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ABSTRACT
To complete a change task, software developers spend a sub-
stantial amount of time navigating code to understand the
relevant parts. During this investigation phase, they implic-
itly build context models of the elements and relations that
are relevant to the task. Through an exploratory study with
twelve developers completing change tasks in three open
source systems, we identified important characteristics of
these context models and how they are created. In a sec-
ond empirical analysis, we further examined our findings on
data collected from eighty developers working on a variety
of change tasks on open and closed source projects. Our
studies uncovered, amongst other results, that code context
models are highly connected, structurally and lexically, that
developers start tasks using a combination of search and nav-
igation and that code navigation varies substantially across
developers. Based on these findings we identify and discuss
design requirements to better support developers in the ini-
tial creation of code context models. We believe this work
represents a substantial step in better understanding devel-
opers’ code navigation and providing better tool support
that will reduce time and effort needed for change tasks.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments

General Terms
Human Factors

Keywords
Context models, search, navigation, change task, user study

1. INTRODUCTION
Software developers spend substantial time searching and

navigating through code to understand relevant parts of a
system for a particular change task [24, 37]. During this pro-
cess of understanding and then changing code, developers
implicitly build code context models that consist of the rele-
vant code elements and the relations between these elements,
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often more generally referred to as task context. Since these
models mainly stay implicit in developers’ heads and are not
persistent, developers have to continuously spend a signifi-
cant amount of their time creating context models for newly
assigned change tasks from scratch [26].

Researchers have suggested that more explicit context mod-
els for change tasks1 can be used to support developers in
their work [29]. To form these explicit context models, ex-
isting approaches have used methods ranging from a devel-
oper manually specifying the context (e.g., [33]) to auto-
matically inferring the context from a developer’s interac-
tion with a development environment (e.g., [22]). While
these approaches have been shown to support developers
with change tasks, little is understood about the implicit
code context models that developers build and their charac-
teristics. With a better understanding of the characteristics
of developers’ code context models, we might be able to help
developers in the initial creation of these models for change
tasks, saving time and effort.

To investigate the characteristics that code context mod-
els exhibit for different change tasks, we conducted an ex-
ploratory study with twelve developers on three change tasks
in open source projects. To validate our observations on a
broader population of developers and tasks, we conducted
a second empirical analysis using data sets from several
hundreds of change tasks and eighty developers working on
open and closed source projects. Amongst other results,
our studies show that developers’ context models are highly
connected, structurally and lexically, that the code naviga-
tion can differ substantially by individual even for the same
change task, and that developers start change tasks using
a combination of search and navigation and then frequently
revisit code elements. Based on our findings we infer design
requirements to support developers in the creation of code
context models and discuss the design of such an approach.

This paper makes the following research contributions:

● It identifies important observations on the character-
istics of code context models based on an exploratory
study with 12 developers on three open source projects.

● It provides an empirical analysis of the findings on data
collected from eighty developers working on a variety
of change tasks on open and closed source projects.

● It identifies design requirements and discusses the de-
sign of an approach to support developers in the cre-
ation of code context models.

1We use the term change task to refer to both modification
task and bug.
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This work represents a substantial step in better understand-
ing developers’ code navigation and implicit context models
for change tasks that will help to provide better tool support
with the potential for real-world impact on the development
process, in particular on reducing the time and effort re-
quired for change tasks.

2. EXPLORATORY STUDY
In the process of performing a change task, developers

build up code context models2—code elements and relation-
ships between these elements that are relevant to the change
task. In this study, we investigate these code context models
based on three specific concepts of relevance: (a) relevance
as perceived by the developer, (b) relevance as defined by
the actual code change and (c) relevance as defined by the
explicit navigation activity of the developer. Since our ulti-
mate goal is to support code context creation we also investi-
gated developers’ code navigation tendencies to understand
how code context models could be created. In particular,
we wanted to address the following questions:

(1) What are common characteristics that code context mod-
els exhibit?

(2) How do code context models vary based on different
definitions of relevance?

(3) How do developers’ code context models and navigation
behavior vary for different tasks?

To investigate these questions, we conducted an exploratory
study with a blocked subject-project study setup [13] with
twelve software developers. Each developer worked on one
of three different change tasks for open source projects.

2.1 Study Method
For this experiment we chose three open source systems

in Java that all have an open task repository, recent devel-
opment activity and a code base big enough to preclude a
systematic understanding of the entire system. Specifically,
we chose FreeMind [6], Java PasswordSafe (JPass) [7] and
Rachota [8]. For each system we chose one open change task
that two of the authors were able to perform in less than
one hour. Furthermore, we chose tasks for which the change
could be observed in the graphical user interface. All three
change tasks were reported as bugs, however, the JPass and
FreeMind tasks could have been categorized as enhancement
or modification task. Thus, we will mostly refer to all three
tasks with the more general term change task.

Each developer who signed up for the study was randomly
assigned to one of the three tasks. We then provided each
participant a document with instructions and access to a
virtual machine that was set up with an Eclipse IDE3 and a
workspace that contained the assigned change task descrip-
tion and project. We decided to set up a virtual machine for
each participant on the Amazon Elastic Compute Cloud [2]
to allow for remote and independent access using his own
computer setup and thus to affect the “normal” behavior as
little as possible. The participants were instructed to first
run the application and observe the current behavior to be
changed before looking at the code and trying to perform
the change. Furthermore, the instructions told the partici-
pants to answer a set of questions after either completing the

2Murphy et al. ([29]) introduce the broader term task context
that extends our notion to arbitrary artifacts.
3Eclipse IDE for Java Developers, version 3.7, eclipse.org

change task successfully or after 75 minutes to limit the to-
tal time required of a participant to 90 minutes—75 minutes
for the change task and 15 minutes for the questions.

In the questions, the participants were asked to sketch a
model of the source code elements, such as classes, methods
and fields, and the relationships they considered relevant
for understanding and making the change. For the sketch,
the participants were allowed to use pen and paper or their
favorite drawing tool and they were encouraged to use any
notation or form they wanted to. The rest of the questions
in the set addressed the experience of the participants.

To make sure that the tasks are solvable in the given time
and the questions are understandable by the participants, we
conducted pilot studies with three graduate students, each
performing one of the three tasks. The pilots confirmed our
assumption on the timing and we only slightly altered the
question on the model sketching part to explicitly state that
developers are allowed to use pen and paper for the sketch.

2.2 Subjects
We recruited subjects through email and personal contact.

To be eligible, subjects had to have experience programming
in Java. We ended up with 12 participants that we randomly
assigned to one of the three tasks, four for the FreeMind task
(F1-F4), four for the Java PasswordSafe task (J1-J4) and
four for the Rachota task (R1-R4). Of these twelve develop-
ers, five worked in a company, four were graduate students
and three faculty members in Computer Science, all with a
background in software engineering. The subjects’ program-
ming experience ranged from 8 to 16 years (average of 11.8)
with between 0 to 12 years (average of 4.5) of professional
programming experience. For each task we made sure to
have at least two developers with professional development
experience and one graduate student to report on. Two of
the subjects were female, ten male. On a five point Likert-
scale with 1 (strongly disagree) to 5 (strongly agree), all
subjects agreed or strongly agreed that Java is one of their
primary programming languages (average of 4.75), and were
very familiar with the Eclipse IDE (average of 4.17).

2.3 Projects and Change Tasks
FreeMind. The FreeMind project (version 0.9.0 RC 15) is
an open source mind map editor consisting of 52.5k non-
commented lines of code (NCLOC), 439 top level classes,
and 45 packages. We selected a task for this project (ID
3420227, [10]) that was still open and observable. This
change task addressed FreeMind’s failure to save a map af-
ter an encrypted node was added as well as the inadequate
notification upon failure. We limited the scope of this po-
tentially large change by asking the subjects to add a rea-
sonable explanation to the“Save Failed”dialog. This change
required users to propagate exception information from the
save method of EncryptedMindMapNode to the user action
(actionPerformed in SaveAction) and finally to display the
improved message to the user. The call chain between ac-

tionPerformed and save is relatively long (11 method calls
in total) and can be challenging to follow. Fortunately, when
reproducing the failure, which we asked all subjects to do
before making the change, a stack trace was printed to the
console that contained the relevant call chain.

Java PasswordSafe. The Java PasswordSafe (JPass) project
(version 0.8 final) is an open source password management
system consisting of 13.5k NCLOC, 167 top level classes,
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and 18 packages. We again selected a change task (ID
2933526, [11]) that was still open at the time and observ-
able. This task addressed the lost selection and undesired
scrolling that occurs when the application is unlocked af-
ter coming out of the sleep state. For this change task, we
expected subjects to save the selection index in order to re-
select and center the appropriate item after the application
was unlocked. While classes UnlockDbAction, LockDbAc-

tion, and PasswordSafeJFace were all relevant for this task,
only one to two methods in PasswordSafeJFace needed to
be changed. During this task, subjects familiar with the
Standard Widget Toolkit [3] may have benefitted, although
prior knowledge was not necessary. This application also
made extensive use of console logging. Observant developers
could use these log messages as a starting point for searches.

Rachota. The Rachota project (version 2.4) is an open
source time tracking utility where users can track the time
spent on each task. It consists of 18k NCLOC, 53 top
level classes, and three packages. We selected a task (ID
2658881, [9]) that was open and observable. This task ad-
dressed the problem of newly created tasks failing to show in
the ‘History’ tab. For this task, we expected subjects to trig-
ger an update of the History tab’s underlying model upon
task creation. Three classes that are relevant to the task
are extremely large (HistoryView has 1800 NCLOC with
42 methods, MainWindow has 1125 NCLOC with 28 meth-
ods and DayView has 1807 NCLOC with 50 methods). These
large classes, along with the fact that the application offered
no logging or relevant stack trace made it more difficult for
users to find a starting point in the code base.

2.4 Data Collection and Analysis
We used a combination of qualitative and quantitative

methods motivated by the ones described by Seaman [34].
We used participant observation by recording each partic-
ipant’s screen and having access to their actual workspace
after the session, in addition to asking the participant a set
of questions. From the participants’ sessions we collected
three types of data: patches for the successful completion
of the change task, videos capturing the developers’ screens
during their work on the task and the artifacts that con-
tained the answers to the questions, including the sketched
models. To record a developer’s screen, we automatically
started a screen recording application at the beginning of a
developer’s session. For the questions, we asked developers
to send us their answers by email after they finished. We
transcribed and coded the patches, the screen recordings and
the collected answers. The transcripts together with further
study artifacts are available at [5].

From the videos we determined the time that each partici-
pant took to complete a task. We chose the point at which a
participant validated the correctness of his change in the user
interface of the application as the finish time. Even though
the instructions stated that participants should move onto
the questions part after 75 minutes to limit the total amount
of effort spent, three participants chose to continue. Two of
these three participants, J4 and R4, did not succeed in per-
forming the appropriate change and at some point stopped
working on it. Both participants closed Eclipse at the end
which we used as the finish time. Table 2 presents the time
participants took to complete the task or until they stopped.

4This was only used in the FreeMind task and opened up
the parent class.

Table 1: Developer Navigation Steps Transcribed
from the Screen-Captured Videos (several of these
refer to tool support provided in the Eclipse IDE).

Structured Navigation Steps

navigation aids call hierarchy, type hierarchy, find
references

debugger step into, step return, stacktrace
click

editor quick documentation, open declara-
tion, quick fix4

Unstructured Navigation Steps

package explorer expand item, open item

search Java, file, find in file, outline view

editor working set back, forward, open from editor tab

editor scan

For investigating and comparing the three different code
context models, we determined the source code elements and
relations in these models from the data collected.

Developer Models. For the code context models based
on the developer’s relevance definition, which we refer to
as developer models in the following, we coded the mod-
els sketched by the developers. We acknowledge that these
sketches may not be a complete or accurate representation of
developers’ implicit context models, thus necessitating the
use of complementary models, in particular the code naviga-
tion model. We believe, however, that these sketches encode
important or prominent features of these implicit models of
which developers are conscious. For each sketch, we deter-
mined the code elements the sketches explicitly referred to.
Since all twelve models contained references to classes but
four did not contain any methods and three did not contain
any fields, we only examine the classes used in these models
for a fair comparison in the following.

Patch Models. For the code context models from the ac-
tual patch, which we refer to as patch models, we determined
the classes and methods that were changed as well as the
types that were used and the methods that were called in
the actual change.

Code Navigation Models. For the models defined by the
developer’s explicit navigation behavior, which we refer to as
code navigation models, we transcribed the screen recordings
and coded the resulting transcripts. Since we are interested
in the navigation of a developer through the program code,
in particular the classes and methods, we transcribed the
structured and unstructured navigation steps a developer
took. We considered a navigation structured if a developer
explicitly navigated from a code element A to a code ele-
ment B along a structural relation using some tool support
in the IDE, where code elements were defined as classes,
methods or fields and structural relations referred to call,
implements and usage relations. Table 1 presents a sum-
mary of all transcribed navigation steps. For each step we
recorded the step, the target element and its type as well
as, in case of a structured step, the source element, its type
and the relation followed.

The navigation steps that we transcribed do not explic-
itly capture the code editing by a developer. However, since
we think it is reasonable to assume that a developer has an
understanding of the elements he uses or calls in his code
change, we added these elements to the code navigation
model if they were not yet in it, which was rarely the case.
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(a) F2’s Developer Model (b) J1’s Developer Model

Figure 1: Developer Models for FreeMind and JPass.

For transcribing code navigation one has to determine
which code elements a developer is examining at any point in
time, which is challenging as described by [32]. While tran-
scribing the video, we used the mouse pointer as a clue and
examined the actual code base to determine which method
a developer was in. We also used the keyboard events to
determine the tool support a developer used. Observational
studies are subject to observer bias which may lead to omit-
ting navigation instances or characterizing them incorrectly.
To mitigate this risk, we had an initial phase in which three
investigators transcribed one video and cross-validated the
results to make sure no major differences occurred. After
this phase, one investigator transcribed all videos and ran-
dom samples were picked for cross-examination by the other
two investigators revealing no major differences.

2.5 Study Results
Based on the analysis of the qualitative and quantitative

data we gathered, we made several key observations with re-
spect to the three questions we set out to study. Given the
exploratory nature of our study, we will discuss these ob-
servations and their implications mainly alongside the pre-
sentation of descriptive statistics. In the presentation of the
observations we only included the successful subjects (ten of
the twelve subjects) since we did not have patches for the
unsuccessful subjects. A summary of the statistics gathered
is presented in Table 2.

O1—Developer models are small, abstract and highly
connected. Across all subjects and tasks, developer mod-
els are consistently small with a mean (M) of 4.6 class el-
ements (standard deviation SD of 0.8). Even though the
size of patch models showed big variances for different tasks
(M = 14.5 classes for FreeMind, M = 3.7 for JPass and
M = 2.3 for Rachota) and the code navigation models varied
widely across all subjects on the class level (overall SD = 8.5
with M = 17.4), the size of the developer models remained
consistently small.

Developers generally used abstraction in their models. In-
stead of using concrete class names developers recorded the
concepts or functionality they were interested in, e.g., sub-
ject F2 used “some action class for save, location of error
message” to denote the class ControllerAdaptor (see Fig-
ure 1(a)) and J2 stated “Main View” and put the actual
class name in brackets close by. However, the level of ab-
straction used in the models varied by subject and task.
For instance, all four FreeMind subjects used a very high
level of abstraction, whereas subjects on the JPass task in-

cluded more detail in their models. An example to illustrate
this difference is shown in Figure 1; Figure 1(a) shows F2’s
developer model for the FreeMind task which is highly con-
ceptual, abstracting from direct call relations to transitive
call chains, and Figure 1(b) shows the model of developer
J1 on the JPass task which resembles a class diagram with
details of the code.

All developer models were also highly connected. In fact,
all models were fully connected at class-level excluding one
class element in subject F2’s otherwise connected model.
On average, there were 5.3 relations in a developer model
(SD = 2.1) and these relations mainly referred to method
calls, but also to contains and inheritance relations.

O2—Patch model size has little influence on the size
of code navigation models. For the three tasks we inves-
tigated, the average number of methods in the patch model
had almost no influence on the number of methods in the
code navigation model. The patch models for the FreeMind
task were the largest and the most scattered, containing
an average of 22.2 methods (SD = 3.0) over 14.5 classes.
The patch models for the JPass task and the Rachota task
were both much smaller (M = 6.7, SD = 4.5 and M = 4.7,
SD = 4.6 respectively) as well as less scattered (3.7 and 2.3
classes). In spite of the bigger patch models, the code nav-
igation models for FreeMind were smaller than the ones for
Rachota, with an average of 35.2 methods (SD = 7.3) in
the FreeMind models and 43.7 (SD = 30.1) for Rachota. A
similar lack of correlation is seen when, in spite of patch
models of roughly equal size, JPass’s code navigation mod-
els were on average a lot smaller (M = 22.3, SD = 8.8) than
Rachota’s. This can also be seen in the Pearson’s correlation
coefficient between the patch and the code navigation model
size being close to zero overall with r = .006. This observa-
tion implies that a bigger and more scattered change does
not result in a developer navigating through more method el-
ements to make the change.

O3—Even for concise and successful changes, code
navigation models can differ substantially on class as
well as method level. Code navigation models can vary
substantially across developers, even for tasks that require
only small changes. For example, while there was some
agreement on four core classes for the JPass task, i.e., all
four classes were in all navigation models and three of these
four were in all developer models, there was a wide variance
outside of these four classes. The three subjects had be-
tween 6 and 19 classes in their navigation models with an
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Table 2: Summary of Descriptive Statistics on Participants’ Background and Exploratory Study (pro = profes-
sional, grad = graduate student, fac = faculty, ✓ = success, ∎ = failure, Cl = classes, Me =methods, Deb = debugging).

Project ID Job
Years Time & Dev. Model Patch Model Code Nav. Model Navigation Steps

Pr.Exp. Success Cl Cl Me Cl Me All Structured Revisits Deb

Freemind F1 pro 10 39.7min ✓ 4 16 25 37 42 116 101 47 26
F2 pro 11 22.0min ✓ 4 15 23 16 25 106 57 40 54
F3 grad 8 59.7min ✓ 5 11 18 19 36 341 229 250 219
F4 grad 9 70.9min ✓ 4 16 23 22 38 177 41 112 11

JPass J1 pro 12 8.6min ✓ 4 2 2 6 12 67 46 30 33
J2 pro 12 64.5min ✓ 4 6 11 19 28 408 279 305 250
J3 pro 11 62.0min ✓ 5 3 7 12 27 140 64 88 17
J4 fac 12 101.1min ∎ 4 - - 19 32 570 459 453 441

Rachota R1 fac 15 53.8min ✓ 6 5 10 20 31 349 101 248 78
R2 grad 11 100.6min ✓ 4 1 2 13 78 553 42 396 39
R3 pro 15 36.6min ✓ 6 1 2 10 22 326 130 241 160
R4 fac 16 114.4min ∎ 9 - - 16 35 282 76 155 6

average overlap of elements with at least one other subject’s
model of only 52.6%. On method level, the variance was
larger as models ranged from 12 to 28 elements with only
3 methods that all three subjects had in common. In class
PasswordSafeJFace, one of the core classes for this change
task, the three subjects inspected 21 different methods but
only one of these 21 methods was inspected by all subjects.

O4—Code Navigation Models are highly connected
(structural cohesion). Upon inspecting all code naviga-
tion models for all successfully completed change tasks we
found that, on average, 73% of the class elements in a code
navigation model are connected with at least one other class
through a call, usage or implements relation. Six of the
ten code navigation models centered around one large con-
nected group of classes and zero or more additional classes
with no connections. By cross referencing these unconnected
classes with the transcripts we observed that the uncon-
nected elements were often visited towards the beginning
of the task using unstructured navigation steps, prior to de-
velopers finding a point of reference to start a deeper, more
structured investigation. For example, for the code naviga-
tion models of the three subjects on the JPass task, there
are nine classes that are not connected to more than one
other class and seven of these nine were navigated to within
the first few steps. Figure 2 illustrates an example of a code
navigation model for JPass, including a numbering to show
the order in which elements were navigated to. In this exam-
ple, most elements are connected except for some that the
developer navigated to in the beginning and two elements
from seemingly random selections later on (30 and 31).

O5—Navigation Sequences are largely determined by
lexical similarities (lexical cohesion). In our transcripts
we observed that developers often subsequently visited code
elements that share identifying terms within their identifiers,
in particular in the beginning of the investigation. Upon
inspecting all subsequent visits, either from one class to an-
other, one method to another one within the same class, or
one method to a method in another class, we found that over
all subjects and tasks, 43% (±17%) of the elements visited
subsequently are lexically similar. In this paper, we define
two identifiers as lexically similar if, after splitting up iden-
tifiers according to camelCase notation, they have at least
one term in common. This result supports the observations
made by other researchers (e.g. [27, 24]). We also found that
developers pay overall more attention to lexical similarities
when they switch from a method to a method in another

Figure 2: Code Navigation Model for Subject J2.

class. On average 69% of the method switches to a different
class are lexically similar, whereas only 29% of the method
switches within the same class are lexically similar.

O6—Developers start with a combination of search
and structural navigation. In a study on a small project
with 500 lines of code, Ko et al. [24] found that developers
first search for information, then engage with the informa-
tion to decide whether it is worth continuing by navigating
the relationships between information, before finally edit-
ing the code. Similarly, Sillito et al. [36] identified that de-
velopers exhibit a behavior of ‘finding initial focus points’
and then ‘building on those points’ through navigation and
exploration. Our exploratory study on the three projects
corroborates these initial findings. Of the twelve subjects,
nine performed an explicit search within the first 8 steps,
and the other three found an initial starting point in the
code by scanning the package structure rather than explic-
itly searching. Seven of the nine subjects that performed
searches found starting points from the search. In these
cases, within the next 10 steps they spent an average of 4.1
steps following call and execution relations from one of the
search results and an average of 4.3 steps scanning one of the
search results. More qualitatively, from the code navigation
models generated, one can see that developers explored call,
declaration and execution relationships a couple of steps out
from search results, often revisiting the results and the in-
termediate elements once determining the relevancy of the
element. This suggests that developers start their tasks with
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a combination of a global search for information and then
navigate the structural relations, in particular call relations,
to comprehend more about the context of the elements.

O7—Developers frequently revisit code and take less
time if their navigation is more structured. In their
navigation, developers revisit elements more often than they
navigate to new code elements. Over all subjects and tasks
and including debugging steps, 68% of all navigation steps
were revisits, with a mean revisit rate of 61.4% (SD = 14.7%)
per subject. Not surprisingly, the more revisit steps a devel-
oper performed in his navigation, the more time he spent on
the whole change task (Pearson’s r = .72). Furthermore, the
higher the ratio of structured versus unstructured naviga-
tion was, the less time a developer spend on the change task
(Pearson’s r = −.49). This result supports the observation
that Robillard et al. [32] made on successful developers per-
forming more structurally guided searches than unsuccessful
ones, only that we look at the time of completing a change
task rather than success.

3. EMPIRICAL ANALYSIS
To further investigate the characteristics and variations

of code context models and validate the findings of our ex-
ploratory study, we conducted an empirical analysis of two
data sets from several hundreds of change tasks and eighty
developers working on open and closed source projects.

3.1 Data Sets
We used two data sets, denoted as Blaze and Mylyn data,

for the empirical analysis. Both data sets capture develop-
ers’ interactions, such as selects and edits, with an IDE. We
used these two data sets for the different aspects they cap-
ture about a developers’ work within an IDE, the different
populations and IDEs they capture and their availability.
While the Mylyn data contains information on the specific
tasks developers worked on and the changes they committed
for resolving these tasks, the Blaze data contains informa-
tion on search instances and the exact order of events.

Mylyn Data.
The Mylyn data consists of change tasks, task contexts cap-
turing interaction data for a change task, and patches of the
Mylyn project. We chose to analyze the Mylyn project as it
is a reasonable-sized project (466k NCLOC) that provides
information on developers’ interaction with the Eclipse IDE
for a reasonable number of change tasks. The interactions
are thereby captured using the Eclipse Mylyn project [12,
22]. From the Bugzilla [1] repository for the Mylyn project,
we retrieved 9920 change tasks reported between 07/18/2007
and 02/20/2014. From this set, we filtered all change tasks
that did not have a patch and a task context associated,
resulting in a total of 2253 change tasks. For each change
task, we extracted several features, such as the severity of
the change task and the comments stored within the change
task. By linking the change task ID to the commit comments
in the change history of the Mylyn project, we identified
the patches for each change task and extracted the changed
classes and methods using ChangeDistiller [19]. In addition,
for each change task we retrieved the associated task context
and extracted the classes and methods a developer selected
in the process of performing the change task.

For each of the 2253 change tasks in our Mylyn data, de-
velopers changed on average 5.7 (SD = 16.2) classes and
13.0 (SD = 69.2) methods and selected an average of 47.2

(SD = 139.7) classes and 18.8 (SD = 31.1) methods. The
change tasks in this data set are categorized into different
task types based on the severity field: 915 normal, 719 en-
hancement, 313 minor, 130 trivial, 127 major, 30 critical
and 19 blocker. The time period of a task context, which
denotes the time from the first captured code selection for
the task to the last, varies a lot with an average of 18.5
days (SD = 87.3). Thus, it differs substantially from the
short change tasks investigated in our exploratory study and
most other similar empirical studies in related work. Over-
all, there were 31 developers, each working on at least one
of the 2253 change tasks.

Blaze Data.
Blaze is a Visual Studio extension that logs interaction data,
in particular all actions a developer performs within the IDE
or that are executed by Visual Studio itself [38]. Blaze acts
as a global event handler, listening for all GUI events within
Visual Studio. For each event, Blaze records the key at-
tributes, such as the name and type of the event. If ex-
istent, Blaze also records the file name and the currently
selected line number. All events are registered along with
an anonymized unique identifier for each Blaze user that
allows to investigate differences between developers.

The Blaze data used in our analysis contains data recorded
from 59 developers and over 8000 hours of development ac-
tivity. It was collected from developers in ABB‘s globally
distributed industrial software development community that
volunteered to share their data.

3.2 Data Analysis and Results
To examine the characteristics of code context models and

validate the findings of our exploratory study, we performed
a set of analysis over the two data sets.

Mylyn Data.
To examine if the size of the patch influences the size of
the task context (O2 ), we compared, for each change task,
the changed classes and methods of the patches with the
selected classes and methods within the task contexts. Fig-
ure 3 illustrates the high variance and lack of a general trend
between the number of changed methods and the number of
selected methods which is similar on class level. A Pear-
son’s correlation coefficient between the number of changed
and selected elements of rclass=.257 (p<.001) on class and of
rmethod=.202 (p<.001) on method level supports this lack of
a trend. Both correlation coefficients are of small effect sizes
(r<.3). The coefficient of determination, R2

class=.066 for
rclass, and R2

method=.041 for rmethod, measures the amount
of the variability in the number of changed classes, respec-
tively methods, that is shared by the number of selected
classes, respectively methods. R2

class implies, that the num-
ber of changed classes and the number of selected classes
share only 6.6% of variability and that 93.4% cannot be ex-
plained. On method level, only 4.1% of the variability is
shared, denoting that 95.9% of the variability cannot be ex-
plained. These results support O2 .

O8—Type and discussion length of a change task can
significantly influence code navigation models. Since
our results show that the size of a patch has little influence
on the navigation behavior, we investigated the influence of
other aspects of a change task. In particular, we looked at
the type and the discussion length of a change task, since
these might be reflective of the complexity of a change task,
assuming that complicated or unclear concepts often require
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Figure 3: Number of Selected Methods Plotted
Against Number of Changed Methods.

longer discussion threads. Therefore, we examined if we can
predict the task context size as small or big on the basis of a
change task type using multinomial logistic regression. We
defined a task context as small if it contains less than the
median size of all task contexts (8 different classes and 3 dif-
ferent methods) and big otherwise. A chi-square test results
in chi square= 40.624 (p<.000 with df =6), showing that
the predictive power significantly increases when the change
task type is added to the model. Looking at the parameter
estimates for all seven change task types allows us to inter-
pret effects by comparing two change task types against each
other. For example, the odds of having a small task context
for a “trival” change task are 2.34 times higher than for an
“enhancement” (with p<.001). When comparing all pairs
of types, significant effect sizes exists for enhancement and
trivial, enhancement and minor, enhancement and major,
and enhancement and normal, showing that a change task
of type enhancement usually results in a bigger task context.
Our comparison of the number of comments within a change
task and the navigation behavior, represented by the num-
ber of selected elements, shows that there is a correlation
with a medium effect size with a Pearson’s r=.30, p<.001
on class and Pearson’s r=.38, p<0.001 on method level. At
the same time, the number of comments and the patch size
(number of changed elements) are only correlated with a
small effect size with Pearson’s r=.11, p<.001 on class and
Pearson’s r=.27, p<.001 on method level.

We also used the Mylyn data to further examine the obser-
vation that even for concise changes code navigation model
can differ substantially (O3 ). Since in the history of a
project, there are usually no two change tasks that are ex-
actly the same and no two developer complete the same task,
as we had it in our exploratory study, we used an approxi-
mation for concise changes. In particular, we approximated
concise changes as the ones in the Mylyn data that changed
at most 2 classes and 3 methods (the median of changed
classes, respectively methods over all change tasks). After
extracting these changes from the Mylyn data, we retrieved
all pairs of changes that had at least 1 method in common
to approximate for similar changes as we had in our ex-
ploratory study. Overall, we identified 49 pairs of change
tasks that changed at most 2 classes and 3 methods and
that had at least 1 method in common in their changes.
When comparing the task contexts of each of these pairs,
we found substantial differences on class and method level.
Out of the 49 pairs, only 13 pairs have an overlap on class
level within their task contexts and out of the 13 pairs, 12
pairs share 1 class element and 1 pair shares 2 class elements
within their task contexts. On the method level, out of the
49 pairs, only 7 pairs share exactly one method within their

task contexts. Since the task contexts of all change tasks of
the 49 pairs have an average of 5.35 (SD = 4.57) classes and
5.49 (SD = 4.67) methods, the overlap in task contexts is
relatively small. While it is impossible to recreate the study
in which multiple developers perform the same change task
and this analysis only approximates it, our results show that
even if the changes of different concise changes overlap, the
code navigation models are substantially different, providing
some evidence that O3 holds.

For the observation that code navigation models are highly
connected (O4 ), we examined whether the elements within
a task context are structurally connected. We considered
elements as structurally connected if they either belong to
the same class or if there is a call relationship between the
elements on the method level. Disregarding 69 change tasks
with only one element in their task context, we found that
on average 68% (SD = 29%) of the task context elements
are structurally connected, supporting O4.

For the observation that code navigation models exhibit
a high lexical cohesion (O5 ), we examined whether the ele-
ments within a task context are lexically related. To deter-
mine the lexical cohesion within task contexts, we split the
elements according to the camelCase rule (e.g. SetupHelper
is split into ”Setup” and ”Helper”). Resulting stop words,
such as ”get” or ”set” were removed. We then consider an el-
ement as lexically connected, if it shares terms with at least
50% of the task context’s elements. Disregarding again the
change tasks which only contain one element, we found that
on average 61% (SD = 35%) of the task context elements
are lexically connected, supporting O5.

Blaze Data.
Our exploratory study as well as a small study by Ko et
al. [24] show that developers often begin a task by searching
for an initial point and then move outwards using structured
navigation (O6 ). To examine if this pattern also holds for
professional developers in the field, we analyzed the Blaze
data that captures interaction data from 59 professional de-
velopers, since the Mylyn data does not contain informa-
tion on the searches performed. Since the Blaze data does
not contain task boundary information, we can not exam-
ine whether developers start a task with searches, but we
focus our analysis on whether there is an increase in struc-
tured navigation right after a search. Therefore, for each
of the 59 developers within the Blaze data, we compared
the general use of structured navigation over all of a devel-
oper’s work in the IDE with the structured navigation in the
minute immediately following a search. This again is only
an approximation, but should provide evidence whether the
observation also holds in the field.

We consider the following events as structured navigation
in the Blaze data:

● Go To Definition (F12): brings up the code that de-
fines the selected identifier.

● View Call Hierarchy (Ctrl+K Ctrl+T): provides a two
way analysis of an identifier’s dependencies and uses.

● Class View (Ctrl+W, C): provides a browser and search
function for classes and class hierarchy.

● Find All References (Ctrl+K,R): provides a list of lines
that reference an identifier.

● Navigate to Event Handler: brings up the event han-
dler for an object in the XAML editor.

● View Class Diagram: generates a class diagram.

● View Object Browser: is a search tool and browser.
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Unstructured navigation events include selecting a file in an
explorer window, selecting the tab for a file, using arrow and
page up/down keys to go up/down through a file, scrolling
and clicking on a file element.

To examine whether there is an increase in structured nav-
igation after a search, we define the metric structured nav-
igation events per minute (SNM). For each developer, we
counted the number of structured navigation steps overall
sessions recorded and calculated the average SNM per de-
veloper (SNMGeneral). In addition, for each developer we
identified all searches the developer performed, counted the
number of structured navigation steps in the minute after
the search and calculated the average SNM over all searches
by the developer (SNMAfterSearch). In this analysis, we
consider two kinds of search that we treat separately: the
execution of the command “Find in Files” and the use of the
Sando code search [4]. Since all 59 developers used the com-
mand “Find in Files” (FiF), we collected 59 pairs of SNMs
(SNMGeneral,SNMAfterSearch) for FiF. Only 36 developers
used the Sando search tool in their work. Therefore, we
only collected 36 pairs of SNMs for Sando. A Wilcoxon
Signed Ranks test showed that for both searches, there is
a significant difference in the use of structured navigation
immediately after a search compared to the general use of
structured navigation with p=.006 (T=442, r=-.25) for FiF
and p=.015 (T=166, r=-.29) for Sando, providing further
evidence for O6 .

To examine if developers frequently revisit code (O7 ),
and since the Blaze data does not contain information on
when the work on a task started or ended, we performed
a processing step to partition the Blaze data into sessions,
each of one hour length. We chose one hour since this is a few
minutes more than the average time participants used in our
exploratory study to complete a change task. Per session, we
then counted the number of class visits (#ClassesV isited),
i.e. the number of times a developer selected a class different
to the one that was selected beforehand, and the number
of distinct classes visited per session (#DistinctClasses).
The percentage of classes revisited can then be calculated

as (#ClassesV isited−#DistinctClasses)

#ClassesV isited
. Over all participants

and sessions, a developer visited an average of 16 classes
per hour, with 6 distinct classes, resulting in an average
percentage of revisiting of 62.5%, and supporting O7.

4. THREATS TO VALIDITY
Exploratory Study . By applying a blocked subject-project
study setup with developers from various backgrounds and
three different change tasks of three active open source sys-
tems we tried to limit the threats to the external validity of
our exploratory study and the experiment. To study change
tasks representative of realistic situations, we used change
tasks from active open source systems with a size big enough
to preclude systematic understanding of the entire code base.
A limitation of our study is that all tasks were solvable in
less than two hours and thus might not represent the broad
range of tasks that exist. We tried to mitigate this risk by
choosing the change tasks as randomly as possible (see Sec-
tion 2). Another threat is the limited size of our subject
sample and the small number of change tasks which limits
our study’s generalizability. We tried to mitigate this risk
by cross-sectioning full-time developers and researchers from
different companies and universities with multiple years of
programming experience.

In our exploratory study we focused on Eclipse and Java
since they are amongst the most commonly used IDEs and
programming languages. Navigation might differ depending
on the tools provided in the IDE and language structure.

By screen capturing the participants we could only tell
which elements they selected, but not which ones they looked
at. This process misses elements and relations that were not
explicitly followed through navigation steps, but our focus
was on an obvious set of elements rather than an approx-
imation of everything developers might have looked at. In
future studies, we plan to explore the use of eye-trackers to
also gather information on where developers look.

Empirical Analysis. To increase the external validity of
our observations from the exploratory study, we conducted
an empirical analysis on data sets from the field. Since the
data sets used do not capture the same kind of data captured
in our exploratory study, we used approximations, such as
partitioning the Blaze data into one hour sessions rather
than task sessions, or using a general metric on structured
navigation rather than per task. These approximations pose
a threat to the construct validity of our results. We tried
to mitigate this risk by using two different data sets that
captured different aspects of developer’s interaction data to
better approximate for the analysis of the observations. Fur-
thermore, we never claim to fully validate our observations,
but point out that the empirical analysis provides further
evidence strengthening the support for the observations.

For the analysis on the Mylyn data, we were only able to
analyze 2253 out of 9920 change tasks of the project, which
implies that the observations are only denotative for 23%
of the project’s change tasks. Since developers manually
start and stop the capturing of the task context for a change
task, this empirical analysis is also threatened by possibly
polluted task contexts. Also, we only take into account call
relationships and class affiliation when analyzing structural
relations between code elements for O4 , and do not include
type hierarchy. However, this only results in our result being
lower than it could be. Finally, the correlation analyses for
O2 and O8 suffer the third-variable problem, which means
that we cannot argue about the causality of the correlation.

5. DISCUSSION
The exploratory study (Section 2) and the empirical anal-

ysis (Section 3) revealed unique characteristics about the
behavior of developers when working on a change task. Ta-
ble 3 summarizes key observations along with inferred de-
sign requirements for tool support. While there are several
approaches to explicitly or implicitly capture task context,
such as Mylyn [22] or CodeBubbles [14] (see Section 6), these
approaches are limited in the support of the presented de-
sign requirements. In the following, we discuss design con-
siderations for tool support for change tasks that explicitly
captures developer’s code context model.

A Code Context Model Tool.
To support a developer in a change task, a tool should not

only try to best depict the developer’s current code context
model—his representation of the relevant code elements and
their relations—, it should also provide proactive and rele-
vant context to the developer in all activities while working
on the change task, from the search to the navigation and
the editing of code. This will allow a developer to resume
more easily from interruptions and speed up the navigation
and search in the first place.
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Table 3: Observations from Studies and Inferred Design Implications.

Empirical Observation Design Requirement #

Developer models are small, abstract and highly connected Provide adequate abstraction with limited size, focus
on highly connected parts and indicate relations

R1

Code navigation models are hardly influenced by the size
of the actual change, but differ substantially by developer

Provide personalized navigation support R2

Code navigation models exhibit a high structural & lexical
cohesion; developers take less time if their navigation is
more structured

Combine structural and lexical navigation support and
provide proactive structural and lexically context

R3

Lexical cohesion of code navigation models is stronger at
beginning of exploration

Adapt support and proactive context over time R3.1

Developers use a combination of search and structural nav-
igation

Combine search and navigation R4

Developers frequently revisit code Indicate and keep track of what was already visited R5

Change task completion time can be several days Provide a summarization/ abstraction and persistency
for previous code context models

R6

Change task type influences size of code navigation model Tailor support to change task type R7

Combined View for Search and Navigation.
As found in our studies (R4) and by other researchers (e.g.,
[36, 24]), developers use a combination of search and naviga-
tion when performing a change task. Current tool support
in IDEs, however, generally either support search or nav-
igation, requiring developers to switch between views and
loose track of dependencies. An initial approach that al-
lows a single query and structural navigation to expand the
search results was presented by Janzen et al. [21]. Since de-
velopers usually perform multiple queries for a change task
over time and their code context model expands, a combined
view should provide support for presenting multiple query
and navigation instances at the same time, possibly in a time
line view. In addition, to speed up the exploration, search
results should be presented with relevant proactive struc-
tural context (structural recommendations) and the results
should be ranked based on their cohesiveness with respect to
the current developer’s code context model (R3). Initial re-
sults on a limited form of structural context for search results
already received positive feedback in a study by McMillan
et al. [28].

Given the small size and high abstraction of developer’s
models (R1), such a combined view also has to provide an
adequate abstraction and summarization. We plan to inves-
tigate approaches that aggregate and abstract information
over time and yet provide enough and proactive context on
the current selection.

Integration of Lexical Dependencies.
Along with the split between search and navigation in cur-
rent IDEs also comes a split between support for following
lexical and structural dependencies. While views such as
the Package Explorer or the Call Hierarchy in Eclipse al-
low a developer to follow structural dependencies, the many
lexical similarities that exist—and often present a semantic
dependency—are neglected in these views. Given the strong
lexical cohesion of code context models, tools should more
explicitly support this kind of dependency (R3) without re-
quiring to switch views and loosing the current working set.
Recent research to recommend subsequent navigation steps
already leverages the combination of structural and lexical

information (e.g [20, 27]) to a certain extent. A view of
the current code context model should provide explicit cues
for these lexical dependencies, indicating the pivotal part of
these dependencies, and thus easing the assessment of the
relevance of elements and providing a rationale for certain
elements in the model. Similarly, when presenting search re-
sults or the selected elements, the view should provide proac-
tive lexical context and integrate it with structural context.

Adaptation to Developer and Task.
While generally more structural navigation might lead to a
better performance, the specific elements and relations that
are being explored for a given change task differ substan-
tially by developer and depend on a lot of factors, such as
the developer’s experience, and preferences as well as the
program comprehension strategy used, such as bottom-up
or top-down (e.g. [15, 16, 30]). As also mentioned by Storey
et al. [40], tools should support a wide variety of compre-
hension and navigation activities. So while a tool should
provide support for the patterns that exist across develop-
ers such as frequent revisitations (R5) and the advantage of
structural navigation (R3), it should also take into account
the individual preferences of developers (R2). By learning
from a developer’s past and possibly an interactive compo-
nent to adjust one’s preferences, a tool might be able to
provide better recommendations and also a more accurate
representation of a developer’s code context model of the
past.

Since code navigation also varies with the kind of change
task as well as over time, an approach should adapt the
provided navigation or, more generally, context recommen-
dations based on these factors (R3.1,R7). For instance,
when a developer starts working on an enhancement and
performs a search, the view could provide more structural
and lexical context for each result than for a trivial change
task. Later on in the task when the developer performs an-
other search, the lexical context would be reduced adapting
to the changing behavior as seen in O5 . Also, given that
certain change tasks are performed over a series of days, for
example, with communication happening in between devel-
opers to clarify parts of it, there needs to be an option to
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persist code context models, similarly to the way that My-
lyn stores task context, and summaries should be available
to ease resuming the task or communicating about it with
other developers (R6). We plan to conduct studies to fur-
ther investigate the impact the task type has on the code
context models and how to best summarize code context
models to resume or share them.

6. RELATED WORK
Related work can be categorized into two areas: empirical

studies on software developers performing change tasks and
tool support for explicit task context.

Empirical Studies. Researchers have extensively observed
and studied the program investigation behavior of software
developers during maintenance tasks. Ko et al. [23, 24] con-
ducted an exploratory study to determine patterns of navi-
gation. They report on 10 developers working on simplistic
tasks in a very small system, where they found patterns such
as developers starting with a search and then navigating to
related elements, collecting small fragments of task-relevant
code. Robillard et al. [32] conducted an exploratory study
to look at the differences in the program investigation be-
havior of successful and unsuccessful developers. From ob-
serving five developers performing a maintenance task on
a reasonably-sized system, they found that successful de-
velopers reinvestigate methods less frequently and mostly
performed structurally guided searches. LaToza et al. [25]
observed 13 developers working on two tasks on a bigger
system, to study how experience affects the program com-
prehension. They found that experienced developers visit
less methods, thus wasting less time on understanding irrel-
evant methods. Sillito et al. [36, 35] conducted a laboratory
and an industrial study with 25 developers in total work-
ing either on a given or on one of their own change tasks.
They observed that developers first search for an initial focus
point and then explore relationships from these points, also
revisiting elements. Based on their observations they iden-
tified four types of questions developers ask during change
tasks. Starke et al. [39] focused on the initial investigation
phase of a change task and had ten developers perform tasks
for 30 minutes. Their observations mainly focused on how
participants form search queries and then skim through the
results. Wang et al. [42] conducted an exploratory study
with 38 students performing feature location tasks. They
focused their study on the initial feature location process
and identified search patterns, such as execution-based and
exploration-based search. While our results support some of
the observations made in the earlier studies, our two stud-
ies focus on the actual context models that developers built
implicitly for a variety of different tasks and systems and
how they overlap with the actual changes they perform for
these tasks. In addition, different to most studies mentioned
above, we conducted a combination of an exploratory study
with real change tasks on three open source systems and an
empirical analysis of data collected from open and closed
source developers to validate our findings.

Other studies have observed developers to investigate the
process and characteristics of program comprehension. Mayr-
hauser and Vans [41] used protocol analysis to explore the
program comprehension of professional developers working
on industrial maintenance tasks. Based on the results of
their study, they formulated an integrated model, combin-
ing top-down and bottom-up strategies found by other re-

searchers (e.g., [15, 16, 30]), to describe the cognitive pro-
cesses of program comprehension. Corritore and Wieden-
beck [17] looked at the differences of the mental represen-
tation of expert procedural and object-oriented program-
mers carrying out maintenance tasks on very small systems.
Their results show that expert programmers build a mixed
mental representation of a program that includes detailed
program knowledge as well as domain-based knowledge. Pi-
orkowski et al. [31, 27] build upon the theory of information
foraging, exploring how developers use information scent
emitted from cues to guide program exploration, and es-
pecially study how quickly developers’ goals evolve. These
approaches focus on the cognitive process of program com-
prehension, while we investigate the actual code context
models, the implicit knowledge, that developers build and
retain during comprehension and changing the code.

Explicit Task Context Support. Several approaches pro-
vide support for explicitly keeping track of task context—the
set of files or code elements a developer works with during a
maintenance task. An early tool, Concern Graphs supports
developers in recording task context in the form of concern
graphs, but requires the developer to manually identify and
add relevant elements [33]. Code Bubbles alters the usual
IDE editor interface so that each code element a developer
navigates to for a task is represented by its own bubble and
relations that a developer followed between these bubbles
are made explicit [14]. This way, the context for a task
is automatically created when stepping through or editing
code. Mylyn, a task-focused UI approach, differs to these
approaches in that it automatically creates an explicit task
context from a user’s interaction with the development en-
vironment [22]. Similarly, DeLine et al. proposed to use a
user’s interaction history for a task to recommend where to
navigate next in the code [18]. All of these approaches spe-
cialize in saving task context for elements after they have
been discovered. We investigate the creation of task con-
text and the design requirements for explicitly supporting
developers in the creation and representation of their men-
tal models.

7. CONCLUSION
Software developers currently spend much of their time

on change tasks, partially due to the large cost of creat-
ing a code context model for each new task assigned to
them. In this paper, we have presented the results of two
studies, an exploratory study with 12 developers performing
change tasks and an empirical analysis of data sets capturing
work of professional developers on open and closed source
projects. In these two studies we found, amongst other re-
sults, that the code navigation models of developers exhibit
a high structural and lexical cohesion and that they dif-
fer by developer and task. We inferred design implications
and presented design consideration for a tool to support the
creation and explicit capturing of developer’s code context
models. In particular, we discuss the combination of search
and navigation, the integration of lexical dependencies into
the views that currently are predominantly focused on struc-
tural dependencies, and the adaptation of such tools to the
developer’s preferences and the current task. In future work,
we plan to develop such an approach, paying particular at-
tention to the presentation and summarization of code con-
text models as well as providing proactive context to speed
up the developer in performing change tasks.
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