Large Scale Centroid Decomposition under Spark

Master-Basismodul (3 ECTS):

Work overview:

The Centroid Decomposition (CD) [1] is a matrix decomposition technique that decomposes an $n \times m$ matrix $X = [X_1 \ldots X_m]$ into an $n \times m$ loading matrix $L = [L_1 \ldots L_m]$ and an $m \times m$ relevance matrix $R = [R_1 \ldots R_m]$ as follows:

$$CD(X) = L, R$$

s.t. $$X = L \times R^T$$

$$= \sum_{i=1}^{d} L_i \times R_i^T$$

Where $d \leq m$ is the number of dimensions to compute.

Khayati et al. [2] proposed a scalable implementation of the Centroid Decomposition, termed SCD, that reduces its space complexity from quadratic to linear. However, the run time complexity remains quadratic. Due to this runtime complexity, SCD does not scale to large matrices of several millions of elements. As an example, it takes around 2 hours to compute the SCD of a matrix containing up to 20 millions elements (half million of rows and 4 columns).

The aim of this thesis is to investigate and implement a parallelizable version of SCD that scales up to large matrices of billions of values. The implementation of SCD under a classical distributed platform, e.g., Hadoop, will produce little benefit since SCD is an iterative process and Hadoop is not suitable for iterative algorithms. Therefore, the implementation should be performed on a platform that supports iterative algorithms. We propose to use Spark platform ([3], [4], [5]) since it is based on Resilient Distributed Datasets (RDD). The latter are partitioned collection of objects that efficiently handle iterative algorithms.

The implementation will be firstly executed on a single machine and then on a parallel environment e.g., Amazon EC2 [6]. The proposed implementation should scale to large scale matrices of millions of rows and millions of columns.
Work tasks:

1. Familiarize yourself with RDDs and Spark (see [3], [4] and [5]).
2. Understand and implement SCD algorithm under Spark.

Literature:

Task assignment and supervisor:

- Mourad Khayati (mkhayati@ifi.uzh.ch)

Starting date of thesis: 24/03/2014

Ending date of thesis: 23/06/2014

University of Zurich
Department of Informatics

Prof. Dr. Michael Böhlen
Professor