is included in the

corresponding part of the build log can be very extensive (e.g., long

lists of executed tests) and it also heavily depends on the failing

goal. Fortunately, it has already been shown that build failures can

be assigned to different categories, based on the goal or build step

that failed [35]. We propose to provide a better guidance in the

fixing process by tailoring the summary to the failure category.

Algorithm 1 shows the conceptual framework that we use to

present build summaries. The actual implementation is highly in-

tegrated in the build server Jenkins and presents the output in the

polished form that is shown in Figure 1. We first parse the build log

into our meta-model. We do not add hints to successful builds, so we

skip non-failed builds in the algorithm. The build status and the in-

dividual build goals are directly available in the model. For a failing

build, we determine the failure category based on the last executed

goal. Using this category, it is possible to filter for applicable hint

generators to save execution time. Every hint generator is asked

to provide hints that might point the developer towards a build

fix. A Hint is just a key-value dictionary that can contain arbitrary

contents and hint generators can return an empty list, a single hint,

or also multiple hints. The presentation to the user is achieved by

iterating over all hints and by putting all their key/value pairs into

a table. We do not imply any restriction on the type of key that can

be generated, because the actual hint generator should select the

most meaningful information for the developer.

In this paper, we focus on a proof-of-concept implementation

that supports the most frequent build break categories [26, 29], i.e.,

Compilation, Dependencies, Testing, and Code Analysis. In addition,

we want to provide an additional Build Summary that provides an

overview over the whole build. In the following, after describing

such overview, we will briefly introduce these different hint gener-

ators, which information we want to show to the developer in each

case, and how we can get access to the required build log data.

Build Summary The Build Summary provides a high-level

overview over the result of the build. It mimics Maven’s reactor
summary, but reduces the amount of information to a minimum.

Rich formatting options are applied to highlight the different infor-

mation. You will find an example of the build summary in Figure 1.

Each summary is composed by the following sections.

Reactor Summary: The list of modules can be requested from the

Build object, their individual results can be directly used.

Build Result: Can directly be requested from a Build object.

Failed Goal: The last executed goal of a failing Build.

Algorithm 1: Conceptual Framework for Generating Hints

1 buildLoд ← ...;

2 reдisteredHintGenerators ← ...;

// parse model

3 model ← parse (buildLoд);

4 if model.Result == FAIL then
5 cat ← determineFailureCateдory (model);

6 дens ← f indApplicableHintGenerators (cat);

// generate hints

7 hints ← list ();

8 forall gen in gens do
9 curHints ← дen.дetHints (model);

10 hints .addAll (curHints);

11 end
// show them to the user

12 i = 0;

13 forall hint in hints do
14 print (”Hint_” + i);

15 i ← i + 1;

16 forall key in hint.keys do
17 print (key + ” : ” + hint[key]);

18 end
19 end
20 end

Error Cause: The error cause consists of the error message that is

printed by the failing goal. These can be extracted by selecting

all lines of the goal that have the log level "error".

Compilation Failures The hint generator should provide de-

tailed information about the location of the compilation error. All

this information can be found in the Payload of the failing goal.

Type: Name of the type (e.g., class) that could not be compiled.

Line: Line number, in which the error has occurred.

Reason: Textual description of the compilation error, e.g, instantia-

tion of an abstract class, when provided by the build log.

Dependency Failures Declared dependencies can lead to various

build failures. Our summarizer helps understanding the dependency

error by showing the following information.

Dependency: The name of the dependency that causes the failure.

The Maven coordinates of the dependency are mentioned in the

error message and we use a regular expression to parse them.

Reason: Textual description of the dependency error. Typical rea-

sons are invalid versions numbers or missing internet access.

Testing Testing failures are particularly tricky to fix, because they

can occur after introducing a change in a completely different part

of the system. For this reason, it is important that a hint does not

only contain the location of the test, which is required to replicate

the failure locally, it should also contain the reason that explain the

failure. As a result, the hint generator reports the following:

Location: The location, in which the testing failure occurs. This

contains both the test class and the failing test case.

Un-Break My Build: Assisting Developers with Build Repair Hints ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

Figure 3: Hint that Links Related StackOverflow Discussion

Reason: A textual description of the test failure. This is taken from

the failed assertion statement, so the quality of these descriptions

depends on the concrete test case. In case of an error, also the

stack trace of the failure will be included.

Code Analysis Many builds use static analysis tools to validate

properties of the system. For example, projects apply Checkstyle [5]
to ensure a consistent programming style in the code base. Each

such tool produces a different output and individual hint generators

are needed to cover them.We selectedCheckstyle as a representative
for such static analysis tools and include the following information

that help to understand related build failures:

Location: The path to the file, in which the style violation was

detected. The location also includes the line number.
Reason: Name of the style rule that caused the failure. These names

are typically very expressive, e.g., "method name too long", so

the proposed hints are potentially very meaningful.

Future Extensions Future hint generators might require other

information from the build log in their hints. They can either reuse

our meta model or provide their own extraction strategy to find the

interesting information in the build log. It is possible, for example,

to use custom regular expressions to parse specific information

from the Payload. As a fallback, it is always possible to recover a

full build log from our meta-model, which ensures support for all

hint generators that work on the build log. Extensions that require

external files in addition to the build log, like test coverage reports,

represent a special case. These files are not contained in the build

log. Hint generators that require access can still parse the respective

path from the build log and open these files separately.

2.3 Hints from External Sources
Summarizing local information improves the ability to understand

the contents of the build log. However, developers may encounter

situations, in which the error message is easy to understand, but

requires a complex fix. For example, if the source level is not config-
ured in Maven, it will use Java version 5 by default. If the developer

nowwrites Java code in a newer version, e.g., version 8, and uses one
of the newly introduced constructs, e.g., lambda expressions, the

Maven compiler plugin will fail with a syntax error, even though no

problem will be reported in the development environment. While

the summary will point out a syntax error very clearly, in this case,

an inexperienced developer will struggle to solve this on their own

and will most likely ask a more experience colleague for help or

simply search for a solution on the internet. For this reason, we also

need to provide an infrastructure in Bart that allows the creation of

hint generators, which can go beyond a local summarization. These
external hint generators should be able to add additional hints and

link to external resource in their suggestions for possible solutions.

Algorithm 2: StackOverflow Recommendation Algorithm

1 buildLoд ← ...;

2 hints ← дetSummaryO f LocalHintGenerators (buildLoд)

// query generation

3 query = createStackOver f lowQuery (clean(hints));

4 posts = searchOnStackOver f low (query);

// ranking

5 cleanedLoд ← clean(buildLoд);

6 words ← split (cleanedLoд);

7 keywords ← removeStopWords (words);

8 forall post in posts do
9 post .score ← countKeywords (post ,keywords);

10 end
11 proposals = posts .orderBy (p : p.score,DESC).take (4);

It is very likely that, in case of a build failure, a similar build

break has already been discussed online. Previous work has already

shown that question and answer sites, like StackOverflow, can
provide a great source of information to support developers [24].

The site contains almost 60K discussions that are related to Maven
development [31], which makes us very confident that it can also be

a good source for tips on how to fix a broken build. An example of a

hint that refers to a StackOverflow discussion is shown in Figure 3.

The example hint explains a specific compilation failure and also

links the full discussion to provide additional context.

To obtain relevant discussions from StackOverflow, we use a
twofold approach. First, we query StackOverflow for discussions

that are related to the build log. Second, we rank the returned posts

and present the most relevant discussions to the developer. The

exact algorithm is shown in Algorithm 2. The hint engine starts

with requesting the build log and the hints that have already been

generated in the local summarization step. Given that the local hint
generators have already identified the key parts of the build log, we

make use of this information to create a query that is as specific as

possible. The hints are being cleaned by removing local information

(e.g., paths or file names) and common overhead that is added in

every Maven build (e.g., formatting characters or goal names). The

resulting query mainly contains the error message that describes

the failing build and it is used to search on StackOverflow.
In a second step, the algorithm ranks the returned posts to iden-

tify the ones that are most related to the actual build log. To achieve

this, the build log is first cleaned in the same way as the query and

then tokenized to create a set of keywords that describe the build.

Common english stop words (e.g., "the", "or", "and") are removed

to improve this set of keywords. For each post, we calculate a post

score by counting how many different keywords are used in the

body of the discussion. After ordering the posts by their score, the

top four proposals are selected and shown to the developer.

3 Empirical Study
We conduct an empirical study to investigate Bart’s capability to

improve the understandability of build failures and the performance
of developers when fixing broken builds. Our study consists of two

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Carmine Vassallo, Sebastian Proksch, Timothy Zemp, and Harald C. Gall

Table 1: Analyzed Projects

Project Name Version Size (Loc) #GitHub Stars #Builds

ActiveJPA 0.3.5 39,335 143 123 (master)

Sentry-java 5.0.0 113,332 312 509 (master)

Fongo 2.1.1 31,088 374 404 (master)

parts, a controlled experiment and a questionnaire, that cover the
different aspects that we want to investigate.

Understandability: In the first part, we assess whether or not the

summaries generated by Bart make it easier to understand the

cause of a build break and to formulate a solution strategy.

Performance: In the second part, we measure Bart’s effect on the

required time to fix certain types of build breaks.

In the following, we will introduce our methodology that we have

applied to investigate both aspects.

3.1 Context
The context of our study includes (i) as objects, build breaks that

we have generated from selected Java projects, and (ii) as subjects,
developers that participated in our controlled experiment.

The three software systems that we considered in our study are

illustrated in Table 1. ActiveJpa [2] is a Java library that imple-

ments the active record pattern on top of Java Persistence APIs

(JPA). Sentry-java [28] is an error tracking system that helps de-

velopers to monitor and fix crashes in real time. Fongo [7] is an

in-memory Java implementation of MongoDB. The considered sys-

tems are hosted on GitHub and built on the TravisCI [32] platform.

We followed the methodology of Bavota et al. [3] to select systems

that developers can easily get familiar with and that are, at the same

time, representative for real software systems. While our selected

systems have less than 500K lines of code, they are very popular

(more than 100 stars on GitHub) and frequently built (more than 100

builds on the master branch). For our study, we have injected bugs

into these systems to generate broken builds. The introduced bugs

belong to the four most recurrent categories of build failures [35],

i.e., compilation, dependencies, testing, and code analysis. We created

different mutations of the extracted systems for every category of

broken builds and ended up with five broken ActiveJPA versions,

two broken Sentry-java versions, and one broken Fongo version.

More details about these broken versions are depicted in Table 2.

We always created two mutated versions to avoid learning effects

in both tasks of the study. To generate the testing build breaks we

changed an assertion in the test class FongoAggregateProjectTest

from assertNotNull to assertNull. We have also altered the count

method of the class org.activejpa.entity.Model by adding 100 to

the returned value, which causes the related test to fail. To provoke

dependency build breaks, we have inserted an obvious non-existing

dependency. For the second case, we included a typo in an existing

dependency. We have introduced two code analysis build breaks in

Sentry-java, by adding a new method with a very long name to the

class SentryAppender and by deleting the Javadoc comment of the

method doClose in the class AsyncConnection. Both are picked up by

CheckStyle, which will raise the errors Very long function name and

Javadoc has empty description section. Finally, to create compilation
errors we added a return statement in the void method close() of

the class org.activejpa.JPA and inserted an illegal combination of

static and abstract in the signature of the method deleteAll of

class org.activejpa.entity.Model.

We contacted participants by sending out invitations to students

from the University of Zurich (UZH) and Swiss Federal Institute of

Technology in Zurich (ETHZ). In total, eight students participated

in our controlled experiment. The majority of our participants (5,

62.5%) report three to five years of programming experience, while

two participants (25%) declare that their experience even exceeds

five years. Only one participant reported less than three years of pro-

gramming experience. Six participants (75%) have already obtained

at least a Bachelor’s degree and six participants (75%) declared that

they work as professional developers, with overlaps between both

groups. We asked the participants to self-estimate their program-

ming experience in a five-point Likert scale [14] from very low to

very high. Out of the 8 participants, 3 reported an experience level

of above average or higher (very high: 1). Only 2 participants rated

their experience as below average and no one rated their experience
as very low. Our participants represent a small but diverse group

with different backgrounds. While all participants are early career

software developers, some of them have already extended program-

ming experience, which allows us to study build failure resolution

along developers with different degrees of expertise.

3.2 Experimental Procedure
The empirical study we conducted with our participants consists of

two different tasks and was supervised by one of the authors. We

provided summaries and solution hints generated by Bart to our

participants to study the understandability of build breaks. In the

second task, we investigate whether Bart can speed up the fix.

First Task: Understandability In the first task, our participants

answered a questionnaire about the understandability of the build

break summaries provided by Bart. We used Bart to generate sum-

maries and solution hints for the broken builds of the mutated

software components in Table 2 (Task 1) and asked our participants
to evaluate them. We provided our participants with the following

three questions and we asked them to answer on a five-point Likert

scale from very high to very low:

• How much did your understanding of the build failure improve

through the summary of the build log?

• To what extent do the suggested solutions help you in conceiving

a strategy to solve the build failure?

• To what extent are the suggested solutions applicable to the

specific build failure?

We have also requested basic demographic information in the sur-

vey to better understand the background of our participants.

Second Task: Resolution Performance In the second task, we

measured the time it takes developers to fix a broken build to

analyze the effect of Bart. Every participant was asked to fix two

of the four manually injected bugs for Task 2. We have designed

the experiment as a between-subject study and each participants

had to fix one bug with treatment (i.e., support through Bart) and

Un-Break My Build: Assisting Developers with Build Repair Hints ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

Table 2: Mutated Components in the Analyzed Systems

Build Break Type Task 1 Task 2

Project Mutated Component Project Mutated Component

Test Fongo com.github.fakemongo.FongoAggregateProjectTest ActiveJPA org.activejpa.entity.Model

Compilation ActiveJPA org.activejpa.jpa.JPA ActiveJPA org.activejpa.entity.Model

Code Analysis Sentry-java net.kencochrane.raven.connection.AsyncConnection Sentry-java net.kencochrane.raven.log4j.SentryAppender

Dependencies ActiveJPA pom.xml ActiveJPA pom.xml

one without. We have avoided learning effects between the two

different fix attempts of each participant by changing the type of

build failure and by changing the software component, in which the

bug was introduced. In total, we tested eight scenarios and each of

the four different build failures was fixed twice, once with and once

without treatment. We assigned the different scenarios such that

four participants started with the treatment and the other without

treatment for the first build fix. All participants managed to fix both

their assigned builds without external help.

One of the authors supervised the task. Before starting it, he

introduced Bart and asked the participants to import the assigned

projects into their development environment. Furthermore, the su-

pervisor gave our participants time to get familiar with the projects

and with the Jenkins instance that was used to build the projects.

Note that in case of a build failure, Jenkins produces a build overview
that indicates the build result (i.e., Failed), the last Git commit that

was pushed to the remote repository, and the name of the commit-

ter. In addition, Jenkins provides access to the generated build log.

To start the fix attempt of the build failure, our participants were

asked to trigger a new build of the assigned project and to repair

the resulting build failure. The supervisor of the task measured the

resolution time, i.e., the time between the build break and the next

build success. The same methodology was applied for the second

build fix attempt. After finishing the experiment, we discussed the

usability of Bart with the participants in an unstructured interview.

4 Results
This sections presents the outcome of our study. We will discuss

the results and will answer our research questions.

4.1 Understandability of Build Breaks
Our first research question was how build summarization can im-

prove understandibility. To answer this question, we evaluate the

ratings of our participants for the generated summaries of Bart.
We visualize the answers in three diverging stacked bar charts [27]
that illustrate their rating regarding the understandability of the

summaries (Figure 4), their relevance (Figure 5), and their applica-
bility to the build break (Figure 6). We use the Likert values very
high, above average, average, below average, and very low.

Understandability Figure 4 shows how participants rate the un-

derstandability of Bart’s summaries compared to the raw build logs

that are provided by Jenkins. All participants agree across the board
that the understandability of the build break summaries is at least

above average, with the majority saying that it is very high. Only in a
single case, for the dependency related build break, one participant

found that Bart’s summary was comparable to the default build-log

presentation in Jenkins, but that it did not improve it.

The developers seem to agree that Bart’s summaries helps them

to better understand the build log. One of the participant describes

the actual build logs as “cryptic” (S8), which could be caused by a

lack of experience in reading it. However, the overloading amount

of information that is contained in a build log is a recurring theme in

the answers of our participants, even from experienced developers.

Another participant said that “Maven logs tend to be verbose, having
a quick summary [...] greatly reduces the time needed to find and
correct a build failure” (S5) and another one that “[Bart] helps to find
the programming errors quickly” (S4) and “a structured summary is
way easier to grasp than many unstructured lines of text” (S4).
Our participants almost unanimously agree that Bart’s build sum-
maries improve the understandability of build logs.

Relevance & Applicability Figures 5 and 6 illustrate the rele-

vance and applicability of the proposed solution hints from Stack-
Overflow. The solutions hints for compilation and code analysis
breaks were mostly positively rated. Most our participants found

their relevance and applicability above average, more than half of

them rated them even as very high. However, two participants find

the applicability of the solution for the code analysis break below
average and one of them, according to the background information

a very skilled developer, has also considered the relevance of the

solution below average. The one participant that has considered
the solution hint for the compilation build break as very low has

little programming experience and uses Java only occasionally. We

assume that he simply did not understand the suggested hint.

Most study participants find the solution hints for build breaks caused
by compilation and code analysis errors relevant and applicable.

In case of the dependency build break, the participants do not

agree on a rating for the relevance and applicability of the solution

hints. The ratings are centered around average, some of the partici-

pants find the suggestions relevant and applicable (one participant

considered it even very high), while others rate it below average.
Two participants even think that the applicability of the solution

hints is very low. One of them is no frequent Java user, but the other
one has a very strong background in Java programming, so a lack

of expertise alone does not explain the different ratings.

Suggested solutions for dependency errors are often not considered
as valuable hints by our participants.

Our respondents were also not convinced about the relevance

and applicability of solution hints for testing build breaks. Most of

our participants consider them below average or even very low when

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Carmine Vassallo, Sebastian Proksch, Timothy Zemp, and Harald C. Gall

Very Low Below Average Average Above Average Very High

0%

0%

0%

0%

100%

100%

100%

88%

0%

0%

0%

12%

100 50 0 50 100
Percentage

Response VL BA A AA VH

Code Analysis

Testing

Compilation

Dependencies

Figure 4: Understandability of Summaries

25%

0%

12%

75%

50%

75%

75%

0%

100 50 0 50 100
Percentage

Response VL BA A AA VH

12%

25%

25%

25%

Code Analysis

Compilation

Dependencies

Testing

Figure 5: Relevance of Proposed Solution

38%

12%

25%

75%

50%

75%

75%

0%

100 50 0 50 100
Percentage

Response VL BA A AA VH

25%

 0%

12%

12%

Code Analysis

Compilation

Dependencies

Testing

Figure 6: Applicability of Proposed Solution

compared to the original build log. One possible explanation is that

the available information in the build log of a failing testing build,

i.e., the name of the failed test, is project specific. This makes it

impossible to find related solutions for such local errors in external

resources without taking other information into account.

Testing-related build failures are project specific. The build log alone
is not sufficient to identify related external resources.

4.2 Resolution Time of Build Failures
Our second research question was whether Bart can reduce the

time that is required to fix a build. To answer this questions, we

have asked our participants fix the failing builds of the second task

and measured their required time. Table 3 illustrates the results of

this experiment, it shows the average time of both approaches to

repair the different build failure types with and without Bart. While

the previous research question has revealed that the ratings for

relevance and applicability of Bart’s solution hints differ between

the build break types, the results of the second task shows that

using Bart leads to a substantial reduction from 27% to up to 62% in

the required time to fix a build across all scenarios. We will discuss

the different break types individually to explain what seems to be

a contradiction at a first glance.

Code Analysis and Compilation The study participants found

that Bart’s summaries improve understandability and that the solu-

tion hints are both relevant and applicable. These positive ratings

can also be confirmed in the practical task. The time to fix a build

break could be reduced by 32.6% for build breaks related to code
analysis and by 27.3% for build breaks related to compilation errors.

The error messages of both compilation and code analysis are
self-explanatory, but a certain degree of expertise is needed to

understand them. Fortunately, the exact same error messages and

warnings appear in other projects as well, so it is easy to find

information online that provides context to understand the error

message. Our solutions hints are able to enhance the description of a

warning or even replace it and the developers get an explanation of

an error or of a violated rule without having to look it up on external

resources. This aspect is particularly useful when the developer is

not used to a specific code analysis tool.

Our participants found it very helpful that Bart integrates all
required information to understand the meaning of a rule violation

“Less searching for the relevant part in the error message, hence faster
bug resolution” (S2). Moreover, the links to StackOverflow are highly

appreciated when the meaning of a warning is non-obvious. “In
the less obvious error causes, the stack overflow extracts prove to be
very useful” (S5). In these cases, the StackOverflow discussion about

the proper solution can provide additional context information to

understand the problem. The StackOverflow solution hints speed up

the development process, because “You can often get the information
from bart without having to search the internet” (S6).
In addition to the summary, solution hints can provide the required
context that helps with understanding the cause of a build break.

Dependency and Testing The relevance and applicability of the

suggested solution hints were not considered useful for dependency
breaks and testing failures. These low ratings can easily be explained

though. A search for the corresponding error message would either

return many unrelated resources (e.g., cases in which other develop-

ers had trouble with some other dependency) or none (because the

error message of a test failure is project specific). However, we could

still see a substantially reduced fixing time for both categories. The

improvement for dependency related build breaks (62.4%) has even

been the most significant reduction among all considered cases.

When considering error messages in both categories, it becomes

apparent that both are typically very self-explanatory. The errors

immediately point to the missing dependency or name the failing

test. The required action to fix such issues is straightforward: search

for the missing library in the Maven Repository and add it to the

build file or fix the failing test, respectively. The participants that

fixed such kind of breaks have reported that the reorganization of

the information contained in the build logs significantly reduced

the amount of time needed to understand the cause of a build break.

One of our participants stated that “[Bart is] mostly a timesaver, not
really a skill enhancer. Carefully reading the log usually allows the
extraction of the same information” (S5). Another participant found
that “directly serving the relevant solution, the debugging process is
drastically sped up” (S1).

Another important aspect that affects the time to fix a build is

the debugging environment. Previous work has shown [9] that CI

server like Jenkins do not provide sufficient support to debug a build

Un-Break My Build: Assisting Developers with Build Repair Hints ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

Table 3: Average Resolution Time per Build Failure Type

Build Break Type excl. Bart (s) incl. Bart (s) Reduction (%)

Testing 531 310 41.6%

Compilation 196 142 27.3%

Dependencies 303 114 62.4%

Code Analysis 158 107 32.6%

Overall Average 41.0%

break. According to our participants, however, Bart summaries

“add more capabilities to the environment” (S6) compared to the raw

build logs and “might make debugging unnecessary when the bug
becomes evident” (S2). They report that “if some tests fail, the Bart
output can be helpful in finding out why” (S5).

Dependency breaks and testing failures seem to be easy to under-
stand. Providing a good summary that highlights the locality of the
issue seems to be the most crucial factor on fixing time.

Overall, it seems that the different build break categories require

different support strategies. Some categories benefit from links to

external resources that provide additional context about an error

(e.g., compilation errors), others benefit more from an improved

summarization (e.g., testing failures). Bart combines both in one

tool and substantially reduces the time to fix a build break across

all scenarios in our study, on average by 41%.

5 Implications and Future Work
Our findings have important implications for both researchers and

vendor of automated static analysis tools. Existing CI servers pro-

vide a build overview, but refer developers to the build logs for

detailed information, e.g., to understand the reason for a build fail-

ure. Our results suggest that build logs are difficult to understand

though and that summaries of the build failure should be directly

integrated into the build overview to support developers in the

comprehension process.

We show that providing solution hints that link to external re-

sources can be useful to developers and that they can provide addi-

tional context, which can be helpful to derive a solution strategy,

especially when the root cause of a build failures is unclear or when

the solution is non-trivial. So far, our infrastructure only consid-

ers information from the build log to identify related resources.

Future hint generators should consider other resources produced

during the build, like generated reports or information about de-

ployed libraries, to create a more holistic picture of the failure. A

better context awareness of the summarization tool might help to

overcome existing limitations, e.g., for testing related build breaks.

This work introduces a technique to support developers when

fixing a build break by providing them with summarization and

solution hints. However, some build breaks cannot be reproduced

locally and need to be solved on the server. Future work should

investigate new ways of bridging this gap by considering differ-

ences between the remote environment on the CI Server and the

local IDE environment when searching for solution hints. Also

novel debuggers that are tailored to the CI workflow might help to

improve the effectiveness when fixing build breaks.

Assistance tools like Bart do not only have a positive effect on

the developer that fixes the build, they also reduce the downtime of

the team that is caused by the build break. Supporting the individual

developer has the potential to increase the team productivity. Future

work should find novel summarization techniques for build log

summarization to reduce the required time even further.

6 Threats to Validity
The work presented in this paper was carefully planned and ex-

ecuted, but several threats to validity exist for our results. In the

following, we will discuss them and our mitigation strategies.

Threats to internal validity concerns the confounding factors

that might have affected our results. The broken versions that we

artificially created could be not representative of errors occurring

in the reality. We tried to mitigate it by injecting realistic bugs that,

according to previous work [29, 35], are the most common causes of

build breaks. Another aspect that might affect the reliability of our

results is the complexity of systems considered during the analysis.

We tried to reduce this threat by considering build breaks in our

study, which belong to projects that are not too big, but at the same

time representative of real systems. It is also possible that our par-

ticipants didn’t fully understand the questions in our questionnaire.

We have reserved time before starting, to allow participants to ask

questions about the experimental procedure. Another threat is the

manual time measurement that could introduce a bias. However,

the substantial differences that we have measured far exceed the

imprecision of the manual measurement. Other build summarizers

might exist and requiring our participants to read a plain-text build

log could introduce a bias in our experiment. However, we are not

aware of any frequently used summarization tools and we think

that using the information that is available in a standard Jenkins

installation represents a valid baseline for our comparison.

Threat to external validity concern the generalizability of our

findings. We considered only four types of build breaks in our

study. However, those represent the most relevant and recurrent

categories of build breaks that have been observed [4, 18, 29]. Fur-

thermore, the participants to our study could be unrepresentative

of all kind of developers. We mitigated such threat trying to reach

people with different programming skills, to make general consid-

eration about beginner and expert developers. Our tool, Bart, is the
first implementation of an approach for build logs summarization.

The current design of our study only looks at errors introduced by

users. Future work should expand the scope and investigate build

errors that are caused by the environment of the build server (e.g.,

different locale settings). The results presented in this work might

not generalize beyond the considered build failure types.

7 Related Work
This paper is related to three lines of research: works on build

failures, source-code summarization, and mining Q&A sites. In the

following, we will discuss the most related previous works from

these areas and relate them to the work presented in this paper.

Build Failures Prior studies have investigated the nature of build

breaks. Miller [18] found that the most recurrent causes of build

failures in Microsoft projects are poor code quality, testing fail-

ures and compilation errors. Other researchers [4, 26] studied the

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Carmine Vassallo, Sebastian Proksch, Timothy Zemp, and Harald C. Gall

frequency of different build failure types in open source projects,

finding that builds generally fail because of failed test cases. In our

study, we focused on the most common build break types according

to those studies. While several works focused on one particular

type of build failure, e.g., code quality [39] or compilation [29], Vas-

sallo et al. [35] proposed a broader taxonomy of build failures. They

have analyzed 418 Java-based projects from a financial organization

and 349 Java-based OSS projects and have identified differences

and commonalities of failures between industrial and open source

projects. Because we summarized Maven build logs of Java projects,
we decided to reuse this taxonomy to categorize our build failures.

Kerzazi et al. [12] have analyzed 3,214 builds in a large software

company over a period of 6 months to investigate the impact of

build failures on the development process. They observed a high

percentage of build failures (17.9%), which aggregate to a cost of

more than 2,000 man-hours when each failure needs one hour of

work to be fixed. Thus, build failure slow down the release pipeline

and decrease the team productivity. This was one of the motivation

for our study: providing developers with a tool able to support them

while fixing build failures making the recovery process faster.

Existing plugins try to achieve the same goal. For example, Log
Parser [1] is a Jenkins plugin that allows developers to add custom

parse rules in the form of regular expressions. Matching parts of

the build log are then highlighted for the developer. Bart pursues a
different goal. It automatically selects the relevant information with

no effort required from developers and organizes this information

in summaries and by linking external information.

Other researchers tackled the problem of speeding up the build

failure repair not considering the information contained in the build

log. Macho et al. [15] proposed an approach to automatically repair

Maven builds that break due to dependency related issues. They

propose three repair strategies for an automated build repair, i.e.,

version update, delete dependency, and add repository. Their tool,
BuildMedic, was able to repair 54% of dependency-related build

breaks. The focus of Bart is developer-oriented and complementary

to automated approaches. We assume that very often developer

interaction is required to fix a build. Therefore, we try to empower

the developer by improving build log understandability though

summarization and linking to external resources.

Source-Code Summarization During their regular work, devel-

opers have to cope with a large amount of external data [8], e.g., bug

reports or source code, which is produced during software develop-

ment. They need support while trying to comprehend such data and

summarization techniques can facilitate this process. Several tech-

niques have been proposed to summarize source code [21]. Haiduc

et al. [8] proposed automatic source code summarization leveraging

the lexical and structural information in the code. Moreno et al. [19]

conceived a technique to automatically generate human readable

summaries for Java classes relying on class and method stereotypes

in conjunction with ad-hoc heuristics. Other approaches generate

summaries from source code artifacts, such as code fragments [38]

or code usage examples [20]. Moreover, Panichella et al. [23] stud-

ied the impact of test case summaries on the number of fixed bugs,

proposing an approach that automatically generates summaries

of the portion of code exercised by each individual test. Other re-

searchers focused on the summarization of build reports [25] or

user reviews [30]. Our approach complements these approaches and

presents a novel summarization approach for another important

software development artifact, i.e., the build log.

Mining Q&A Sites Question and answer websites like StackOver-
flow have been analyzed by several researchers to provide devel-

opers with helpful data during software development. Ponzanelli

et al. [24] enhance the IDE with a Prompter that automatically cap-

tures the code context in the IDE to propose related StackOverflow
discussions. Bart is very similar to this work, it is integrated into

the build server and acquires contextual information about failing

builds to assist developers with deriving a fix. Other researchers,

investigated the impact of searching for answers on StackOver-
flow on development workflow. Vasilescu et al. [34] analyzed the

interplay between StackOverflow activities and code changes on

GitHub. While a switch to StackOverflow interrupts the coding, they

were able to show a correlation between visits of StackOverflow
and code changes. Developers seem to frequently switch between

their IDE and StackOverflow when they get stuck, which supports

our assumptions of Section 2. Finally, Wong et al. [37] generated

summaries for Java classes by mining source code descriptions on

StackOverflow. We also extract information from StackOverflow,
but follow a different goal, i.e., providing hints for build fixes.

8 Summary
This paper presented Bart, a system that supports developers in

understanding build failures and effectively fixing them. Bartworks
on the build log, summarizes build failures, and provides solution

hints using data from StackOverflow. We conducted an empirical

study with eight developers to assess the effect of Bart on repairing

build breaks. Our results show that developers find Bart useful to
understand build breaks and that using Bart substantially reduces

the time to fix a build break, on average by 41%.

Acknowledgments
The work presented in this paper is the result of the Bachelor’s

thesis of one of the authors [40]. We would like to thank all the

study participants. C. Vassallo and H. Gall acknowledge the sup-

port of the Swiss National Science Foundation for their project

SURF-MobileAppsData (SNF Project No. 200021-166275). T. Zemp

acknowledges the student sponsoring support by CHOOSE, the

Swiss Group for Software Engineering.

References
[1] Log parser plugin. https://wiki.jenkins.io/display/JENKINS/Log+Parser+Plugin.

Accessed: 2018-02-08.

[2] Active JPA: A Simple Active Record Pattern Library in Java that Makes Program-

ming DAL Easier. https://github.com/ActiveJpa/activejpa/. Accessed: 2018-02-08.

[3] G. Bavota, C. Gravino, R. Oliveto, A. De Lucia, G. Tortora, M. Genero, and J. A.

Cruz-Lemus. Identifying the weaknesses of uml class diagrams during data

model comprehension. In Proceedings of the 14th International Conference on
Model Driven Engineering Languages and Systems, MODELS’11, pages 168–182,

Berlin, Heidelberg, 2011. Springer-Verlag.

[4] M. Beller, G. Gousios, and A. Zaidman. Oops, my tests broke the build: An

explorative analysis of Travis CI with GitHub. In International Conference on
Mining Software Repositories, 2017.

[5] Checkstyle. http://checkstyle.sourceforge.net. Accessed: 2018-02-08.

[6] P. Duvall, S. M. Matyas, and A. Glover. Continuous Integration: Improving Software
Quality and Reducing Risk. Addison-Wesley, 2007.

[7] Fongo: Faked Out In-Memory Mongo for Java. https://github.com/fakemongo/

fongo/. Accessed: 2018-02-08.

https://wiki.jenkins.io/display/JENKINS/Log+Parser+Plugin
https://github.com/ActiveJpa/activejpa/
http://checkstyle.sourceforge.net
https://github.com/fakemongo/fongo/
https://github.com/fakemongo/fongo/

Un-Break My Build: Assisting Developers with Build Repair Hints ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

[8] S. Haiduc, J. Aponte, and A. Marcus. Supporting program comprehension with

source code summarization. In ICSE (2), 2010.
[9] M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig. Trade-offs in continuous

integration: Assurance, security, and flexibility. In Proceedings of the 25th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, FSE
2017, page To Appear, 2017.

[10] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig. Usage, costs, and

benefits of continuous integration in open-source projects. In Proceedings of
the 31st IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 426–437, 2016.

[11] J. Humble and D. Farley. Continuous Delivery: Reliable Software Releases Through
Build, Test, and Deployment Automation. Addison-Wesley Professional, 2010.

[12] N. Kerzazi, F. Khomh, and B. Adams. Why do automated builds break? an

empirical study. In 30th IEEE International Conference on Software Maintenance
and Evolution (ICSME), pages 41–50. IEEE, 2014.

[13] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining mental models: A study

of developer work habits. In Proceedings of the 28th International Conference on
Software Engineering, ICSE ’06, pages 492–501, New York, NY, USA, 2006. ACM.

[14] R. Likert. A technique for the measurement of attitudes. Archives of psychology,
1932.

[15] C. Macho, S. McIntosh, and M. Pinzger. Automatically repairing dependency-

related build breakage. In Proc. of the International Conference on Software Analysis,
Evolution, and Reengineering (SANER), page To appear, 2018.

[16] S. Maple. Java tools and technologies landscape report 2016. ZeroTurnaround
post, 2016.

[17] Maven. http://maven.apache.org/. Accessed: 2018-02-08.

[18] A. Miller. A hundred days of continuous integration. In Proceedings of the Agile
2008, AGILE ’08, pages 289–293, 2008.

[19] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. L. Pollock, and K. Vijay-Shanker.

Automatic generation of natural language summaries for java classes. In ICPC,
pages 23–32. IEEE Computer Society, 2013.

[20] L. Moreno, G. Bavota, M. D. Penta, R. Oliveto, and A. Marcus. How can I use this

method? In ICSE (1), pages 880–890. IEEE Computer Society, 2015.

[21] L. Moreno and A. Marcus. Automatic software summarization: the state of the

art. In ICSE (Companion Volume), pages 511–512. IEEE Computer Society, 2017.

[22] G. J. Myers. The art of software testing (2. ed.). Wiley, 2004.

[23] S. Panichella, A. Panichella, M. Beller, A. Zaidman, and H. C. Gall. The impact of

test case summaries on bug fixing performance: an empirical investigation. In

ICSE, pages 547–558. ACM, 2016.

[24] L. Ponzanelli, G. Bavota, M. D. Penta, R. Oliveto, and M. Lanza. Mining Stack-

Overflow To Turn The IDE Into A Self-Confident Programming Prompter. In

MSR, 2014.
[25] S. Rastkar, G. C. Murphy, and G. Murray. Summarizing software artifacts: a case

study of bug reports. In ICSE (1), pages 505–514. ACM, 2010.

[26] T. Rausch, W. Hummer, P. Leitner, and S. Schulte. An empirical analysis of

build failures in the continuous integration workflows of java-based open-source

software. In Proceedings of the 14th International Conference on Mining Software
Repositories, MSR’17, page nn, New York, NY, USA, 2017. ACM.

[27] N. B. Robbins and R. M. Heiberger. Plotting likert and other rating scales. In

Proceedings of the 2011 Joint Statistical Meeting, pages 1058–1066, 2011.
[28] Sentry Java: A Sentry SDK for Java and other JVM languages. https://github.

com/getsentry/sentry-java/. Accessed: 2018-02-08.

[29] H. Seo, C. Sadowski, S. G. Elbaum, E. Aftandilian, and R. W. Bowdidge. Pro-

grammers’ build errors: a case study (at Google). In Proc. Int’l Conf on Software
Engineering (ICSE), pages 724–734, 2014.

[30] A. D. Sorbo, S. Panichella, C. V. Alexandru, J. Shimagaki, C. A. Visaggio, G. Can-

fora, and H. C. Gall. What would users change in my app? summarizing app

reviews for recommending software changes. In SIGSOFT FSE, pages 499–510.
ACM, 2016.

[31] StackOverflow: "Maven". https://stackoverflow.com/questions/tagged/maven.

Accessed: 2018-02-08.

[32] Travis-CI. https://travis-ci.org. Accessed: 2018-02-08.

[33] C. Treude, O. Barzilay, and M.-A. Storey. How do programmers ask and answer

questions on the web? (nier track). In Proceedings of the 33rd International
Conference on Software Engineering, ICSE ’11, pages 804–807, New York, NY, USA,

2011. ACM.

[34] B. Vasilescu, V. Filkov, and A. Serebrenik. Stackoverflow and github: Associations

between software development and crowdsourced knowledge. In SocialCom,

pages 188–195. IEEE Computer Society, 2013.

[35] C. Vassallo, G. Schermann, F. Zampetti, D. Romano, P. Leitner, A. Zaidman,

M. Di Penta, and S. Panichella. A tale of ci build failures: an open source and a

financial organization perspective.

[36] T. E. J. Vos, P. Tonella, W. Prasetya, P. M. Kruse, A. Bagnato, M. Harman, and

O. Shehory. FITTEST: A new continuous and automated testing process for

future internet applications. In CSMR-WCRE, pages 407–410. IEEE Computer

Society, 2014.

[37] E. Wong, J. Yang, and L. Tan. Autocomment: Mining question and answer sites

for automatic comment generation. In ASE, pages 562–567. IEEE, 2013.
[38] A. T. T. Ying andM. P. Robillard. Code fragment summarization. In ESEC/SIGSOFT

FSE, pages 655–658. ACM, 2013.

[39] F. Zampetti, S. Scalabrino, R. Oliveto, G. Canfora, and M. Di Penta. How open

source projects use static code analysis tools in continuous integration pipelines.

In Proceedings of the 14th International Conference on Mining Software Repositories,
pages 334–344. IEEE Press, 2017.

[40] T. Zemp. BART Build Failure Summarization. Bachelor Thesis, University of
Zurich, Switzerland, 2017.

http://maven.apache.org/
https://github.com/getsentry/sentry-java/
https://github.com/getsentry/sentry-java/
https://stackoverflow.com/questions/tagged/maven
https://travis-ci.org

