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Abstract

The detection of peaks and valleys in time series is a long-standing problem in many applica-
tions. Peaks and valleys represent the most interesting trends in time series.

In the purpose to identify these trends in time series, we investigate two approaches of
trends’ detection. The first approach is based on a geometric definition of the trends. The
second one uses a statistical definition of peaks and valleys. The two approaches are able to
detect significant trends within time series. Nevertheless, only the statistical approach is able
to find these trends in a global context.

In this report we describe, define and illustrate algorithms of the geometric approach and
the statistical approach.
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1 Introduction

1.1 Problem Definition
Time series data arise in a variety of domains, such as environmental, telecommunication,
financial, and medical data. For example, in the field of hydrology, sensors are used to cap-
ture environmental phenomena including temperature, air pressure, and humidity at different
points in time. This data is characterized by a big number of fluctuations. These fluctuations
are mainly categorized into peaks and valleys as shown figure 1.1.
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Figure 1.1: Examples of peaks and valleys in a time series

The detection of these fluctuations is of great importance for hydrologists. The identification
of these fluctuations will make easy to apply time series analysis techniques e.g, sequence
similarity, pattern recognition, missing values prediction. We are study in this report some of
the most interesting peaks and valleys detection algorithms.

1.2 Motivation
Peaks and valleys denote significant events in time series. These events can be described as an
abruptly increase on the heart rate or a sudden decrease in price on stock trading. Otherwise
With these properties we can describe time series or their similarities to other time series.

A peak or a valley is an significant event within a mathematical function or a time series.
A significant event is a point where the function graph changes from increasing (decreasing)
behaviour to decreasing (increasing) behaviour. The identification of these behaviour is im-
portant in order to carry out analysis on the data.
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1.3 Contribution
The main contributions of this work are the following:

• We propose a formal description of time series, peaks and valleys

• We describe some algorithms able to detect the most significant peaks and valleys.

• We evaluate the accuracy of these algorithms of real world hydrological data sets



2 Background

2.1 Notations
In order to state the problem and concepts clearly, we define some notations and terminologies
in table 2.1.

Symbol Description
(ti, xi) representation of an observation by the time and observation pair
T time series, set of time and value pairs
f(x), g(x) user-defined continuous function
f0, f1 function values of function f(x) at position x0 and x1
f(x; ~α) model function, for approximation with ~α supporting points
f ′(x), f ′′(x) first and second derivation of function f(x)

Table 2.1: Notation of symbols used in the paper

2.2 Time Series
We define a time series as a sequence of observations on a specific attribute. Observations
are measured variables such as temperature or relative moisture at a given time stamp. An
observation is represented by the pair (time, value). Such a pair constitutes the smallest entity
of a time series.

Without loss of generality we represent the pair (time,value) as (ti, xi) where ti refers to the
timestamp of the ith observation and xi refers to the value of the ith observation. A time series
is a sequence of n (ti, xi) pairs.

Formally, a time series T is described as follows:

T = {(t1, x1), (t2, x2), . . . , (tn, xn)} if and only if
∀i, j : (ti, xi), (tj, xj) ∈ T ∧ i ≤ j ⇒ ti ≤ tj (2.1)

2.3 Peak and Valley
From a mathematical point of view, a peak and a valley represent respectively a local maxima
and a local minima [1].
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Let f(x) be a function which transforms x from an user-defined subdomain A ⊆ R to the
domain R as follows:

f : A→ R

Let’s consider an interval I = (a, b) and let’s assume I ∩ A 6= ∅. A local maximum is
detected at point x0 ∈ I if

f(x0) ≥ f(x) , ∀x ∈ I

The difference between a global maximum and a local maximum is the domain of I. If
I ∩ A = A than we obtain a global maximum.

f(x0) ≥ f(x) , ∀x ∈ A (2.2)

Similarly, a local minimum is detected at point x0 if:

f(x0) ≤ f(x) , ∀x ∈ I

And the global minimum is detected at x0 if

f(x0) ≤ f(x) , ∀x ∈ A (2.3)

Based on the previous definitions, we consider a peak as local maximum and a valley as a
local minimum.

Figure 2.1 illustrates a time series containing peaks and valleys.
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Figure 2.1: Examples of local and global peaks (valleys)

The application of the previous definitions on the example of figure 2.1 gives the following
extrema:

Extremum time/value pair
local peak (1, 5), (3, 3), (6, 4), (7, 4), (11, 6), (14, 4), (16, 7), (20, 5)
global peak (16, 7)
local valley (2, -2), (4, 1), (5, 1), (8, -3), (9, -3), (10, -5), (13, 0), (15, -2), (17, -7)
global valley (17, -7)



2.4 Continuity constraint
The algorithms of detection of peaks and valleys have to fulfill some requirements. The prin-
cipal requirement is to assume that the time series is represented by a real function. The latter
guarantees there exist points between any two given points of the function. This requirement
defines the continuity principle.

A function f is continuous at a point x0 if there exist for a given ε > 0 a δ > 0 and
∀x ∈ dom(f) we have:

|x− x0| < δ ⇒ |f(x)− f(x0)| < ε

The variable δ depends on variable ε. A function f(x) is denoted as continuous if the function
at every x0 ∈ dom(f) is continuous.

A continuous function maps all points x with a distance < ε from x0 to points f(x0) with a
distance < δ.

Any change in the area around x0 will produce the same change in the domain of f(x0).

2.5 Derivation definition
We define in this subsection the concept of derivative using tangent lines. A tangent defines a
linear slope which contacts a given function f(x) in a given point x0.

We use the angle between the tangent and the horizontal axis to describe the behaviour
of the function f(x) in point x0. The value of the angle defines the slope of the tangent at
f(x0). A positive value of the angle denotes an increase trend of the function f(x) in point x0.
Negative angle denotes a decreasing trend. For an angle = 0, there is a flat trend in point x0.
Therefore, we have a local extrema in point x0.

The definition of derivative can be described as followed: A derivative is the approximation
of the tangent through the secant given by f(x0) and f(x0 + h) where h ∈ R ∧ h→ 0.

A function f(x) is differentiable at position x0, if there exists a limit for x→ x0 such that:

lim
h→0

f(x0 + h)− f(x0)

h
= lim

x→x0

f(x)− f(x0)

x− x0
=: f ′(x0) (2.4)

If such a limit exists we call it derivative. An example of derivative is shown in figure 4.4.



Figure 4.4 shows the approximation
of f ′(x0) with x → x0. The tan-
gent in f(x0) is a linear slope. The
slope of f(x) in point x0 is equal to

m =
f(x0 + h)− f(x0)

(x0 + h)− x0

Figure 2.2: First deviation of the continuous function
f(x) in point x0

If f(x) is a differentiable function with an existing derivation function f ′(x) and at point
x0 ∈ I ⊂ R exists f ′(x0) = 0 than f(x) has a local maximum or a local minimum in point x0.

2.6 Theorem of Rolle
If following conditions are satisfied:

1. f(x) is continuous in interval [a, b]

2. f(x) is in interval (a, b) differentiable

3. it obtains f(a) = f(b)

The theorem of Rolle states that there exists at least one position x0 ∈ (a, b) having f ′(x0) = 0.

Rolle’s theorem give us the guarantee
that under the three conditions above
there exists one local maximum or
local minimum at least between the
point a and b.
In figure 2.3 there is a local peak with
f ′(x0) = 0 at position x0

Figure 2.3: Illustration of the theorem of Rolle



2.7 Extrema in noncontinuous functions
Until now, we considered continuous functions f(x) in which we can compute a local maxima
or a local minima under certain conditions. A time series is function of following form:

T : N → R
i→ xi

T is a function which assigns any natural number i in N := {1, 2, 3, . . . , n} ⊂ N exactly one
real number xi ⊂ R. Function T is a discrete function. Therefore, T is not continuous and T
is not differentiable.

If we connect every observation xi of a time series T with its adjacent neighbours xi−1 and
xi+1 through a linear slope then we get two linear functions which represent the three points. A
local extrema is given by the intersection of two linear slopes. Each linear slope is represented

through its own linear function f(x), g(x). Each function contains its own slope m =
4y
4x . In

a local extrema we find two slopes m each has a different sign.
We define a local peak following:
There exist two linear functions f(x) and g(x) with f(x0) = g(x0) and x0 ∈ R. The linear

functions have the following form:

f(x) = a+mfx

g(x) = b+mgx

Assumption: f(x) connects the left neighbour point of x0 with x0 and g(x) connects the right
neighbour point of x0 with x0 . Then in point x0 exists a local peak if mf > 0 and mg < 0.
Contrary, mf < 0 and mg > 0 denotes a local valley.

Figure 2.4: Example of a local peak

Figure 2.4 illustrates a local peak in a given time series T .



3 Peak-Valley Algorithm

3.1 Identification of peaks and valleys
The Peak-Valley algorithm uses a geometrical approach to find local peaks and local valleys
in a time series. The algorithm detects all local peaks and valleys in a time series T .

Given a time series T with n observations. We take the definition we have introduced at the
beginning (2.1).

T = {(t1, x1), (t2, x2), . . . , (tn, xn)}
A peak is defined as following:

xi−1 < xi > xi+1 , ∀i = 2, 3, . . . , n− 1 (3.1)

The first and last observation in T have to be examined special. The first and last observation
in T are peaks if

x1 > x2 (3.2)
xn > xn−1 (3.3)

Let’s define the set of peaks P with

P = {(ti, xi)|(xi−1 < xi > xi+1) ∨ (x1 > x2) ∨ (xn > xn−1)} , ∀i = 2, . . . , n− 1

In contrary we define the set of valleys V with

V = {(ti, xi)|(xi−1 > xi < xi+1) ∨ (x1 < x2) ∨ (xn < xn−1)} , ∀i = 2, . . . , n− 1

A peak cannot be a valley and vice versa. All other points that are not a local peak or a local
valley will be ignored in the algorithm. Therefore, it has to be obtained

P ∩ V = ∅

The algorithm contains our definitions of local peak and local valley from chapter (2).

Peak := xi−1 < xi > xi+1 , Valley := xi−1 > xi < xi+1

By controlling the definition (3.1), we state:
The algorithm can not detect local peaks or local valleys if on the left side of point xi or on

the right side of point xi resides a horizontal straight line. In such a case, we detect another
number of peaks and valleys. If we want to detect all peaks and valleys in time series T , than
we have first to extract all horizontal lines from the curve before we detect local peaks and
local valleys. In other words, we have to eliminate lines with equal starting and ending points.

Figure 3.1 shows the two different results of peak and valley detection with and without
horizontal lines.
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Figure 3.1: Peaks and valleys detection with described algorithm

The black curve shows time series T with horizontal lines. The green curve shows T with
extracted horizontal lines. In the green curve there are detected more peaks and valleys.



4 Significant Peak-Valley Algorithm

4.1 Introduction
Significance denotes a concept in statistical methods. A result is called statistically significant
if it is unlikely to have occurred by chance. The Significant Peak-Valley algorithm bases on the
statistical approach. With significant peaks or valleys we denote local peaks and local valleys
which are significant in a global sense. The construct significant peak and significant valley is
expanded than the definitions of global peaks and global valleys in (2.2) and (2.3).

4.2 Detection of significant peaks
Let’s take a time series T with n observations. We assume there exist a peak function and a
valley function which find local peaks and local valleys. We will describe such a peak and a
valley function in the next section.

The peak and the valley functions produce values xi ∈ R with i = 1, . . . , n ∈ N.
A peak function S produces for a local peak a positive value. We can define the set of `

local peaks as P with

P := {(ti, xi)|S(xi) > 0} with i = 1, . . . , `

The valley function is vice versa to the peak function. `′ local valleys in V :

V := {(ti, xi)|S(xi) ≤ 0} with i = 1, . . . , `′

Statistically, the values of all elements in P and V build two univariate distributions. If we
compute the arithmetical mean value of these distributions x̄, we divide the values of P or
V in two parts.

x̄ =
1

n
(x1 + x2 + · · ·+ xn) (4.1)

There are values which are greater or smaller than the mean value x̄. A peak xi > x̄ is a better
candidate to be a significant peak than xi < x̄. We can divide the result further to be more
precise. At first we define the variance v which describes the distances of xi to the mean value
x̄.

v =
1

n− 1

n∑
i=1

(xi − x̄)2 (4.2)
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In the next step, we define the standard deviation s. Which is the square root of variance
v.

s =

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2 =
√
v (4.3)

The standard deviation is a measure of all values arranged around the mean value of the dis-
tribution.

We can define significant peaks P ′ and valleys V ′ as following:

P ′ := P ′ ⊂ P with P ′ := {(ti, xi)|S(xi) > 0 ∧ S(xi) > (m′ + h · s′)}
∀i = 1, . . . , ` where ` = number of observations in P

V ′ := V ′ ⊂ V with V ′ := {(ti, xi)|S(xi) ≤ 0 ∧ S(xi) ≤ (m′ + h · s′)}
∀i = 1, . . . , `′ where `′ = number of observations in V

with m′ = mean value of all S(xi) > 0 and s′ = standard deviation of all S(xi) > 0 for peaks
and vice versa for valleys. h is an user defined parameter with 1 < h ≤ 3 ∈ R.

The user defined parameter h defines the significance of a peak and a valley detection.
In set P ′ and V ′ we want retain only one peak and valley within distance k inside the given

sequence {(ti−k, xi−k), . . . , (ti, xi), . . . , (ti+k, xi+k)}. For every adjacent pair of peaks in P ′

and valleys in V ′ with index |j − i| ≤ k we remove the observation with the smaller value for
peaks and greater value for valleys of {(ti, xi), (tj, xj)} from P ′ and V ′.

4.3 Peak functions S1S1S1 to S3S3S3

The first three peak function in the paper [4] to detect peaks are very similar. They are defines
as following:

S1(k, i, T ) =
max{xi − xi−1, . . . , xi − xi−k}+ max{xi − xi+1, . . . , xi − xi+k}

2
(4.4)

S2(k, i, T ) =

(xi − xi−1 + . . .+ xi − xi−k)

k
+

(xi − xi+1 + . . .+ xi − xi+k)

k
2

(4.5)

S3(k, i, T ) =

(
xi −

(xi−1 + . . .+ xi−k)

k

)
+

(
xi −

(xi+1 + . . .+ xi+k)

k

)
2

(4.6)

k gives the size of subsequence from T with (2 · k + 1)
i index which denotes the ith observation in T
T time series with n observations



In the case where k = 1 then the 3 peak functions are equal for ∀ (ti, xi) ∈ T :

S1(1, i, T ) =
max{xi − xi−1}+ max{xi − xi+1}

2
=

(xi − xi−1)
1

+
(xi − xi+1)

1
2

= S2(1, i, T ) =

(
xi −

xi−1
1

)
+
(
xi −

xi+1

1

)
2

= S3(1, i, T )

Based on the initialization k = 1, we simplify the previous peak functions definitions as
follows:

S1(1, i, T ) = S2(1, i, T ) = S3(1, i, T ) =
xi − xi−1 + xi − xi+1

2
= xi −

(
xi−1 + xi+1

2

)
The values of the peak functions S1 bis S3 can be updated as follows:

S1(1, i, T ) = S2(1, i, T ) = S3(1, i, T ) > 0 ⇔ xi >
xi−1 + xi+1

2

S1(1, i, T ) = S2(1, i, T ) = S3(1, i, T ) ≤ 0 ⇔ xi ≤
xi−1 + xi+1

2

xi is a peak, if the functions S1, S2 or S3 produce a positive value. Figure 4.1 shows a peak
in ti with observation xi

In the example, xi is exactly a local
peak if the following condition is
satisfied

xi > max{xi−1, xi+1}
If we take the case:

xi−1 + xi+1

2
< xi ≤ max{xi−1, xi+1}

The shown situation (marked red) in
figure 4.1 injures in some cases the
peak definition. We will demonstrate
this case explicit.

i − 1 i i + 1 i

xi+1

xi−1 + xi+1

2

xi

xi−1

xi

0

Figure 0.1: Example of a probably detected peak xi

1

Figure 4.1: Example of a probably detected peak xi
Figure 4.1 shows the geometrical interpretation of the peak function. S1(xi) is the signed

distance from the center of the secant ((i− 1, xi−1), (i+ 1, xi+1)) to the point (i, xi).
We have shown that the functions S1 to S3 can be used to detect possible candidates for

peaks and valleys. But the detection of peaks or valleys are unique in the following cases,
only:

xi > max{xi−1, xi+1} ⇔ xi is a local peak
xi < min{xi−1, xi+1} ⇔ xi is a local valley



In the case of
xi−1 + xi+1

2
< xi ≤ max{xi−1, xi+1} there exists the possibility that the peak

function accepts peaks which are not peaks (false positives). For example, we can show by
setting k = 1, already.

We apply the peak function S1 for every k where k < i < n − k. The same computations
can be done for the other peak functions S2 and S3. We apply the maxima of the differences
on the left and right side of xi

Mleft := max{xi − xi−1, . . . , xi − xi−k}
Mright := max{xi − xi+1, . . . , xi − xi+k}

where Mleft is the maximum of the differences with xi and his left k neighbour and Mright is
the same for the right side.

Therefore, there exists at least for each maxima a value with xMleft
∈ {xi−1, . . . , xi−k} and

xMright
∈ {xi+1, . . . , xi+k} with Mleft = xi − xMleft

and Mright = xi − xMright
. Then

S1(k, i, T ) =
Mleft +Mright

2
=
xi − xMleft

+ xi − xMright

2

=
2xi − xMleft

− xMright

2
= xi −

xMleft
+ xMright

2

S1 produces positive values only if xi is greater then the arithmetic mean of xMleft
and

xMright
. Additionally, it is essential for xMleft

and xMright

xi − xMleft
≥ xi − xi−j ∀ j ∈ {1, . . . , k} ⇒ xMleft

≤ xi−j ∀ j ∈ {1, . . . , k}
⇒ xMleft

= min{xi−1, . . . , xi−k} same for the right seide: xMright
= min{xi+1, . . . , xi+k}

If the application of peak function returns a positive result, xi is a peak in the local sense.
A negative result means that xi is a local valley. If the result = 0, xi is neither a peak nor a
valley. Then xi is locate on the secant between the two points.
f(xi) is a local peak and can be considered as a global peak if f(xi) is located above the

secant which connects the points that constructs the maximum difference. In the inverse case,
a local (or global) valley is detected.

If the signed distance is 0, then xi is neither a peak nor a valley. In the case where k = 1,
then the peak function S1 works same as the peak and valley detection algorithm in section
2.1. We also need 3 points and then decide if xi is greater then xi−1 and xi+1 or smaller or
neither.

The application of S1 on our example data gives the following result.
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Figure 4.2: Detection of significant peaks and valleys with S1

With k = 1, the peak functions S1, S2 and S3 are all the same. With k > 1, S1 produces
other values than S2 and S3.

4.4 Peak function S4S4S4

The peak function S4 uses the principle of entropy. Entropy is a measure for information in a
given sequence A.

In the information theory the entropy of a sequence is defined after Shannon:

H(A) = −
M∑
i=1

(p(ai)log2(p(ai)) (4.7)

Figure 4.3: Graph of the entropy p · log(p)

In other words, the entropy of a given sequence is the measurement of disorder in this
sequence. The calculation of entropy bases on the probability of the appearance of the values
inside the given sequence. Therefore we have to compute the probability of the values inside
the sequence of a given time series.

To compute the probability of the values inside the sequence we choose the kernel density
technique after E. Parzen (also called "parzen window") [5]. With this technique we can



compute the probability of the sequence with different kernels. An estimate of f(x) can be
given by:

f(x) =
1

nh

n∑
i=1

K

(
xi − x
h

)
where h is an adapted positive number. Generally, h is a function of the number of elements
inside the sequence. The kernel function K(x) can be replaced by other kernel functions.
The most used kernel functions are the Epanechnikov kernel function and the Gaussian kernel
function.

The Epanechnikov kernel

K(x) =

{
3
4
(1− x2) if |x| < 1

0 otherwise
(4.8)

The Gaussian kernel
K(x) =

1√
2π

e−
1
2
x2

(4.9)

Figure 4.4: The two kernel functions

With this kernel technique we can estimate the probability of the occurrence of values ai
inside the sequence A.

In the S4 peak function the estimation of the probability density at value ai in a given
sequence is defined as

pw(ai) =
1

M |ai − ai+w|
M∑
j=1

K

(
ai − aj
|ai − ai+w|

)
(4.10)

where M is the number of elements in the sequence and |ai − ai+w| is the width of the parzen
window. We define the width of the parzen window as follows:

|ai − ai+w| :=
√

(ai − ai+w)2 + w2 (4.11)

|ai − ai+w| must never be 0. With the definition above, the term will be 1 at least.
The Hw(A) and pw(ai) indicate the width parameter used in the parzen window function.

After updating the kernel density estimation pw(ai), the entropy of the sequence is obtained
as follows:

Hw(A) = −
M∑
i=1

(pw(ai)log2(pw(ai)) (4.12)



where M is the number of elements in the sequence.
The last specification covers the case pw(ai) = 0. Then

lim
p→0

p log2 p = 0

because the log2(0) is not defined.
In our implementation of the peak function S4 we use the Gaussian kernel.
The principle of peak function S4 is the difference in entropy from 2 sequences. We define

the peak function S4:

S4(k, w, i, T ) = Hw(N(k, i, T ))−Hw(N ′(k, i, T )) (4.13)

The difference in entropy gives a view how significant the point xi is in the given sequences.
If the difference is greater then 0, the peak function value of xi is a candidate for a local
maximum, it can be a global maximum too, and therefore it can be a significant peak.

We define the two sequences N(k, i, T ) and N ′(k, i, T ) as follows:

N−(k, i, T ) = {xi−1, . . . , xi−k};N+(k, i, T ) = {xi+1, . . . , xi+k}
These are the k left and the k right temporal neighbours of xi in a subsequence of time series
T .

N(k, i, T ) = N−(k, i, T ) ∪N+(k, i, T ) (4.14)

This is a subsequence with (2 · k) elements of time series T (without xi)

N ′(k, i, T ) = N−(k, i, T ) ∪ {xi} ∪N+(k, i, T ) (4.15)

This is a subsequence with (2 · k + 1) elements of time series T (with xi)
If we compute the entropy of Hw(N) and Hw(N ′) the result is always > 0. Further, if we

compute Hw(N) and Hw(N ′) with the same window width for the parzen window, it obtains
always Hw(N) < Hw(N ′). Therefore, S4 < 0 obtains always. To get a S4 > 0, we have to
define for sequence N(k, i, T ) another window width for the parzen window.

|ai−1 − a(i−1)+w| :=
√

(ai−1 − a(i−1)+w)2 + w2 (4.16)

If we apply the S4 peak function to time series 137 of hydrological measurement, we get
the following result:

 0

 1

 2

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150

O
bs

er
va

tio
n

Time stamp

Time series 137
detected peaks with S4(k=15, w=5, h=1.0)

detected valleys with S4(k=15, w=5, h=1.0)



Figure 4.5: Detected significant peak and significant valley with S4 peak function

Testing the implementation, the choice of the user defined parameters k and w is very im-
portant for the outcome. The best results we get as follows:
k > 5, k has to be odd
w >3



5 Conclusion

At the beginning of this paper we introduced the mathematical background of peaks and val-
leys in continuous functions f(x). If f(x) is differentiable we can compute the local extrema.
To detect such extrema in a discrete sequence like a time series we have to compute the peak
function in every point of the time series.

We implemented the Peak-Valley algorithm described in chapter 3 and the Significant Peak-
Valley algorithm described in chapter 4. Each algorithm has its own principle and its own
problems. None of the two algorithms can be applied without preparation in the time series or
dedicated choice in the user defines parameters.

5.1 Remarks to the Peak-Valley algorithm
• detects all peaks and valleys if the time series doesn’t contain horizontal lines

• if the time series contains horizontal lines, the algorithm doesn’t detect peaks and valleys
which are at the beginning or ending of a horizontal line

• if we apply the algorithm on a time series with extracted horizontal lines, we don’t get
all peaks and valleys. In detection we loss the peaks and valleys at the ending of a
horizontal line

5.2 Remarks to the Significant Peak-Valley algorithm
• under certain circumstances, the peak functions could produce false positives

• the choice of the user defined parameters k and w is very important

21



Bibliography

[1] C. Blatter. Analysis 1. Number v. 1 in Springer-Lehrbuch. Springer, 1991.

[2] Eamonn J. Keogh, Selina Chu, David Hart, and Michael J. Pazzani. An online algorithm
for segmenting time series. In Proceedings of the 2001 IEEE International Conference on
Data Mining, ICDM ’01, pages 289–296, Washington, DC, USA, 2001. IEEE Computer
Society.

[3] Z. M. Nopiah, M. I. Khairir, S. Abdullah, and C. K. E. Nizwan. Peak-valley segmentation
algorithm for fatigue time series data. WSEAS Trans. Math., 7:698–707, December 2008.

[4] Girish K. Palshikar. Simple Algorithms for Peak Detection in Time-Series. In Proc. 1st
Int. Conf. Advanced Data Analysis, Business Analytics and Intelligence, 2009.

[5] E. Parzen. On the estimation of probability density function and the mode. The Annals of
Math. Statistics,, vol. 33:pp. 1065–1076, 1962.

[6] Luciana A. S. Romani, Ana Maria Heuminski de Ávila, Jurandir Zullo Jr., Caetano
Traina Jr., and Agma J. M. Traina. Mining relevant and extreme patterns on climate time
series with clipsminer. Journal of Information and Data Management (JIDM), 1(2):245–
260, 06/2010 2010.

22


