
Bifrost – Supporting Continuous Deployment with
Automated Enactment of Multi-Phase Live Testing

Strategies

Gerald Schermann, Dominik Schöni, Philipp Leitner, Harald C. Gall
University of Zurich, Department of Informatics, Switzerland

{schermann, leitner, gall}@ifi.uzh.ch
dominik.schoeni@uzh.ch

ABSTRACT
Live testing is used in the context of continuous delivery
and deployment to test changes or new features in the pro-
duction environment. This includes canary releases, dark
launches, A/B tests, and gradual rollouts. Oftentimes, mul-
tiple of these live testing practices need to be combined (e.g.,
running an A/B test after a dark launch). Manually admin-
istering such multi-phase live testing strategies is a daunting
task for developers or release engineers. In this paper, we
introduce a formal model for multi-phase live testing, and
present Bifrost as a Node.js based prototype implementa-
tion that allows developers to define and automatically enact
complex live testing strategies. We extensively evaluate the
runtime behavior of Bifrost in three rollout scenarios of
a microservice-based case study application, and conclude
that the performance overhead of our prototype is at or be-
low 8 ms for most scenarios. Further, we show that more
than 100 parallel strategies can be enacted even on cheap
public cloud instances.

CCS Concepts
•Computer systems organization → Distributed archi-
tectures; •Software and its engineering → Domain spe-
cific languages;

Keywords
Release Engineering; Continuous Deployment; Canary Re-
leases; A/B Testing; Microservices;

1. INTRODUCTION
The area of continuous delivery and deployment [10] is

gaining more and more traction in cloud-based software en-
gineering [5]. Continuous delivery is a DevOps practice “in-
tended to shorten the time between a developer commit-
ting code to a repository and the code being deployed” [2].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Middleware’16, December 12-16, 2016, Trento, Italy
c© 2016 ACM. ISBN 978-1-4503-4300-8/16/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2988336.2988348

Shortened release cycles are essential to a company’s contin-
uing success, especially in fast-growing and contested mar-
kets such as the Web. Not only allow shorter release cycles
for faster innovation, they also allow for runtime techniques
to verify how users adopt new features or ideas, e.g., ca-
nary releases [10], A/B testing [12], or dark launches [8].
These live testing techniques share the philosophy that new
versions are initially released to a small sample of the user
base, and are rigorously monitored for increases in runtime
faults, performance regressions [1], or changes in business
metrics (e.g., conversion rate). Depending on a feature’s
performance, more and more users are assigned to the newer
version or traffic is rerouted to previous, stable versions in
order to keep the impact of malfunctioning releases low.

Unfortunately, consistently implementing live testing in
large-scale applications, where new releases are deployed by
many distributed teams on a daily basis, is a daunting task
for release engineers. Multiple versions of software services
need to be operated in parallel, and it is hard to track which
runtime entity (e.g., which cloud instance or Docker con-
tainer) is running which code version. A/B testing requires
clear separation between versions, so as to prevent confound-
ing factors from influencing test results. A wide range of
technical and business metrics need to be constantly moni-
tored and compared to a known baseline for deviations. If
runtime bugs, performance regressions, or unsatisfying A/B
testing results are detected, a suitable fix (e.g., a rollback,
or a hotfix) needs to be triggered, and if the metrics are
positive, a further rollout should be considered. All of these
factors make manually administering live testing often pro-
hibitively expensive.

In this paper, we contribute to the state of the art with
a formal model of live testing, which we then use as a basis
for Bifrost, a prototype system for defining and automat-
ically enacting live testing in a service-based system. Using
Bifrost, release engineers can define sophisticated release
strategies involving the specification of phases of canary
releasing, A/B testing, dark launches, and combinations
thereof, along with the associated metrics to be monitored,
threshold values, and resulting actions. Release strategies
are defined in a YAML-based domain-specific language [16]
(DSL), and executed via an engine implemented in Node.js.
Bifrost is non-intrusive in the sense that it does not re-
quire feature toggles or other code-level changes. Instead,
the middleware assumes that new releases are available as
new service instances. Live testing is then implemented via
traffic routing functionality.

Adopting Bifrost allows developers to formally specify
how a change should be rolled out. This fosters formally
or probabilistically reasoning about the strategy, e.g., in
terms of expected rollout time, and enables version con-
trolling, sharing, and reusing strategies between changes or
teams. We evaluate the Bifrost approach based on a real-
istic microservice-based example application deployed to the
Google Cloud Platform. In our experiments, Bifrost adds
on average a small performance overhead of 8 ms when exe-
cuting a multi-phase release strategy. This seems acceptable
for many use cases, especially considering that Bifrost can
be removed as soon as a change is rolled out to all users. Fur-
thermore, our experiments show that the Bifrost middle-
ware can support more than 100 release strategies in paral-
lel without a significant performance degradation even when
deployed to a low-end, single core cloud instance. Based on
published information from industry leaders in continuous
deployment, such as Facebook [24], we argue that this sug-
gests that our approach scales to real-life release engineering
scenarios.

The rest of this paper is structured as follows. Section
2 provides background information on live testing, and in-
troduces a running example used in the remainder of the
paper. A formal model for specifying live testing strategies
is presented in Section 3, while the Bifrost middleware is
introduced in Section 4. In Section 5, we present the re-
sults of comprehensive performance evaluation of our proto-
type. Finally, related previous work is covered in Section 6,
and Section 7 concludes the paper by summarizing the main
learnings, as well as discussing future work.

2. BACKGROUND
In cloud-based software engineering, practices such as Dev-

Ops, continuous delivery, and continuous deployment, have
recently reached mainstream acceptance in the developer
community. A common feature of these practices is that
they provide means for software houses to further speed up
their release processes and to get their products into the
hands of their users faster [22]. For cloud-based Software-as-
a-Service (SaaS) applications, this idea of “releasing faster”
often comes in the form of wide-ranging automation, e.g.,
a deployment pipeline [2] that, fully automatedly, builds,
tests, and pushes changes into production.

2.1 Microservice-Based Applications
As defined by Lewis and Fowler [15], the microservice ar-

chitectural style is an approach for developing a single ap-
plication as a suite of small services, having each running in
its own process and communicating with lightweight mech-
anisms, typically an HTTP resource API. Single services
are independent of each other, they do not necessarily share
the technology stack with other services (e.g., programming
language, data storage technology). The key advantage of
service-based applications is their inherent scalability and
deployment options in comparison to monolithic applica-
tions. Services are scaled on a fine-granular level instead of
running multiple copies of a monolithic application. More-
over, services are deployed independently of each other, al-
lowing replacing service versions without affecting other ap-
plication parts. This architectural concept has its advan-
tages for the adoption of live testing methods, as described
in the following. It allows not only running multiple in-
stances of a service, but also various versions of a service

at the same time (e.g., canary and baseline version). Key
requirement is a routing functionality ensuring that requests
are correctly forwarded between the various service instances
and versions. In the remainder of this paper, we will assume
applications to follow this model. However, our fundamen-
tal concepts can also be implemented for other application
models, for instance using feature toggles instead of dynamic
traffic routing between services [2].

2.2 Live Testing
Moving fast in terms of releasing new features, while at the

same time ensuring high quality, allows companies to take
advantage of early customer feedback and faster time-to-
market [4]. However, releasing more frequently and with a
higher degree of automation also bears the risks of, ocassion-
ally, rolling out defective versions. While functional prob-
lems are usually caught in testing, performance regressions
are more likely to remain undetected, as they often only sur-
face under production workloads [9]. To mitigate these risks,
SaaS providers often make use of various live testing tech-
niques, most importantly gradual rollouts, canary releases,
dark launches, and A/B testing.

Canary Releases. Canary releases [10] entail the con-
cept of releasing a new feature or version to a subset of
customers only, while all other users continue using the sta-
ble, previous version of the application. The idea is to test
a feature on a small sample of the user base, thus testing
the new version in production, but at the same time lim-
iting the scope of problems if things go wrong. Users are
either selected as a random sample of all users, based on
domain-specific properties (e.g., users that ordered a spe-
cific product), or a combination thereof.

Dark Launches. Dark, or shadow, launching [8, 24] is
used to mitigate performance or reliability issues of new or
redesigned functionality when facing production-like traffic.
The functionality is deployed on production environments
without being visible or activated for any end users. How-
ever, some or all production traffic is duplicated and applied
to the “shadow” version as well. This allows the provider to
observe how the new feature would be behaving in produc-
tion, without impacting any users,

Gradual Rollouts. Gradual rollouts [10] are often com-
bined with other live testing practices, such as canary re-
leases or dark launches. The amount of users testing the
newest feature or functionality is gradually increased (e.g.,
increase traffic to the new version in 5% steps) until the
previous version is completely replaced.

A/B Testing. A/B testing [12] is technically similar
to the other live testing techniques discussed here, but is
mainly used for differing goals. While all the techniques so
far are used to evaluate a new version with regard to a base-
line (the presumably stable, previous version), A/B testing
is often used to compare two new, alternative, implementa-
tions of the same functional requirement. These two versions
are run in parallel, with 50% of all requests going to either
version. Whereas it is common to select users with partic-
ular features for canary releases, A/B tests usually require
a uniform sampling of the entire user demography for both
alternatives. After a predefined experiment time, metrics
(e.g., conversion rate) are statistically evaluated to decide
which version fared better (or whether there was a statisti-
cally significant difference at all).

2.3 Example Live Testing Strategy
A core observation underlying this paper is that rollouts

in practice often consist of multiple sequential phases of live
testing. For instance, a concrete rollout strategy may consist
of initial dark launching, followed, if successful, by a gradual
rollout over a defined period of time. If no problems, are
discovered, the new change may be A/B tested against an
alternative implementation, which may have run through a
similar live testing sequence.

A/B Test

Canary &
Gradual Release

search 99%
fastSearch 1%

search 95%
fastSearch 5%

search 90%
fastSearch 10%

search 80%
fastSearch 20%

search 50%
fastSearch 50%

1 day 1 day 1 day 1 day

5 daysfastSearch 100%

search 100%

XO
R

Figure 1: A simplified example of a live testing strategy with
multiple phases. A change is gradually rolled out to more
and more users, and subsequentially A/B tested.

A simple example live testing strategy, which will be used
throughout the remainder of the paper as a running ex-
ample, is given in Figure 1. Assume a company hosting a
service-based web application selling consumer electronics.
One of the integral services is the search service allowing
customers to look for products they are interested in and to
get an overview of the product catalog. The search service
shall be redesigned and implement a new algorithm for de-
livering more accurate search results based on other users’
search requests and their buying patterns. As replacing the
previous slow, but working, search service by the new one
is associated with risks, the service shall be canary tested
first. Once the service performs as expected from a technical
perspective, an A/B test should be conducted between the
stable and canary variant. In case that the new implemen-
tation performs better according to a priori defined business
metrics, a complete rollout should happen, otherwise a fall-
back to the stable version is conducted. The canary tested
reimplementation fastSearch shall be rolled out to 1% of
the US users first. Search and fastSearch are continuously
monitored and collected metrics include response time, pro-
cessing time (i.e., how long does the actual search algorithm
take to get results), number of 404 requests, and the number
of search requests per hour. Thresholds for fastSearch are
set based on historic values collected for the stable search
service, e.g., response time below 150ms. On a daily basis,
and as long as the monitored metrics do not show any ab-
normalities, fastSearch shall be gradually rolled out to more
and more users, first to 5%, then 10%, 20%, until at 50%
the A/B test is conducted as shown in Figure 1. Besides
more technical metrics, the A/B test focuses also on a busi-
ness perspective (e.g., comparing the number of sold items
on both variants), and is conducted for 5 days to capture

enough data supporting statistical reasoning. State-of-the-
art tools, such as the Configurator used by Facebook [24],
require strategies such as this running example to be manu-
ally implemented by a human release engineer, for analyzing
the data and the tweaking the rollout configuration after ev-
ery step. This is labor-intensive, error-prone, and requires
substantial experience in data science. In this paper, we
propose Bifrost as an automated and more principled ap-
proach towards managing such release strategies.

3. A MODEL OF LIVE TESTING
Before explaining the implementation of the Bifrost mid-

dleware, we first introduce the fundamental ideas and char-
acteristics that the system is based on, as well as the under-
lying formal model.

3.1 Basic Characteristics
After thorough analysis of live testing in general, and the

practices discussed in Section 2 specifically, we have identi-
fied the following basic characteristics of a formal model for
live testing.

Data-Driven. Live testing require extensive monitoring
to decide on test outcomes or evaluate the current health
state. This monitoring data is collected using existing tools
in the application’s landscape using Application Performance
Monitoring, such as Kieker [26] or New Relic1. A model of
live testing needs to support the inclusion of monitoring data
into its runtime decision process.

Timed Execution. Live testing requires the collection,
analysis, and processing of data in defined intervals. Grad-
ual rollouts depend on timed increments to gradually intro-
duce new versions or control the routed traffic. Depending
on the concrete usage scenario, these methods may stretch
over minutes, hours, or days.

Parallel Execution and Traffic Routing. All live test-
ing practices require the parallel operation of multiple ver-
sions of a service, e.g., a stable previous version and an ex-
perimental new implementation for canary releases, or two
alternative implementations for A/B testing. This also re-
quires the correct routing of users to a specific version. For
instance, canary releases are often targeted at specific user
groups. For A/B tests, it is often important that the same
user is directed to the same implementation across sessions.

Ordered Execution. Ordered execution is required to
form live testing strategies consisting of chained phases of
canary releasing, gradual rollouts, dark launches, and A/B
tests. An example for such a live testing chain is given in
Section 2.

3.2 Live Testing Model
Based on these identified characteristics, we derived a for-

mal representation for live testing strategies. To begin with,
a strategy S is modeled as a 2-tuple:

S : 〈B,A〉

A strategy S consists of a set of services {b1, . . . , bn} and
a deterministic finite automaton A. In our model, services
bi ∈ B represent atomic architectural components, for in-
stance services in a microservice-based system. Services bi
themselves are available in different versions (e.g., a stable
previous search service version, and an experimental new

1https://newrelic.com

version) or as alternative implementations (e.g., for A/B
testing). Whenever a change is rolled out, a new service
version is launched. For a service bi, this is modeled as a
tuple 〈v1, . . . , vn〉. Moreover, each of those versions vi is
associated with static configuration information sci, which
holds a version’s endpoint information (e.g., host name, IP
address, and port). A user ui ∈ U connected to the system
is always using exactly one version of a service. However,
this assignment may change during the execution of a release
strategy (e.g., during a gradual rollout a user may be reas-
signed from a stable version to the canary version). Thus,
this dynamic routing information, i.e., to which version vj
of a service bi a user uk is assigned to, modeled as a 3-tuple
〈uk, vj , sticky〉, represents an important part of a service’s
routing state. Sticky is a boolean flag specifying if a user’s
assignment is permanent for a certain state, thus whether
a subsequent request by a user (e.g., search request) may
be routed to a different version or not. Dark launches are
different from all other live testing practices, in that they
duplicate rather than reroute a traffic to a specific service
version. This is modeled as a 3-tuple 〈vi,j , vk,l, p〉, where
vi,j denotes the source version from which p percent of the
traffic is duplicated and also routed to the target version
vk,l. Thus, the dynamic routing configuration dci of a ser-
vice bi is a 2-tuple 〈M,Γ〉 beingM a tuple of user mappings
〈uk, vj , sticky〉 and Γ a tuple of dark launch routing infor-
mation 〈vi,j , vk,l, p〉.

The execution state of a release process is represented by
an automaton A, which is defined by a 5-tuple 〈Ω, S, s1, δ, F 〉.
Ω represents the monitoring data a live testing strategy
uses for decision making. Ω is modeled as tuple of metrics
〈m1, . . . ,mn〉, each mi representing a time series (t0, . . . , tn)
of metric values over time (t0 to tn). This data typically
originates from external monitoring solutions. The automa-
ton itself is defined as a set of states {s1, . . . , sn}, si ∈ S, a
starting state s1, and set of final states F , where F ⊆ S. δ
is a state transition function specifying the subsequent state
depending on the current state and the outcome of a state’s
associated checks (e ∈ Z), formally defined as δ : S×Z→ S.
States and transitions represent the concept of ordered exe-
cution, in which multiple states form distinctive phases dur-
ing the live testing process.

A state si is defined as a 5-tuple 〈C, T ,W,Φ, η〉 includ-
ing checks C, thresholds T , weights W, configurations Φ,
and a user selection function η. In a state, multiple checks
modeled as a tuple 〈c1, . . . , cn〉, ci ∈ C, are executed at the
same time, thus matching the characteristic of parallel ex-
ecution. A check may for instance represent monitoring a
specific metric (e.g., service response time). The outcomes
of each individual check are combined as a weighted linear
combination. The resulting outcome value serves as input
for the state transition function δ. For each check ci, there
is a weighting factor wi ∈ W, thus formally, weights are
modeled as a tuple 〈w1, . . . , wn〉.

Each state is associated with specific services’ dynamic
routing configurations Φ, modeled as a tuple 〈dcj , . . . , dck〉
containing all configurations of services relevant for a state.
The user mappings M of those dynamic routing configura-
tions are built and controlled by the state’s function η, for-
mally η : U → V, which assigns a specific user ui to a version
vj of service sk. This allows fine-grained routing and filtering
functionality, e.g., assign 5% of US users to the fastSearch
canary. Our approach is agnostic to how this selection and

filtering is implemented. For instance, our approach is com-
patible to the user selection and sampling approach used in
Configurator [24]. Once the execution of a release strategy
enters a state si, the dynamic routing configurations of the
services associated to this state are evaluated and executed.

An example state machine for the running example intro-
duced in Section 2 is given in Figure 2. In state b, the stable
search service is assigned to 95% of the users, while the ca-
nary tested, newly designed reimplementation fastSearch is
used by 5% of the users. Depending on the outcome of the
various checks in each state and their weighting, a numeri-
cal outcome value is generated in each state. This outcome
value is compared against defined thresholds, leading to a
state transition. For instance, in state b, a transition either
happens directly to state d because of the canary’s good per-
formance (outcome > 4), to state c in which the traffic is
only slowly increased (outcome = 4), or a rollback happens
transitioning to state g (outcome mapped ≤ 3).

A/B Test

Canary &
Gradual Release

a b d

search 99%
fastSearch 1%

search 95%
fastSearch 5%

search 80%
fastSearch 20%

e search 50%
fastSearch 50%

f

g

fastSearch 100%

search 100%

>3 4

>=15

<= 3
<= 3 <= 3

<15

c

search 90%
fastSearch 10%

>3

<= 3

>4

> 4

Figure 2: A visualization of the state machine of the running
example. Every state executes checks for a specified amount
of time, leading to a numerical outcome value. State tran-
sitions are based on this outcome. State “g” represents a
rollback of the release. The dashed arrow in state “a” rep-
resents an “exception” that allows to jump directly to the
rollback state “g” if a serious problem is detected in “a”.

Formally, the state transition function δ takes the current
state si and the state’s aggregated and weighted outcome
value e ∈ Z as input. For each state, an ordered tuple
of thresholds 〈t1, ..., tn〉, ti ∈ T , is specified containing at
least one value. A tuple of thresholds with n values forms
n+ 1 disjoint ranges, e.g., thresholds 〈2, 4〉 form the ranges
−∞ < x ≤ 2, 2 < x ≤ 4, and 4 < x ≤ ∞. In the state
transition function δ, to each range of a state si, a state sj
is assigned, representing the automaton’s subsequent state if
the aggregated outcome value e falls into the range. In Fig-
ure 2, state a has exactly one threshold (i.e., 3), thus forming
exactly two possible state outcomes, while state b has two
thresholds (i.e., 〈3, 4〉) and thus three outgoing transitions.

In the following, we will elaborate step by step how a
state’s outcome value is determined and when state transi-
tions are triggered. A single state executes multiple checks
at the same time. A check ci is defined as a 3-tuple 〈fci ,Ωi, τ〉
consisting of a metric evaluating function fci : Ωi → {0, 1},
monitoring data Ωi, and a timer τ .

In detail, a check ci’s function fci takes a subset of the
monitoring data Ωi ⊆ Ω as input and returns 0 or 1, i.e., a

check is either successful or not. Such evaluation functions
could be of varying complexity, they might check only for a
single service version’s metric (e.g., response time < 150ms),
a combination of multiple metrics of a version, or evaluate
even metrics across multiple services and versions (e.g., for
the purpose of A/B testing).

In order to reason about a service’s behavior, it is nec-
essary to continuously evaluate the adherence to specified
metrics, thus a check’s evaluation function may be executed
multiple times. This is achieved by introducing a timer
mechanism τ , controlling when and how often single checks
execute. Functions evaluating monitoring data are executed
independently of each other. This is illustrated in Figure 3
showcasing the timed (re-)execution of the functions asso-
ciated with three checks using different execution intervals.
As the outcome of a single function execution is either 0 or
1, the outcome of a check is determined by aggregating (i.e.,
summing up) the outcome values of each execution (i.e., 1
to n) during the course of time controlled by τ leading to an
outcome value e ∈ Z.

fτci(Ω
i) : f1

ci(Ω
i) + . . .+ fnci(Ω

i)

=

n∑
j=1

f jci(Ω
i)→ e ∈ Z

The model distinguishes between two types of checks: ba-
sic checks and exception checks. While for basic checks the
single execution results are only evaluated at the end, single
execution results of exception checks trigger state transitions
whenever their evaluation function returns 0. The intuition
here is that for basic checks, individual tests may fail (e.g.,
even if a change performs as expected, there may be a small
number of individual checks for a change for which the er-
ror rate slightly increased due to expected stochastic varia-
tions). However, if things are going very badly (e.g., a 100%
or higher increase in the error rate), exception checks allow
developers to immediately roll back a release without having
to wait to the end of the current state. In Figure 3, such
state changes could happen at t0, t1, t2, and t3. State a in
Figure 2 contains an exception check leading to state g.

a1 a2 a3 a4

b1 b2 b3

c1 c2 c3 c5

b4

c4

Basic
Check 1:

Exception
Check 2:

Basic
Check 3:

i1 i1 i1

i2 i2 i2

i3 i4 i3 i5

endt1 t2 t3t0

Figure 3: An illustration of the time-based execution of mul-
tiple checks.

Formally, an exception check ci is a 4-tuple 〈fci ,Ωi, τ, sj〉
consisting of a metric evaluating function fci , monitoring
data Ωi, a timer τ , and a fallback state sj ∈ S to which
the automaton switches if the evaluating function returns 0
during its timed (re-)execution. If all n function executions
are successful, the aggregated outcome value of an exception
check equals n.

A basic check ci is a 5-tuple 〈fci ,Ωi, τ, Tci , Outci〉 of a
metric evaluating function fci , monitoring data Ωi, a timer
τ , an ordered tuple of thresholds 〈t1, ..., tn〉, ti ∈ Tci , and an
output mapping Outci .

Outci : {(ti, ti+1, ri) | ti < ti+1, r ∈ Z,
t ∈ Tci , i ∈ {1, . . . , n}}

Similar to a state’s outcome in the state transition func-
tion δ, the aggregated outcome of a basic check e is com-
pared to thresholds forming disjoint ranges, and based on
the check’s outcome mappings Outci , mapped to an integer
value ri.

e
Outci−−−−→ {ri | ti−1 < e ≤ ti, (ti−1, ti, ri) ∈ Outci}

Thresholds are used to cope with varying monitoring data,
e.g., the response time of the monitored fastSearch service
may vary, thus the outcomes of the evaluation function may
vary as well. Outcome mappings allow mapping those dif-
ferent outcome values onto a normalized integer outcome
value. For example, assume a basic check for controlling
fastSearch’s response time in state b in Figure 2. The check
is executed 100 times in intervals of 10 minutes. The re-
sponse time check’s thresholds are 75 and 95, thus forming
ranges x ≤ 75, 75 < x ≤ 95, and x > 95. The corresponding
mappings are (−∞, 75,−5), (75, 95, 4), and (95,∞, 5). This
means that if the check fails more than 24 times, the map-
ping returns −5, if the aggregated value is between 75 and
95, it returns 4, otherwise 5.

Once we have the results of the single checks of a state, the
final step is to aggregate those results as a weighted linear
combination, and consider their weighting factors in order
to determine the state’s outcome.

n∑
i=1

fτci(Ω
i) ∗ wi → e ∈ Z

Given the current state si, this final result e is the input
for the state transition function δ, resulting in either a state
change, or staying in the current state. In this case, the state
is re-executed, with all timers and thresholds reset. This
concept of multiple outgoing paths allows (1) continuing the
rollout strategy if the tested services behave as expected,
(2) staying in a certain state if results are not definite and
require reexecution, or (3) switching to a fallback state if
new functionality does not behave as expected and to keep
its impact low. Moreover, the concept of exception checks
allow state changes (i.e., roll backs) at any time during the
execution.

4. BIFROST
In this section, the Bifrost middleware is presented. The

system is a Node.js based prototype implementation of our
live testing model. Our prototype specifically targets micro-
service-based applications.

4.1 System Overview
As visualized in Figure 4, the two main components of the

Bifrost middleware are the Bifrost engine and Bifrost
proxies. The middleware acts on top of the application’s
services, ensuring that routing instrumentation specified in
the release strategy is adhered to.

Conceptually, there is exactly one Bifrost proxy for each
service that is part of the applied live testing method. This

Service nService 2Service 1 Service 2

Bifrost
Proxy

Service n

Bifrost
Proxy

Service 1

Bifrost
Proxy

…

Bifrost
Engine

Metrics
Provider

configures

co
nfi

gu
re

s

configures

user

DSL

release
strategies

Bifrost
CLI

Bifrost
Dashboard

strategies

status updates

metric collection

interacts

queries

developer /
release engineer

A
P
I

Figure 4: High-level architectural overview of the Bifrost
middleware.

one-proxy-per-service concept prevents traffic bottlenecks and
keeps services decoupled. A service acting behind by a proxy
may run in multiple instances and multiple versions at the
same time. Bifrost proxies facilitate live testing via im-
plementing dynamic traffic routing. For instance in case of
an A/B test, 50% of all traffic is routed transparently to
two different versions of a service. A key advantage of this
design is that the middleware is easy to integrate into ex-
isting applications, without altering or rewriting function-
ality. Thus routing and rollout logic is not part of the
services’ code bases, as would be the case for feature tog-
gles [2]. The middleware supports any web-based service
including databases and external services accessed through
HTTP. Bifrost proxies are lightweight. Each instance of
the proxy is basically another service added to the applica-
tion, and proxies work in combination with load balancers,
auto-scaling functionality, reverse proxies or request gate-
ways. The Bifrost engine has the main responsibility to
orchestrate and properly configure the deployed proxies in
the system. Basically, the engine executes the state ma-
chine of the formal release model. It interprets the release
strategies specified in a domain-specific language, and con-
tinuously queries and observes monitoring data collected by
metrics providers or external services in order to evaluate
the rules specified in the release strategies and enact ap-
propriate actions (i.e., state changes). Whenever a state
change happens during the rollout process (e.g., entering a
new phase in the specified strategy), the engine updates the
affected proxies.

Besides the middleware components, Bifrost comprises
two additional tools, the Bifrost command-line interface
(CLI) and Bifrost dashboard. The CLI connects to the
Bifrost engine and allows scheduling and executing release
strategies remotely or as part of release scripts (e.g., build
automation using Jenkins). The Bifrost dashboard visu-
alizes the current execution state of release strategies pro-
viding detailed information such as the outcome of executed
checks (e.g., metric below threshold).

4.2 Implementation
We now discuss how this high-level design has been real-

ized in Bifrost.

4.2.1 Technology Stack.
The Bifrost middleware has been developed mainly in

JavaScript utilizing Node.js as the server-side JavaScript

runtime, in combination with Babel2, which is a backwards-
compatible JavaScript transpiler. Node.js was chosen due to
its lightweight and efficient architecture that favors event-
driven applications, which Bifrost heavily uses due to the
asynchronous nature of release process (e.g., checks running
in parallel with different timer configurations). The commu-
nication between the middleware’s components is handled
through RESTful HTTP APIs that make use of ExpressJS3.
Moreover, Socket.IO is used implementing the WebSocket
protocol providing full-duplex communication channels. This
is necessary for updating the Bifrost CLI and dashboard
with real-time information. Finally, the proxy functionality
has been implemented using node-http-proxy4.

4.2.2 Domain-Specific Language
To simplify the specification of release strategies and thus

to avoid specifying every single state of the underlying for-
mal model, the Bifrost domain-specific language (DSL)
was designed. Besides fostering simplicity, the text-based
DSL aims to be version-controlled, thus supporting trans-
parency and traceability of a company’s release strategies.
The DSL was built as an internal DSL on top of YAML
as a host language. YAML is a data serialization language
designed to be readable by humans. In the following, we
will present implementation details of and design decisions
for the engine based on small DSL code snippets showcasing
specific elements of a rollout strategy. However, a more de-
tailed description of the DSL is out of the scope of this work,
but example strategies formalized in the DSL that have been
used throughout the evaluation of Bifrost are part of our
online appendix.

Data-Driven Execution. Collected and aggregated mon-
itoring data is the essential ingredient for the engine’s run-
time decisions. The Bifrost engine is designed to support
multiple data sources. However, currently, the engine’s pro-
totype implementation is primarily built for Prometheus5.
Listing 1 shows an example how a basic check is implemented
in the Bifrost DSL in form of a metric element.

1 − metr ic :
2 p rov ide r s :
3 − prometheus :
4 name : s e a r c h e r r o r
5 query : r e q u e s t e r r o r s
6 { i n s t ance =”search : 80”}
7 interva lTime : 5
8 i n t e r v a l L i m i t : 12
9 thre sho ld : 12

10 v a l i d a t o r : ”<5”

Listing 1: Example Metric

Lines 2 to 6 specify the data retrieval, i.e., to which provider
to connect to and which query to be executed. The met-
ric providers’ access information (i.e., IP, port) is specified
in a configuration file loaded at the engine’s start-up. In
this concrete example, the query retrieves the amount of re-
quest errors associated with the service instance search from
Prometheus. Bifrost supports retrieving an arbitrary num-
ber of metrics from different data providers in the context
of a check. The retrieved data is then associated to the pro-
vided name and can be used inside the scope of the check
for validation purposes.
2https://babeljs.io/
3http://expressjs.com/
4https://github.com/nodejitsu/node-http-proxy
5https://prometheus.io/

Timed Execution. Each basic check in our model has a
metric evaluating function, which operates on a set of met-
rics, and its execution is controlled by a timer. In the pre-
vious step, we have already shown how the engine collects
metrics. Line 10 of Listing 1 shows a simple function eval-
uating the collected metrics. In this case, a single metric is
retrieved and compared to a scalar value. The check is re-
executed every 5 seconds and 12 times in total. The current
implementation of the DSL represents a simplified version
of the release model discussed in Section 3.2. Each check
has exactly one threshold value, thus the aggregation of the
result of a check’s timed-execution can be mapped to either
true or false. In line 9, the threshold is set to 12, which
means that the check returns only true if all 12 executions
evaluate to true.

Rollouts. The parallel execution of checks and their ag-
gregated outcomes may lead to state changes, which then in-
fluence how traffic is routed through the system, thus chang-
ing dynamic routing configurations dci of services bi. The
basic instrument for specifying such rollouts is the route di-
rective in the Bifrost DSL. An example for a route sup-
porting dark launches is provided in Listing 2.

1 − route :
2 from : search
3 to : f a s tSea r ch
4 f i l t e r s :
5 − t r a f f i c :
6 percentage : 100
7 shadow : t rue
8 interva lTime : 60

Listing 2: Dark Launch

The example specifies that all traffic (line 6) routed to the
search service within the next 60 seconds (line 8) shall be
duplicated (line 7) and also routed to the fastSearch service.
This allows dark launching a service, thus assessing amongst
others whether the tested service scales correctly.

In order to support such mechanisms, Bifrost proxies in-
tercept incoming connections, and depending on their con-
figuration, they route requests accordingly. Bifrost sup-
ports two types of routing: header-based and cookie-based.
The former inspects a request’s header fields (specified in
RFC 2616), which could include custom-named header fields
as well. For header-based traffic filtering, the proxy itself
does not decide to which service instance a request is routed,
it acts solely on its configuration received from the engine.
Thus, the concrete header field has to be injected somewhere
else in the process, e.g., by an external service called at the
user’s login controlling which users are in which group of a
conducted A/B test. This is different for the second option,
cookie-based filtering, where, for example in case of A/B
tests, the proxy decides into which bucket a request is put
into. Listing 2 shows an example for such a cookie-based
filtering variant. In addition, this concept is used for apply-
ing general random traffic filtering such that a certain per-
centage of users is assigned to a specific version. However,
depending on the type of the conducted release practice, it
may be important that requests from the same users are al-
ways routed to the same service instance (e.g., A/B testing).
This behavior is generally called sticky sessions. The proxy
accomplishes this by setting a cookie on the client using the
Set-Cookie Header in its response. The cookie contains a
RFC-compliant UUID that is used to re-identify the client
in subsequent requests. Depending on whether sticky ses-
sions are used or not, the proxy either stores the set cookie to

re-identify users, or the subsequent request is again running
through the proxy’s decision process.

Deployment Configuration. Evidently, the engine needs
to be aware of which services exist in the system, and where
the proxies are located. This corresponds to the static rout-
ing information modeled in the formal release model. In the
Bifrost DSL, this is covered by the DSL’s deployment part,
while the specification of the previous code snippets where
all in the DSL’s strategy part. The former takes a list of key-
value pairs mapping host names of services to host names of
corresponding Bifrost proxy instances. This simple mech-
anism allows the tool to work in different deployment setups.
The middleware per se is not responsible for the deployment
of the various components. However the DSL and engine
are designed in such a way to be extended and make use of
deployment management tools, such as Chef or Puppet, in
future versions.

5. EVALUATION
The Bifrost toolkit provides developers with a flexible

approach to introduce various rollout practices into their
release process. However, the feasibility of this approach
is influenced by the middleware’s performance impact and
how well the approach scales, both conceptually and tech-
nically. Thus, in the following section we specifically take a
look on how the Bifrost middleware performs in realistic
settings. We look at two different scenarios, evaluating the
performance overhead introduced by the Bifrost proxies
for the end user as well as the scalability of the Bifrost
middleware itself, in terms of parallel strategies and checks.
A replication package for our study is available in the online
appendix.

5.1 Evaluation of End-User Overhead
We firstly address the question whether using Bifrost

degrades end user performance.

5.1.1 Case Study Application
To address this question, a case study application sim-

ulating a generic microservices application was necessary.
Unfortunately, few suitable open source microservice-based
applications exist. Hence, we developed a custom Node.js
based case study application specifically to run performance
tests against for the purpose of evaluating the middleware.
The implementation of this case study is available in the
online appendix.

This application simulates a generic e-commerce website
selling consumer electronics. It was kept simple in order
to provide a testbed for the performance evaluation and
demonstration of the capabilities of the Bifrost middle-
ware. The application consists of 7 services in total: a
HTML/JavaScript frontend, and three RESTful HTTP ser-
vices, product, search, and auth. The product service al-
lows browsing the product catalog and placing buy orders,
the search service is used for executing text-based product
search queries, and auth service authenticates and authorizes
users based on their provided e-mail and password, and val-
idates tokens. In addition, there is a MongoDB database
for storing products and users, an instance of Prometheus,
which collects container and low-level performance metrics
as well as business metrics from services that expose them,

and finally nginx6. Nginx is a reverse-proxy used as a central
entry-point to the application for users. It proxies incoming
requests to either the frontend service or to the product ser-
vice. An overview of the case study application architecture
is provided in Figure 5. Connections between the services
and Prometheus were omitted for clarity reasons.

sample application

experiment scope

Auth

Search

Product

Product A

Product B

nginxFrontend

Bifrost
Engine

Bifrost Proxy

Bifrost Proxy

MongoDB Prometheus

cAdvisor

Bifrost CLIBifrost
Dashboard

User

Developer

configures

queries

strategiesstatus updates

Figure 5: Architecture of a microservice-based case study
application, consisting of 7 microservices.

5.1.2 Experiment Setup
We now discuss how we have set up the case study appli-

cation and experiment.
Case Study Application Deployment. We deployed

the case study application on 12 virtual machines form-
ing a Docker Swarm7 on the Google Cloud Platform8. We
used virtual machines of type n1-standard-1 in Google’s
us-central1-a region. Consequently, each virtual machine
had a single virtual CPU implemented as a single hardware
hyper-thread on a 2.6 GHz Intel Xeon E5 and 3.75 GB mem-
ory. Experiments were conducted between May 1st and May
19th, 2016.

The first node acted as Swarm-Master. Docker Swarm
allows clustering a pool of Docker hosts into a single vir-
tual Docker host supporting the execution of Docker Com-
pose, which simplifies application deployment and in our
case replication as well. Every service of the case study ap-
plication resides in its own Docker container. Moreover, to
ensure that a single container’s performance does not in-
fluence other containers, in this setup, all containers were
running on their own virtual machine. Besides the services
of our case study application, the middleware components
were deployed as Docker containers as well, i.e., one VM
hosting the Bifrost engine, and two VMs hosting proxies
for the search and product service. In addition, to auto-
mate the evaluation process, the Bifrost CLI was put into
a dedicated container as well. As the auth service is not rel-
evant for the executed live testing strategy, it does not use
a Bifrost proxy. This simulates the case of a stable service
for which currently no live testing strategy is executed. To

6https://www.nginx.com
7https://docs.docker.com/swarm/
8https://cloud.google.com

collect the containers’ performance metrics (e.g., CPU uti-
lization, memory consumption) cAdvisor9 was used pushing
the collected data to Prometheus, which further increased
the number of containers and VMs in our experiment setup
by two. Finally, to simulate production traffic, we used an-
other Docker container and VM of the same type for hosting
an instance of Apache JMeter as load generator.

Test Setup. The goal of this experiment was to show
the performance impact of the Bifrost middleware in a
more complex release cycle consisting of the execution of a
release strategy involving multiple live testing methods. In
this scenario, the product service shall be replaced and two
new alternatives were implemented for this purpose, prod-
uct A and product B. The specified release strategy intro-
duces both alternatives to the running system, runs a set
of live testing methods making sure that they perform as
expected and depending on the outcome of those tests, one
of the newly implemented product services shall be gradu-
ally rolled out to all users. The release strategy involves the
following phases.

1. Canary Launch: Tests product A and product B ser-
vice while monitoring for errors, i.e., HTTP status
code 500 responses. 5% of the traffic to the stable
product service gets redirected to A and B respectively,
and an aggregated error count from Prometheus is
monitored. This phase lasts for 60 seconds, and is im-
plemented using cookie-based routing without sticky
sessions. This phase corresponds to a single state in
the formal model with two checks running in parallel,
which are re-executed every 12 seconds.

2. Dark Launch: Product A and product B receive 100%
of all original traffic to the product service for a dura-
tion of 60 seconds. This represents a single state in the
formal model. We refrained from our initial checks on
the services’ CPU utilization as this would have led, in
certain cases, to automatic rollbacks during our load
test.

3. A/B Test: Routes 50% of the product traffic to prod-

uct A and the remaining 50% to product B. As a test
metric the sales performance is monitored over 60 sec-
onds. The test uses sticky sessions and cookie-based
routing. After completion, the traffic distribution is
reverted to the original product service. This live test
corresponds to a single state in the model, with one
check executed at the end.

4. Gradual Rollout: Rolls out the winner from the previ-
ous A/B Test starting with 5% traffic up to 100%,
increasing traffic 5% every 10 seconds, for 200 sec-
onds duration in total. Corresponds to 20 states in
the model.

Note that, in order to compress the total duration of the
experiment to 380 seconds, we chose extremely short execu-
tion times for each phase. Obviously, in practice, developers
would typically choose longer durations for each phase.

We initiated the execution of the live testing strategy after
a ramp up period of 30 seconds to slowly increase the load
and after an additional 60 seconds for health checking the
deployed services. After the ramp up, a steady traffic of 35
requests per second was simulated using a JMeter test suite.
The test suite targeted the product service and consisted of 4
different requests that touched different parts of the system:

9https://github.com/google/cadvisor

Canary Dark Launch A/B Test Gradual Rollout

15

20

25

30

35

40

45

50

90 115 140 165 190 215 240 265 290 315 340 365 390 415 440 465
Elapsed Time in Seconds

R
es

po
ns

e
T

im
e

in
 M

ill
is

ec
on

ds

Bifrost active Bifrost inactive baseline

Figure 6: 3-second moving average of response times as monitored in the JMeter load generator over the duration of the
experiment. Baseline is the response time without Bifrost, inactive represents Bifrost, and specifically the routing proxies
being installed but without any active strategy, and active is the case when a live testing strategy is being executed.

Canary Dark Launch A/B Test Gradual Rollout
baseline inactive active baseline inactive active baseline inactive active baseline inactive active

mean 22.75 30.04 30.28 22.68 31.34 40.23 22.64 31.30 26.52 22.93 31.59 30.68
min 20.04 26.27 26.47 20.42 27.95 31.67 19.65 27.86 24.65 20.35 26.20 27.43
max 26.24 32.79 38.58 28.44 35.26 44.35 26.05 37.03 31.67 26.66 42.76 35.34
sd 1.26 1.21 2.22 1.53 1.53 1.70 1.23 1.58 1.00 1.07 2.18 1.55
median 22.58 30.08 29.77 22.36 31.51 40.11 22.59 30.98 26.49 22.85 31.43 30.53

Table 1: Basic statistics of response times in milliseconds for all release phases.

• Buy: A HTTP POST request to the product service,
which writes to the database. No response body is sent
back.
• Details: A HTTP GET request to the product service,

which returns information about a single product. The
request only requires a read operation in the database,
and returns a small response body.
• Products: A HTTP GET request to the product ser-

vice, returning a list of all products including their
buyers. Requires a read operation in the database as
well, but returns a large response body.
• Search: A HTTP GET request to the product service,

which in turn invokes the search service. Requires
another read operation in the database, and returns a
small response body.

All requests require authorization via the auth service.
We conducted test runs in three different variations: (1)
baseline, i.e., running the load test without the middleware
and proxies deployed, (2) Bifrost inactive, running the load
test with the middleware and proxies deployed but without
executing any strategy, and (3) Bifrost active, running the
load test with the middleware and proxies deployed and ex-
ecuting a strategy. For each of those three variations we
collected the average response time in 5 test runs and used
a moving average with a window size of 3 seconds for aggre-
gation.

Test Results. Figure 6 plots the average end user re-
sponse time as measured by the JMeter load generator dur-
ing the release in the described phases (canary launch, dark
launch, A/B test, gradual rollout). The single release phases
are highlighted for better readability. We observe that, in
general, Bifrost introduces a constant small overhead to
service invocations. For gradual releases and canary tests,
this overhead is approximately 8 ms in our tests (see also
Table 1 for detailed numbers), which we consider accept-
able for many production settings. Further, it should be
noted that our Node.js based prototype implementation is
not optimized for speed, and a more efficient implementa-
tion would likely be feasible. Further, our evaluation setup

made use of cookie-based routing, which is generally slower
than a header-based routing would be. Finally, this case
study application and all components have been deployed
on low-end cloud instance types. More powerful instance
types, or dedicated server hardware, would likely reduce the
overhead further. However, even with this prototype imple-
mentation we have shown that our underlying concept seems
feasible for real-world usage. Another observation from Fig-
ure 6 is that response times are stable within phases. That
is, there is no middleware-induced change in the overhead
during tests, which is particularly important for A/B test-
ing. The scenarios when Bifrost is inactive and active did
not lead to statistically significant response times for canary
releases and gradual rollouts, indicating that the execution
of a single strategy is cheap. This will be researched in more
detail in Section 5.2.

Two phases need more explanation, specifically the A/B
test and the dark launch. For the A/B test (third phase
in the figure), we observe that the average response time
decreases in comparison to when Bifrost is inactive. This
is a side-effect of the load balancing effect of A/B testing,
i.e., in this phase invocations are by definition split between
two services, leading to reduced load on both of them. In
effect, this reduces the overhead to approximately 4 ms. For
the dark launch, we observed the opposite effect. As this live
testing strategy requires duplication of traffic, the overhead
induced by the middleware is increased as well, leading to
an overall higher response time and an increased overhead
of 18 ms. This is because in our test setting three requests
need to be shadowed (requests to the authentication service,
the product service, and the database). Thus, in contrast to
other live testing methods, dark launching requires a certain
level of caution (e.g., making sure that the proxy runs on
machine able to handle the load), especially if, as in our
setup, 100% of the traffic is duplicated.

5.2 Evaluation of Engine Performance
The previous performance test focused on the overall ap-

plication’s performance. However, as we executed only a sin-

gle release strategy, we now want to study how the Bifrost
middleware behaves under load created by (1) executing
multiple release strategies at the same time (simulating the
case of a large organization with many teams, all indepen-
dently releasing new versions), and (2) executing complex re-
lease strategies with an increasing amount of parallel checks.

5.2.1 Executing Multiple Release Strategies
This test studies how many parallel live experiments can

be conducted at the same time, and, thus, whether our mid-
dleware is capable of being used in a broader context in a
company having various different product teams launching
rollout experiments independently from each other.

Case Study Application Deployment. We used a
cluster of 4 virtual machines with the same specification as
described before forming a Docker Swarm on the Google
Cloud Platform. We used the product and product A service
of our sample application running in their own containers
as target of all executed release strategies. To collect per-
formance metrics (e.g., CPU utilization, memory consump-
tion), containers hosting cAdvisor and Prometheus were de-
ployed. Moreover, a MongoDB container complemented the
deployment setup. While the engine and the proxy had their
own VMs, cAdvisor and Prometheus shared the third VM,
and the remaining containers shared the fourth VM.

Test Setup. For this experiment the application itself
was irrelevant as as long as we could simulate typical engine-
to-proxy communication and show the middleware’s scala-
bility. Hence, there was no simulated load targeting the case
study services during this experiment.

To execute multiple release strategies, we used a slightly
modified version of the release strategy presented in Sec-
tion 5.1. The strategy consisted again of 4 phases (canary,
dark launch, A/B test, phased rollout) with a duration of
280 seconds in total. The checks and routing instrumenta-
tion for product B were not relevant for this experiment and
were consequently removed. The duration of the final phase
was decreased by 100 seconds.

In order to evaluate the scalability of Bifrost with re-
gards to parallel strategies, we increased the number of ex-
ecuted release strategies in a stepwise manner from 1 over
5 to 10, and then for each additional step by 10 until 200
strategies. Our goal was to observe the load on the Docker
container running the Bifrost engine, which is responsi-
ble for enacting the defined release strategies. A single test
run was repeated 5 times, including the collection of CPU
and memory utilization data, and the raw duration of each
strategy execution, i.e., end time – start time.

Test Results. Figure 7 shows the engine’s CPU uti-
lization when running multiple strategies in parallel. CPU
utilization is the driving factor as both the engine’s and the
proxy’s memory consumption was on a stable, but increas-
ing level. Even though executed on a cheap cloud instance
with a single core CPU, the engine is able to handle more
than 100 strategies executed in parallel. When considering
that even industry leaders in continuous deployment, such
as Facebook [20, 24], deploy between 100 and 1000 times a
day, this is a good indication that our middleware is able
to handle realistic concurrent deployment numbers even on
low-end public cloud resources.

This is also supported by looking at how long it takes
Bifrost to enact each of those strategies. This is visualized
in Figure 8. Up to 80 parallel strategies, there is a small,

●●●●●●●●●●●●

●

●●

●

●●●

●
●
●
●●●●
●
●

●●●●
●●●●●●●●
●

●●

●

●●●
●
●●●●●●
●
●●●●●●●●●●●●

●

●●
●
●●●

●
●●●●●●●
●
●●●●●●●●●●●●

●

●●
●
●●●

●
●●●●●●
●
●●●●●●●●●●●●
●

●●
●
●●●

●
●●
●
●●●
●

●●
●●●●●
●●●●●●

●

●

●●●

●

●

●●●●
●

●

●

●

●●●

●

●

●

●

●

●

●●●●●●●●
●●●●
●
●●●
●
●●●●●

●

●

●●●●●

●
●

●●●●●●●

●
●

●
●●●●●●●
●●
●●
●

●
●

●

●●●●
●●●●●●●

●

●●●

●

●●●●

●

●●●●

●

●

●

●

●
●●●●
●
●●●●●
●
●●

●

●●●●●

●

●●●●●

●

●●●●

●

●

●

●

●
●

●

●
●●●●●●
●●●●●●
●
●●●●●●●●

●●

●●●●●

●
●

●●●●●●●

●

●

●
●●●●●●
●
●●
●●
●

●● ●●●
●

●●●
●
●
●●
●
●
●
●

●

●

●

●

●

●

●
●

●

●●●●
●

●

●●●●●●●

●

●

●

●●
●

●●

●

●

●

●

●

●

●
●
●
●●
●
●●
●
●●
●
●●
●
●●
●

●
●
●

●
●
●
●●
●
●●
●

●

●

●

●

●

●●●●●●

●

●

●

●●●●●●●●●

●

●

●

●

●
●
●

●●
●

●●
●

●●

●●●●

●
●

●

●

●●●●

●

●●●●●

●●

●

●

●

●

●

●

●●●●

●

●

●●●

●

●

●
●
●
●
●
●
●
●

●

●●
●
●

●

●
●●
●
●
●

●
●●
●

●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●

●
●
●

●

●

●●●●●●

●●

●●●●●●●●●

●

●

●
●

●

●●●

●

●●

●

●●

●

●
●●●
●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●●●●●●●●

●

●●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●●
●

●

●●●
●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●
●

●●

●

●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●
●
●
●

●

●

●

●●●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●●
●
●●
●
●
●●
●●●●●
●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●●
●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●●
●

●
●●
●
●

●

●

●

●●
●
●●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●

●

●

●

●
●●●●●●●
●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●
●
●●

●

●
●
●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●●●●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●
●●●

●

●●●●●
●
●

●

●
●●
●

●●●●
●
●

●●●●
●

●

●●

●

●

●●●
●●

●

●
●

●

●

●

●●

●

●

●

●

●
●
●
●●

●

●●●

●

●
●●
●

●

●

●●

●

●●

●

●●
●

●

●●●●

●

●●
●
●

●

●

●
●●
●
●●
●

●

●

●

●

●
●

●

●

●

●●●●●

●

●
●

●

●

●●
●●●●
●

●●
●

●

●

●

●

●●

●

●
●●
●

●●0

25

50

75

100

1 5 10 20 30 40 50 60 70 80 90 100 110 120 130
Number of strategies executed in parallel

E
ng

in
e

C
P

U
 U

til
iz

at
io

n
in

 %

Figure 7: Boxplots of CPU utilization on the Docker con-
tainer running the Bifrost engine. Even with more than
100 strategies being executed in parallel, the instance is
rarely fully utilized.

linear increase in delay for each additional strategy. From
this point onwards, the engine slowly starts to become over-
loaded, hence the standard deviation of delays increases and
the delay rises with each additional strategy substantially.

● ● ●

● ● ●
●

●

● ●

●

●

●

●

●

0

5

10

15

20

0 10 20 30 40 50 60 70 80 90 100 110 120 130
Number of strategies executed in parallel

D
el

ay
 o

f s
pe

ci
fie

d
ex

ec
ut

io
n

tim
e

in
 s

ec
on

ds

Figure 8: Delay in enacting a release strategy when running
multiple strategies in parallel. Error bars represent ± one
standard deviation.

It should be noted that our experiment represents a worst
case for the Bifrost engine, as all strategies in the exper-
iment were executed at the same time and with identical
configuration, thus the periodic reexecution of the checks
happened at the same time as well. However, because of
the single core environment, execution at the same time is
not possible and thus, a slight delay is introduced for each
strategy. However, even in this setting, a delay of 8 seconds
in the mean for enacting 100 releases at the same time is
usually negligible in practice, as realistic live testing phases
usually span hours or days.

5.2.2 Executing Release Strategies With Many Checks
In this experiment we study the upper bound of parallel

checks the Bifrost engine can handle.
Case Study Application Deployment. We launched

a cluster of 3 virtual machines forming a Docker Swarm on
the Google Cloud Platform, with the same specification as
before. Similar to the previous experiment, we focused on
the engine’s behavior. Hence, no load for the case study
application was produced. Besides the engine, we used con-

tainers for the product and product A services, a container
hosting a single Bifrost proxy instance, and a container for
MongoDB. Moreover, to collect performance metrics (e.g.,
CPU utilization, memory consumption), containers hosting
cAdvisor and Prometheus were deployed. The engine and
the proxy instance were deployed on separate VMs, while
the remaining 5 containers shared the third VM.

Test Setup. In this experiment, we stressed the engine
with a single release strategy, but using an increasing num-
ber of parallel checks. Our goal was to identify an upper
bound at which the engine is unable to handle the accu-
mulating load. The strategy we used was trivial, consist-
ing only of two identical phases, each running 60 seconds.
Each phase contained 8∗n checks, where n denotes the cur-
rent step (stepsize = 10). Out of those 8 checks, 3 target
the availability of the product service, and the remaining
5 checks query data from Prometheus. For simplicity, in
each step during the experiment, we duplicated the same 8
checks. The engine itself does not cache requests or queries,
thus there is no difference whether we would have, for each
(re-)execution, queried for different metrics. We repeated
each step in our experiment 5 times, and collected CPU and
memory utilization data, as well as the raw duration of the
strategy’s enactment.

Results. As can be seen in Figure 9, we were not able to
identify an upper limit of checks executed in parallel with
our experimental setup. The engine’s CPU utilization is
slowly increasing for each step. However, even for 1600
checks executed in parallel, we did not reach full utiliza-
tion. Given the slight increase for each step and the fact
that we executed those checks on a single core machine, this
indicates that in a more realistic context with more powerful
resources, the engine could even handle higher amounts of
checks and thus should be able to cover all realistic moni-
toring requirements.

●

●
●●●
●
●●●●●●

●

●
●
●

●●●
●
●
●●●●●
●

●
●
●●●●

●

●
●●●●

●

●●

●

●●

●

●
●●●
●

●

●●●●
●

●

●●●●
●●●●●●●

●

●●●●

●
●●●
●

●

●●●●
●

●

●

●

●

●
●●●
●
●●●●●●

●

●●
●
●●●
●●●●●
●

●●

●
●●●
●
●●●●●●

●

●●
●
●●●
●
●●●●●●

●
●●

●
●

●

●●
●

●

●

●

●●

●

●

●
●

●●
●

●
●

●

●
●●●

●

●
●
●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●
●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●
●

●
●●
●

●

●●

●
●
●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●
●
●●

●
●●
●

●
●●

0

25

50

75

100

8 80 160 240 320 400 480 560 640 720 800 880 960 1040 1120 1200 1280 1360 1440 1520 1600
Number of checks executed in parallel

E
ng

in
e

C
P

U
 U

til
iz

at
io

n
in

 %

Figure 9: Boxplots of CPU utilization when executing an
increasing number of checks in parallel for a single strategy.

As in the previous experiment, executing checks at the
same time on a single core machine introduces a delay in
the enactment of the strategy. This delay increases with the
amount of checks executed in parallel and is depicted in Fig-
ure 10. When executing 1600 checks in parallel, this delay is
roughly 50 seconds, which is, given the specified execution
time of 120 seconds, quite high. Thus, the delay needs to
be taken into account when defining a live testing strategy
that uses a very high number of parallel checks. However,
arguably, for most practical scenarios a much lower number
of checks will be sufficient. In addition, and as before, de-
ploying the engine to a larger cloud instance, specifically one
with more virtual CPUs, is likely to mitigate this problem.

●
●

● ●
●

●
●

●

● ●

●
●

●

●

●
●

●

●

● ● ●

0

10

20

30

40

50

0 200 400 600 800 1000 1200 1400 1600
Number of checks executed in parallel

D
el

ay
 in

 s
ec

on
ds

 o
f s

pe
ci

fie
d

ex
ec

ut
io

n
tim

e

Figure 10: Delay in enacting a single release strategy with
an increasing number of checks. Error bars represent ± one
standard deviation.

5.3 Evaluation Summary and Limitations
Our experiments have shown a promising runtime behav-

ior for Bifrost. We have shown that the overhead intro-
duced by using Bifrost for live testing is only around 8
ms for most live testing strategies, even on low-end cloud
instances. However, users need to keep in mind that specifi-
cally dark launches can substantially increase this overhead
due to traffic duplication. We have also shown that our con-
cept and prototype implementation is able to scale to very
high numbers of parallel releases as well as parallel checks,
indicating that our approach is suitable even for large com-
panies with many parallel rollouts.

The main limitation of our study is that we have only
conducted experiments on a single case study application.
Hence, we cannot eliminate the possibility that our approach
will have higher overhead or scale worse for other applica-
tions. Further, while realistic, our case study application
was designed specifically for this experiment, and is not a
real production application. Secondly, we have conducted
our experiments in a virtualized environment (the Google
Cloud Platform). It is possible that the performance vari-
ations inherent in public clouds [14] have influenced the re-
sults of our study. To mitigate this risk, we have repeated
each experiment 5 times, and report the observed devia-
tions.

6. RELATED WORK
Bifrost as a middleware for automated enactment of live

testing strategies in microservice-based systems is strongly
related to a number of ongoing trends and developments
in modern software development. In an earlier paper, we
have already argued for the importance of microservices in
modern systems engineering [21]. Cito et al. [5] discuss that
DevOps [2] and data-driven runtime decision making is a
core factor in the development of state-of-the-art cloud ap-
plications. This has also been confirmed by Begel and Zim-
mermann [3], as well as by Kim et al. [11], who argue that
data science is increasingly becoming a central element of
the software development and release engineering process.
Generally, this newfound interest in data and analytics is re-
lated to the current hype surrounding Big Data [17], as well
as to the idea of continuous delivery and deployment [10].
Whereas continuous delivery primarily deals with shortened
release cycles, as discussed for instance by Feitelson et al. for

Facebook [8], continuous deployment goes one step further
and largely automates the deployment process [19]. Rah-
man et al. [18] have studied practices for continuous deliv-
ery, and also identified the practies we use (gradual rollouts,
dark launches, canary releases, and A/B testing) as central.
In our previous work, we have also identified continuous de-
ployment as a prerequisite for live testing [22]. Conversely,
being able to make use of live testing is an important payoff
that motivates companies to widely automate their deploy-
ment process.

As discussed in Section 3.1, a core property of Bifrost
is that release decisions are driven by runtime data. Hence,
our proposed middleware can build on previous research on
application performance management, such as Kieker [26]
or our own previous work on the monitoring and manage-
ment of Web application performance [6, 7]. Bakshy and
Frachtenberg [1] have recently presented work on statisti-
cal methods to identify performance regressions in scale-out
cloud systems, based on their experience at Facebook. An-
other contribution from the Facebook domain [24] describes
how the company implements gradual rollouts and canary
releases. Our basic model of live testing, as discussed in
Section 3.2, is largely aligned with this description of real-
life canary releasing. However, alternative approaches for
canary testing, such as CanaryAdvisor [25], are also avail-
able. Another live testing approach for which substantial
previous research is existing is A/B testing. Most impor-
tantly, Kohavi et al. have proposed a basic model as well
as concrete guidelines [12, 13] on how to conduct statisti-
cally rigorous A/B tests for cloud applications. Tamburrelli
and Margara [23] have rephrased A/B testing as a search-
based software engineering problem, which they solve using
a combination of aspect-oriented programming and genetic
algorithms. Bifrost gives developers a structured way to
conduct dark launches, canary releases, or A/B tests, and is
fully compatible to the practices described in those earlier
works.

In addition, our work is also related to some well-known
open source toolkits related to CD and live testing. For in-
stance, the Ruby-based Scientist! framework10 is a simple
library that allows a developer to encode A/B tests directly
in code. The disadvantage of this model is that this way live
testing code is tangled with the production code base. Fur-
ther, adapting the configuration (e.g., going from one A/B
test to another) requires changes in the application code.
A non-intrusive tool that, similarly to Bifrost, builds on
top of a microservice architecture to implement A/B test-
ing and canary testing, is Vamp11. Unlike our work, Vamp
does not support shadow launches or multi-phase rollouts.
Another related tool is ION-Roller12, which focuses on de-
ployment using Docker images. It allows multi-phase roll-
outs, but only for simple Blue/Green deployment setups.
Canary launches require manual monitoring, as it features
rollback capabilities upon manual intervention. ION-Roller
is a service consisting of an API, web app and CLI tool that
orchestrates Amazon’s Elastic Beanstalk to provide safe im-
mutable deployment, health checks, traffic redirection and
more. The main advantage of the Bifrost middleware over
these existing systems is that it provides developers with

10https://github.com/github/scientist
11http://vamp.io/
12https://github.com/gilt/ionroller

a structured way and domain-specific language to arrange
and automatically enact multi-phase live testing strategies,
a principle that is as of yet largely unexplored.

7. CONCLUSIONS
In this work, we proposed a formal model for defining live

testing strategies covering four previously-identified meth-
ods of live testing (canary releases, dark launches, A/B tests,
and gradual rollouts). On top of that, we provided a pro-
totype implementation automatically enacting and execut-
ing multi-phase release strategies defined in a YAML-based
domain-specific language. We evaluated our prototype in
three experiments covering (1) the performance overhead
introduced to systems when the Bifrost middleware is de-
ployed, and identifying Bifrost’s scaling capabilities when
confronted with (2) a large number of multi-phase release
strategies executed in parallel and (3) release strategies with
a large set of continuously evaluated metrics and health
checks. Even though our experiments were conducted on
cheap public cloud instances, we have shown that the Bifrost
middleware adds on average only 8 ms performance over-
head when executing a multi-phase release strategy in com-
parison to a baseline application without Bifrost deployed.
The Bifrost’s engine is able to handle more than 100 re-
lease strategies at the same time on a single core machine
and can cope with more than 1000 checks executed in paral-
lel. Hence, we conclude that our approach can be used even
in the scale of current-day industry leaders in continuous
deployment. Our approach has a number of distinct advan-
tages. Most importantly, formalizing release strategies in a
DSL fosters transparency, and allows strategies to be shared,
reused, and versioned. Further, additional verification and
validation tools can be built on top of our work. While out
of scope in this paper, this will be part of our future work.

Additionally, our future work needs to address a number of
limitations of the current model and implementation. Most
importantly, we are currently not modeling dependencies be-
tween services and versions. Similarly, we currently assume
that all changes are forward and backward compatible, es-
pecially in terms of data schemas. Previous work [22] has
shown that this is not necessarily the case. Finally, we cur-
rently assume that provisioning and load balancing service
instances is handled outside of Bifrost. Future versions of
the tool will be able to instantiate versions themselves, by in-
terfacing with Infrastructure-as-Code tools such as Vagrant
or Chef.

Acknowledgements
The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement no. 610802
(CloudWave), and from the Swiss National Science Founda-
tion (SNF) under project Whiteboard (no. 149450).

Online Appendix
We provide additional material to this paper, including links
to the source code of Bifrost, the case study application
used in the evaluation, and a replication package for our
study in an online appendix:
http://www.ifi.uzh.ch/seal/people/schermann/projects/bifrost.html

8. REFERENCES

[1] E. Bakshy and E. Frachtenberg. Design and Analysis
of Benchmarking Experiments for Distributed Internet
Services. In Proceedings of the 24th International
Conference on World Wide Web (WWW), pages
108–118, 2015.

[2] L. Bass, I. Weber, and L. Zhu. DevOps: A Software
Architect’s Perspective. Addison-Wesley Professional,
jun 2015.

[3] A. Begel and T. Zimmermann. Analyze This! 145
Questions for Data Scientists in Software Engineering.
In Proceedings of the 36th International Conference on
Software Engineering, ICSE 2014, pages 12–23, New
York, NY, USA, 2014. ACM.

[4] L. Chen. Continuous Delivery: Huge Benefits, but
Challenges Too. Software, IEEE, 32(2):50–54, Mar
2015.

[5] J. Cito, P. Leitner, T. Fritz, and H. C. Gall. The
Making of Cloud Applications: An Empirical Study
on Software Development for the Cloud. In
Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE),
pages 393–403, New York, NY, USA, 2015. ACM.

[6] J. Cito, P. Leitner, H. C. Gall, A. Dadashi, A. Keller,
and A. Roth. Runtime Metric Meets Developer -
Building Better Cloud Applications Using Feedback.
In Proceedings of the 2015 ACM International
Symposium on New Ideas, New Paradigms, and
Reflections on Programming & Software (Onward!
2015), New York, NY, USA, 2015. ACM.

[7] J. Cito, D. Suljoti, P. Leitner, and S. Dustdar. Web
Engineering: 14th International Conference, ICWE
2014, Toulouse, France, July 1-4, 2014. Proceedings,
chapter Identifying Root Causes of Web Performance
Degradation Using Changepoint Analysis, pages
181–199. 2014.

[8] D. G. Feitelson, E. Frachtenberg, and K. L. Beck.
Development and Deployment at Facebook. IEEE
Internet Computing, 17(4):8–17, 2013.

[9] K. C. Foo, Z. M. J. Jiang, B. Adams, A. E. Hassan,
Y. Zou, and P. Flora. An Industrial Case Study on the
Automated Detection of Performance Regressions in
Heterogeneous Environments. In Proceedings of the
37th International Conference on Software
Engineering - Volume 2, ICSE ’15, pages 159–168,
Piscataway, NJ, USA, 2015. IEEE Press.

[10] J. Humble and D. Farley. Continuous Delivery:
Reliable Software Releases Through Build, Test, and
Deployment Automation. Addison-Wesley
Professional, 2010.

[11] M. Kim, T. Zimmermann, R. DeLine, and A. Begel.
The Emerging Role of Data Scientists on Software
Development Teams. In Proceedings of the 38th
International Conference on Software Engineering
(ICSE’16), pages 96–107, New York, NY, USA, 2016.
ACM.

[12] R. Kohavi, A. Deng, B. Frasca, T. Walker, Y. Xu, and
N. Pohlmann. Online Controlled Experiments at
Large Scale. In Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining (KDD).

[13] R. Kohavi, R. M. Henne, and D. Sommerfield.
Practical guide to controlled experiments on the web:
Listen to your customers not to the hippo. In
Proceedings of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
KDD ’07, pages 959–967, New York, NY, USA, 2007.
ACM.

[14] P. Leitner and J. Cito. Patterns in the Chaos – a
Study of Performance Variation and Predictability in
Public IaaS Clouds. ACM Transactions on Internet
Technology, 2016.

[15] J. Lewis and M. Fowler. Microservices.
http://martinfowler.com/articles/microservices.html,
Mar. 2014.

[16] M. Mernik, J. Heering, and A. M. Sloane. When and
How to Develop Domain-specific Languages. ACM
Computing Surveys, 37(4):316–344, Dec. 2005.

[17] F. Provost and T. Fawcett. Data Science and its
Relationship to Big Data and Data-Driven Decision
Making. Big Data, 1(1):51–59, 2013.

[18] A. A. U. Rahman, E. Helms, L. Williams, and
C. Parnin. Synthesizing Continuous Deployment
Practices Used in Software Development. In
Proceedings of the Agile Conference (AGILE), pages
1–10, Aug 2015.

[19] P. Rodŕıguez, A. Haghighatkhah, L. E. Lwakatare,
S. Teppola, T. Suomalainen, J. Eskeli, T. Karvonen,
P. Kuvaja, J. M. Verner, and M. Oivo. Continuous
Deployment of Software Intensive Products and
Services: A Systematic Mapping Study. Journal of
Systems and Software, 2016. To appear.

[20] T. Savor, M. Douglas, M. Gentili, L. Williams,
K. Beck, and M. Stumm. Continuous Deployment at
Facebook and OANDA. In Proceedings of the 38th
International Conference on Software Engineering
Companion (ICSE’16), pages 21–30, New York, NY,
USA, 2016. ACM.

[21] G. Schermann, J. Cito, and P. Leitner. All the
Services Large and Micro: Revisiting Industrial
Practice in Services Computing. In Proceedings of the
11th International Workshop on Engineering Service
Oriented Applications (WESOA’15), 2015.

[22] G. Schermann, J. Cito, P. Leitner, U. Zdun, and
H. Gall. An Empirical Study on Principles and
Practices of Continuous Delivery and Deployment.
PeerJ Preprints 4:e1889v1
https://doi.org/10.7287/peerj.preprints.1889v1, 2015.

[23] G. Tamburrelli and A. Margara. Towards Automated
A/B Testing. In Proceedings of the 6th International
Symposium on Search-Based Software Engineering
(SSBSE), volume 8636 of Lecture Notes in Computer
Science, pages 184–198. Springer, 2014.

[24] C. Tang, T. Kooburat, P. Venkatachalam,
A. Chander, Z. Wen, A. Narayanan, P. Dowell, and
R. Karl. Holistic Configuration Management at
Facebook. In Proceedings of the 25th Symposium on
Operating Systems Principles, SOSP ’15, pages
328–343, New York, NY, USA, 2015. ACM.

[25] A. Tarvo, P. F. Sweeney, N. Mitchell, V. Rajan,
M. Arnold, and I. Baldini. CanaryAdvisor: A
Statistical-based Tool for Canary Testing (Demo). In
Proceedings of the 2015 International Symposium on

Software Testing and Analysis (ISSTA), pages
418–422, New York, NY, USA, 2015. ACM.

[26] A. van Hoorn, J. Waller, and W. Hasselbring. Kieker:
A Framework for Application Performance Monitoring
and Dynamic Software Analysis. In Proceedings of the
3rd ACM/SPEC International Conference on
Performance Engineering (ICPE’12), pages 247–248,
New York, NY, USA, 2012. ACM.

