
CS3331 Fall 2003 1

Design by Contract with JML

§  Design by contract
§  Java Modeling Language (JML)
§  Formal specifications in JML
§  JML tools – JML compiler (jmlc)

Thanks to Gary Leavens for allowing
us to adapt his lecture notes.

CS3331 Fall 2003 2

Design by Contract (DBC)

§  A way of recording:
– Details of method responsibilities
– Avoiding constantly checking arguments
– Assigning blame across interfaces

CS3331 Fall 2003 3

Contracts in Software
 /*@ requires x >= 0.0;

 @ ensures JMLDouble.approximatelyEqualTo(x,
 @ \result * \result, eps);
 @*/
public static double sqrt(double x) { … }

Client

Implementor

Obligations Rights

Passes non-negative
number

Gets square
root approximation

Computes and
returns square root

Assumes argument
is non-negative

CS3331 Fall 2003 4

Pre and Postconditions

§  Definition
–  A method’s precondition says what must be true to call it.
–  A method’s normal postcondition says what is true when it

returns normally (i.e., without throwing an exception).
–  A method’s exceptional postcondition says what is true when a

method throws an exception.

 /*@ signals (IllegalArgumentException e) x < 0;
 @*/

CS3331 Fall 2003 5

Relational Model of Methods

§  Can think of a method as a relation:
 Inputs ↔ Outputs

Input Output

100 10
-10

…

…

…

…

0 0
postcondition

precondition

CS3331 Fall 2003 6

Contracts as Documentation

§  For each method say:
–  What it requires (if anything), and
–  What it ensures.

§  Contracts are:
–  More abstract than code,
–  Not necessarily constructive,
–  Often machine checkable, so can help with

debugging, and
–  Machine checkable contracts can always be up-to-

date.

CS3331 Fall 2003 7

Abstraction by Specification

§  A contract can be satisfied in many ways:
E.g., for square root:
–  Linear search
–  Binary search
–  Newton’s method
–  …

§  These will have varying non-functional properties
–  Efficiency
–  Memory usage

§  So, a contract abstracts from all these implementations,
and thus can change implementations later.

CS3331 Fall 2003 8

More Advantages of Contracts

§  Blame assignment
– Who is to blame if:

•  Precondition doesn’t hold?
•  Postcondition doesn’t hold?

§  Avoids inefficient defensive checks
//@ requires a != null && (* a is sorted *);
public static int binarySearch(Thing[] a, Thing x) { … }

CS3331 Fall 2003 9

Modularity of Reasoning

§  Typical OO code:
…
source.close();
dest.close();
getFile().setLastModified(loc.modTime().getTime());
…

§  How to understand this code?
– Read the code for all methods?
– Read the contracts for all methods?

CS3331 Fall 2003 10

Rules for Reasoning
§  Client code

–  Must work for every implementation that satisfies the contract, and
–  Can thus only use the contract (not the code!), i.e.,

•  Must establish precondition, and
•  Gets to assume the postcondition

//@ assert 9.0 >= 0;
double result = sqrt(9.0);
//@ assert result * result ≈ 9.0; // can assume result == 3.0?

§  Implementation code
–  Must satisfy contract, i.e.,

•  Gets to assume precondition
•  Must establish postcondition

–  But can do anything permitted by it.

CS3331 Fall 2003 11

Contracts and Intent

§  Code makes a poor contract, because can’t separate:
–  What is intended (contract)
–  What is an implementation decision

E.g., if the square root gives an approximation good to 3 decimal
places, can that be changed in the next release?

§  By contrast, contracts:
–  Allow vendors to specify intent,
–  Allow vendors freedom to change details, and
–  Tell clients what they can count on.

§  Question
–  What kinds of changes might vendors want to make that don’t

break existing contracts?

CS3331 Fall 2003 12

JML

§  What is it?
– Stands for “Java Modeling Language”

•  A formal behavioral interface specification
language for Java

– Design by contract for Java
– Uses Java 1.4 or later
– Available from www.jmlspecs.org

CS3331 Fall 2003 13

Annotations

§  JML specifications are contained in annotations, which
are comments like:

//@ …

or

/*@ …
 @ …
 @*/

At-signs (@) on the beginning of lines are ignored within annotations.

§  Question
–  What’s the advantage of using annotations?

CS3331 Fall 2003 14

Informal Description
§  An informal description looks like:

(* some text describing a property *)

–  It is treated as a boolean value by JML, and
–  Allows

•  Escape from formality, and
•  Organize English as contracts.

public class IMath {
 /*@ requires (* x is positive *);

 @ ensures \result >= 0 &&
 @ (* \result is an int approximation to square root of x *)
 @*/
 public static int isqrt(int x) { … }
}

CS3331 Fall 2003 15

Exercise
§  Write informal pre and postconditions for methods of the

following class.

public class Person {
 private String name;
 private int weight;

 /*@ also
 @ ensures \result != null &&
 @ (* \result is a displayable
 @ form of this person *);
 public String toString() {
 return “Person(\” + name +
 “\”, “ + weight + ”)”;
 }

 public int getWeight() {
 return weight;
 }

public void addKgs(int kgs) {
 if (kgs >= 0) {
 weight += kgs;
 } else {
 throw new IllegalArgumentException();
 }
 }

 public Person(String n) {
 name = n; weight = 0;
 }
}

CS3331 Fall 2003 16

Formal Specifications

§  Formal assertions are written as Java
expressions, but:
–  Cannot have side effects

•  No use of =, ++, --, etc., and
•  Can only call pure methods.

–  Can use some extensions to Java:
Syntax Meaning

\result result of method call
a ==> b a implies b
a <== b b implies a
a <==> b a iff b
a <=!=> b !(a <==> b)
\old(E) value of E in pre-state

CS3331 Fall 2003 17

Example
// File: Person.refines-java

//@ refine “Person.java”

public class Person {
 private /*@ spec_public non_null @*/ String name;
 private /*@ spec_public @*/ int weight;

 //@ public invariant !name.equals(“”) && weight >= 0;

 /*@ also
 @ ensures \result != null;
 @*/
 public String toString();

 //@ also ensures \result == weight;
 public int getWeight();

<<continues to next slide>>

CS3331 Fall 2003 18

Example (Cont.)
 /*@ also
 @ ensures kgs >= 0 && weight == \old(kgs + weight);
 @ signals (Exception e) kgs < 0 &&
 @ (e instanceof IllegalArgumentException);
 @*/
 public void addKgs(int kgs);

 /*@ also
 @ requires !n.equals(“”);
 @ ensures n.equals(name) && weight == 0;
 @*/
 public Person(/*@ non_null @*/ String n);
}

CS3331 Fall 2003 19

Meaning of Postconditions

ensures
 kgs >= 0 …

normal
(return)

signals (…)
 kgs < 0;

exceptional
(throw)

CS3331 Fall 2003 20

Invariants

§  Definition
–  An invariant is a property that is always true of an

object’s state (when control is not inside the object’s
methods).

§  Invariants allow you to define:
–  Acceptable states of an object, and
–  Consistency of an object’s state.

//@ public invariant !name.equals(“”) && weight >= 0;

CS3331 Fall 2003 21

Exercise

§  Formally specify the following method (in
Person)

public void changeName(String newName) {
 name = newName;
}

Hint: watch out for the invariant!

CS3331 Fall 2003 22

Quantifiers

§  JML supports several forms of quantifiers
–  Universal and existential (\forall and \exists)
–  General quantifiers (\sum, \product, \min, \max)
–  Numeric quantifier (\num_of)

(\forall Student s; juniors.contains(s); s.getAdvisor() != null)

(\forall Student s; juniors.contains(s) ==> s.getAdvisor() != null)

CS3331 Fall 2003 23

Exercise

§  Formally specify the missing part, i.e., the fact
that a is sorted in ascending order.

/*@ old boolean hasx = (\exists int i; i >= 0 && i < a.length; a[i] == x);
 @ requires
 @
 @ ensures (hasx ==> a[\result] == x) && (!hasx ==> \result == -1);
 @ requires_redundantly (* a is sorted in ascending order *);
 @*/
public static int binarySearch(/*@ non_null @*/ int[] a, int x) { … }

Hint: use a nested quantification!

CS3331 Fall 2003 24

Model Declarations
§  What if you want to change a spec_public field’s name?

private /*@ spec_public non_null @*/ String name;

to

private /*@ non_null @*/ String fullName;

§  For specification:
–  need to keep the old name public
–  but don’t want two strings.

§  So, use a model field:
 //@ public model non_null String path;

 and a represents clause

 //@ private represents path <- fullName;

CS3331 Fall 2003 25

Model Variables

§  Are specification-only variables
–  Like domain-level constructs
–  Given value only by represents clauses:

name abstract (model)

fullName concrete (real)

represented by

CS3331 Fall 2003 26

Question

§  What changes would you make to change the
representation of a person’s weight from kilograms to
pounds?

CS3331 Fall 2003 27

Tools for JML

§  JML compiler (jmlc)
§  JML/Java interpreter (jmlrac)
§  JML/JUnit unit test tool (jmlunit)
§  HTML generator (jmldoc)

CS3331 Fall 2003 28

JML Compiler (jmlc)

§  Basic usage
$ jmlc Person.java
 produces Person.class
$ jmlc –Q *.java
 produces *.class, quietly
$ jmlc –d ../bin Person.java
 produces ../bin/Person.class

CS3331 Fall 2003 29

Running Code Compiled with jmlc

§  Must have JML’s runtime classes
(jmlruntime.jar) in Java’s boot class path

§  Automatic if you use script jmlrac, e.g.,
$ jmlrac PersonMain

CS3331 Fall 2003 30

A Main Program
public class PersonMain {
 public static void main(String[] args) {
 System.out.println(new Person(null));
 System.out.println(new Person(“”));
 }
}

CS3331 Fall 2003 31

Example (Formatted)
$ jmlc –Q Person.java
$ javac PersonMain.java
$ jmlrac PersonMain
Exception in thread "main" org.jmlspecs.jmlrac.runtime.JMLEntryPreconditionError
: by method Person.Person regarding specifications at
File "Person.refines-java", line 52, character 20 when
 'n' is null
 at org.jmlspecs.samples.jmltutorial.Person.checkPre$$init$$Person(
 Person.refines-java:1060)
 at org.jmlspecs.samples.jmltutorial.Person.<init>(Person.refines-java:51)
 at org.jmlspecs.samples.jmltutorial.PersonMain.main(PersonMain.java:27)

CS3331 Fall 2003 32

Summary

§  JML is a powerful DBC tool for Java.
§  For details, refer to the JML web page at

www.jmlspecs.org

