
1. Software Architecture

Software Architecture and Design
Architectural Styles

Harald Gall
http://seal.ifi.uzh.ch/ase

2 © 2012, H. Gall, AdvSE

Overview

Architectural Design
Architectural Styles and Patterns
Documenting Software Architecture
Standard Architectures

3 © 2012, H. Gall, AdvSE

Software Architecture

Torii of Itsukushima, Japan

Sears Tower, Chicago Piazza del Campidoglio, Rome

4 © 2012, H. Gall, AdvSE

The Sydney Opera House

Facts and Figures:
Was designed by Danish architect Jørn Utzon
Was opened by Queen Elizabeth II on 20 October 1973
Presented, as its first performance, The Australian Opera's
production of War and Peace by Prokofiev
Cost $AU 102.000.000 to build
Conducts 3.000 events each year
Includes 1.000 rooms

•  Is 185 metres long and 120 metres wide
•  Has 2.194 pre-cast concrete sections as its roof
•  Has roof sections weighing up to 15 tons
•  Has roof sections held together by 350 kms of tensioned steel cable
•  Has over 1 million tiles on the roof
•  Uses 6.225 square metres of glass and 645 kilometres of electric cable

5

Architecting ...

„Architecting, the planning and building of
structures, is as old as human societies – and
as modern as the exploration of the solar
system.“
 by Eberhardt Rechtin, 1991

© 2012, H. Gall, AdvSE

6 © 2012, H. Gall, AdvSE

Motivation

If the size and complexity of a software
system increase,
the global structure of the system becomes
more important than the selection of specific
algorithms and data structures.

7 © 2012, H. Gall, AdvSE

Goals

A framework to support the development of
software

Integration platform for future enhancements
Interface definition for collaboration of

components

8 © 2012, H. Gall, AdvSE

Basic elements of a software
architecture

Components
Connectors
Constraints
Rationale

9 © 2012, H. Gall, AdvSE

Components

Decomposition of a system (multi-version, multi-
person)

Criteria for component decomposition
!  Modularization, encapsulation, information hiding,

abstraction
!  Functions as components (functional

decomposition)
!  Distribution/Parallelism
!  Optimization of performance (e.g. distribution onto

parallel processors)

10

What is a Software Connector?

Architectural element that models
!  Interactions among components
!  Rules that govern those interactions

Simple interactions
!  Procedure calls
!  Shared variable access

Complex & semantically rich interactions
!  Client-server protocols
!  Database access protocols
!  Asynchronous event multicast

Each connector provides
!  Interaction duct(s)
!  Transfer of control and/or data

by Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy

11

Why treating Connectors independently?

Connector ! Component
!  Components provide application-specific

functionality
!  Connectors provide application-independent

interaction mechanisms
Interaction abstraction and/or parameterization
Specification of complex interactions

!  Binary vs. N-ary
!  Asymmetric vs. Symmetric
!  Interaction protocols

by Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy

12

Software Connector Roles
Locus of interaction among set of components
Protocol specification (sometimes implicit) that

defines its properties
!  Types of interfaces it is able to mediate
!  Assurances about interaction properties
!  Rules about interaction ordering
!  Interaction commitments (e.g., performance)

Roles
!  Communication
!  Coordination
!  Conversion
!  Facilitation

by Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy

13

Connectors as Communicators

Main role associated that supports
!  Different communication mechanisms

!  e.g. procedure call, RPC, shared data access, message
passing

!  Constraints on communication structure/direction
!  e.g. pipes

!  Constraints on quality of service
!  e.g. persistence

Separates communication from computation
May influence non-functional system characteristics

!  e.g. performance, scalability, security

by Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy

14

Connectors as Coordinators

Determine computation control
Control delivery of data
Separates control from computation
Orthogonal to communication, conversion, and

facilitation
!  Elements of control are in communication,

conversion and facilitation

by Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy

15

Connectors as Converters

Enable interaction of independently developed,
mismatched components

Mismatches based on interaction
!  Type
!  Number
!  Frequency
!  Order

Examples of converters
!  Adaptors
!  Wrappers

by Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy

16

Connectors as Facilitators

Enable interaction of components intended to
interoperate
!  Mediate and streamline interaction

Govern access to shared information
Ensure proper performance profiles

!  e.g., load balancing
Provide synchronization mechanisms

!  Critical sections
!  Monitors

by Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy

17

Connector Types

Procedure call
Data access
Event
Stream
Linkage
Distributor
Arbitrator
Adaptor

18

Procedure Call Connectors

© 2012, H. Gall, AdvSE

by Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy

19 © 2012, H. Gall, AdvSE

Constraints

Components must be constrained to provide that
!  the required functionality is achieved
!  no functionality is duplicated
!  the required performance is achieved
!  the requirements are met
!  modularity is realized (e.g. which modules interact

with the operating system)
Assignment of functionality

20 © 2012, H. Gall, AdvSE

Rationale (why?)

For multi-version software its design rationales
must be documented:
!  Decomposition into components
!  Connections between components
!  Constraints on components and connections

Serves as plan for future enhancements
Serves as support/aid for maintainers

21 © 2012, H. Gall, AdvSE

Commitment of the architecture

As one of the early design decisions it is
difficult to change the architecture

The organization of the project is influenced
substantially:
!  teams, documentation, configuration,

management, maintenance, integration and tests
The architecture must not prevent a beneficial

implementation

22 © 2012, H. Gall, AdvSE

Impact onto the life-cycle

The architecture substantially impacts
performance and available system resources

The architecture determines the simplicity of
future changes and adaptations

A successful architecture can be used to build
similar systems:
!  “product family” and
!  “domain specific software architectures”

23

Requirements and Software Architecture

Fulfillment of functional requirements
!  Input/Output behavior

Fulfillment of desired performance
!  Timing, preciseness, stability
!  Memory workload, other resources

Can be verified by observation of the running

system

© 2012, H. Gall, AdvSE

24 © 2012, H. Gall, AdvSE

Non-functional Requirements

Software architectures must also fulfill the
following requirements:
!  Adaptability
!  Flexibility
!  Portability
!  Interoperability
!  Reusability within “related” projects

25 © 2012, H. Gall, AdvSE

Static and dynamic structures

Module structure
!  for configuration, non-existent at run-time

Distribution structure
!  at run-time

Dynamic structures influence

!  non-functional Requirements
!  functional Requirements and system performance

26

VIEWS OF A SOFTWARE
ARCHITECTURE

... and their connection to the running system

© 2012, H. Gall, AdvSE

27 © 2012, H. Gall, AdvSE

Views of a software architecture

Problem
!  ambiguous diagrams
!  overloaded diagrams

Solution/approach

!  Different perspectives
!  Connection between single views

28 © 2012, H. Gall, AdvSE

4+1 Views

Konzeptuelle
Sicht

Physische
Sicht

Prozess-
Sicht

Szenarien

Modul-
Sicht

29 © 2012, H. Gall, AdvSE

Conceptual (Logical) View

Functional requirements
Orientation on problem domain
Communication with experts
Independence of implementation decisions
“Frameworks”

30 © 2012, H. Gall, AdvSE

Conceptual view: example

Air traffic management
system

Display &
User Interface

Air Traffic
Management

External
Interfaces
Gateways

Aeronautical
Information

Simulation &
Training

Flight
Management

Mechanisms
Services

Basic
Elements

31 © 2012, H. Gall, AdvSE

Module (Development-) View

Organization of modules
!  Subsystems
!  Coherent parts in the development
!  Allocation of effort (development, maintenance)

Organization in hierarchical layers
!  OSI communication protocols

Compile-time structure
!  marginal for the operation of the system

32 © 2012, H. Gall, AdvSE

Module view: example

Air traffic management
system

Mensch-Maschine-Schnittstelle
Externe Systeme

Funktionsbereiche: Flug-Management,
Sektor-Management etc.

Flugsicherungsklassen
(Framework)

Hilfsmechanismen:
Kommunikation, Speicher, Ressourcen

Management, Zeit

Gemeinsame Dienste

d o
m
ä
ne
n
un
a
b
h ä
n
gi
g

d
o m
ä
n
en
sp
e
z i
fi s
ch

ku
n
d
e n
s p
e
zi
fi s
c h

33 © 2012, H. Gall, AdvSE

Process and Coordination View

Dynamic aspects of the run-time processes
!  Process creation
!  Synchronization
!  Concurrency

Components of this view are processes:
instructions and separate execution logic

At run-time different reconfigurations can be done
Estimates for process allocation etc.

34 © 2012, H. Gall, AdvSE

Physical View

Mapping of software on existing/available
hardware
!  e.g. distribution of computations in a distributed

system
Impact on

!  availability, reliability, performance and scalability

Structuring should have little or no influence on
the implementation of the components

35 © 2012, H. Gall, AdvSE

Integration of Views

Conceptual View Module View

Process View Physical View

End-user
•  Functionality

Programmer
•  Software management

System Integrator
•  Performance
•  Scalability
•  Throughput

System Developer
•  System Topology
•  Completion
•  Installation

36 © 2012, H. Gall, AdvSE

Software Architecture Styles

37

What is an Architectural Style?

A Design Language for a class (family) of
systems
!  Vocabulary for design elements, e.g., pipes, filters,

server, parser, DBs
!  Design rules and design constraints, e.g., <100

clients per server per time unit
!  Semantic interpretation of architectural elements
!  Analysis for checking conformance of an

architectural design, e.g., deadlock detection,
schedulability analysis

© 2012, H. Gall, AdvSE

38 © 2012, H. Gall, AdvSE

Definition of Architectural Style

An architectural style defines a family of
software systems and their structural
organization

It defines components, connectors, and
configurations as well as constraints for their
application in concrete applications

It also defines design rules and constraints for
developing instances of a software system

[Perry u. Wolf 1992]

39 © 2012, H. Gall, AdvSE

Catalogue of Architectural Styles

40 © 2012, H. Gall, AdvSE

Software Architecture Styles

Dataflow systems
!  Batch sequential
!  Pipes and filters

Call-and-return systems
!  Main program and subroutine
!  Hierarchical layers
!  OO systems

Independent components
!  Communicating processes
!  Event systems

Virtual machines
!  Interpreters
!  Rule-based systems

Data centered systems
!  Databases
!  Hypertext systems
!  Blackboards

41

PIPES AND FILTERS

© 2012, H. Gall, AdvSE

42

Pipes & Filters

Filters are the components
!  Read an input data stream and transform it into an

output data stream
Pipes are the connectors

!  Provide the output of a filter as input to another filter

Example:
!  Unix shell: piping of components (commands)

via "|“
!  cat {myfile} | grep “architecture” | sort ! | more

 © 2012, H. Gall, AdvSE

43 © 2012, H. Gall, AdvSE

Pipes & Filters System Design

Filters

Pipes

Pipes & Filters

44 © 2012, H. Gall, AdvSE

Pipes & Filters

Filters are independent components that
!  do not share status with other components
!  do not know the identity of their neighbors (input/output)

Pipelines
!  Constrain the topology to a linear configuration of filters

Bounded Pipes
!  Constrain the amount of data that a pipe can store

temporarily

Typed Pipes
!  Constraint the type of data stream that a pipe must have

Pipes & Filters

45 © 2012, H. Gall, AdvSE

Advantages

A designer can define the input/output behavior
of the whole system as combination of single
filters

Simple; no complex component interactions
Filters as black-box and, therefore, substitutable
Reusability

!  Two filters can be arranged arbitrarily, as long as
they support the same data format / stream

Pipes & Filters

46 © 2012, H. Gall, AdvSE

Advantages

Maintenance
!  Integration of new filters
!  Substitution of existing/integrated filters

Hierarchical structures are easy to compose
Analysis of

!  Throughput and potential deadlocks
Concurrent execution

!  Filters are synchronized by the data transfer

Pipes & Filters

47 © 2012, H. Gall, AdvSE

Disadvantages

Batch processing characteristic but not apt for interactive
applications

Handling of independent data streams
Filter require a common data format
Parsing/Unparsing: if the data stream is analyzed by

tokens, every filter has to parse and unparse the data
separately

Filter memory: if a filter has to fully parse, e.g. a file,
before computation, memory requirements arise
(buffering)

Process overhead: if each filter is run in a separate
process, this requires processing overhead

Pipes & Filters

48

LAYERED ARCHITECTURE

© 2012, H. Gall, AdvSE

49 © 2012, H. Gall, AdvSE

Layered Architecture

Hierarchically organized system
!  Layers are components
!  Interfaces and protocols are the connectors

Abstraction:
!  Each layer represents and implements an abstract

virtual machine
Architectural constraints:

!  Each layer can only interact with the directly
connected upper and lower layers

50 © 2012, H. Gall, AdvSE

Layered Systems Design

Core
Level

Base Utility

Useful
systems

Users

Usually Procedure Calls

Composites of
various elements

Layers

51 © 2012, H. Gall, AdvSE

Advantages

Support of abstraction levels by layering
!  A larger problem is decomposed into several

smaller ones
Changes in one layer affect at most the two

neighboring layers (interface, protocol)
Reusability

!  Standard interfaces can be reused often
!  Different implementations of the same layer and

their substitution

Layers

52 © 2012, H. Gall, AdvSE

Disadvantages

Not all systems can be decomposed into layers
!  check for violations of architectural constraints

(communication direction and protocols,
dependencies)

Communication between neighors
!  Sometimes communication between non-

neighboring layers can be necessary
!  Skipping of several layers can cause difficulties

Comprehension
!  Abstractions of some layers can be difficult to

comprehend

Layers

53

OBJECT-ORIENTED
ARCHITECTURE

© 2012, H. Gall, AdvSE

54

Object-oriented Organization

Data abstraction and information hiding
Encapsulation of data and corresponding operations

!  Attributes and methods

Objects ensure consistency of their data
!  Objects are self dependent for their integrity (invariant)
!  Internal representation of data is hidden

(no direct manipulation of data)
Objects can have different interfaces (role and client

dependent)

© 2012, H. Gall, AdvSE

55 © 2012, H. Gall, AdvSE

Objects
O-O

obj

obj
obj

obj

obj

obj

op
op

op

op

op

op
op

op

56 © 2012, H. Gall, AdvSE

Advantages

Hiding of implementation, only the interface is
visible for the client

Changes to one object do not affect other
objects (as long as the interface remains
unchanged)

Objects are a good design tool
!  Data and access operations are put together

O-O

57 © 2012, H. Gall, AdvSE

O-O
Disadvantages

To communicate an object has to know the
identity of the other object

If IDs change all “clients” must be adapted
accordingly

Side-effects and mutual influence in case of
concurrent object access

58

EVENT-BASED SYSTEMS

© 2012, H. Gall, AdvSE

59 © 2012, H. Gall, AdvSE

Event-based Systems

Functions are not executed through a direct
procedure/method call

Publisher
!  Components raise an event (publisher)

Subscriber
!  Other “interested” components (subscribers) are

notified and react accordingly
Event Dispatcher

!  Distributes published event to the subscribers
Relation of events and event handling is

unknown to the components

60 © 2012, H. Gall, AdvSE

Components
event-based

Comp
A

Events

Comp
B

Comp
C

Comp
D

Event
Dispatcher

61 © 2012, H. Gall, AdvSE

Advantages

Extensibility and Reusability
!  A new component can be easily integrated into the

system
!  Subsequent registration for other events and

announcement of its own events
Exchangeability of components

!  Without influence on the interfaces of other
components

event-based

62 © 2012, H. Gall, AdvSE

Disadvantages

If an event is published, it is not assured that it is
being handled by others
!  processing sequence

Data exchange other than with events is
problematic

Behavior of components is tightly coupled with
the execution environment (e.g. event model)

event-based

63

SHARED DATA

© 2012, H. Gall, AdvSE

64 © 2012, H. Gall, AdvSE

Shared Data

Two kinds of components:
!  Central data management
!  Independent components for computation

Activation of computation

!  When inserting (storing) new data (database
trigger)

!  Trough the actual state

65 © 2012, H. Gall, AdvSE

Shared Data

Blackboard
(shared Data)

computation,
 new data direct access

computation,
 new data

computation,
 new data

computation,
 new data

computation,
 new data

computation,
 new data

Blackboard

66 © 2012, H. Gall, AdvSE

Shared Data
Pros/Cons

Control can be realized in different parts of the
architecture

This style can also be used to model batch
processing with a shared database

Software Architecture

System decomposition and
Modular Structure

© 2012, H. Gall, AdvSE

68 © 2012, H. Gall, AdvSE

System Decomposition

Modularization as mechanism for improving the
flexibility and comprehensibility of a system

modular programming
!  write one module with little knowledge of the code

in another module
!  reassemble and replace modules without

reassembly of the whole system
especially important for large systems!

69 © 2012, H. Gall, AdvSE

Benefits of modular programming

managerial
!  shorten development time because separate

groups would work on each module with little need
for communication

product flexibility
!  changes to one module without a need to change

others
comprehensibility

!  study the system one module at a time

70 © 2012, H. Gall, AdvSE

What is Modularization?

“module” is considered a responsibility
assignment rather than a subprogram.

modularizations include the design decisions

that must be made before the work on
independent modules can begin

71 © 2012, H. Gall, AdvSE

Key Word In Context (KWIC)

The KWIC index system accepts
!  an ordered set of lines,
!  each line is an ordered set of words, and
!  each word is an ordered set of characters.

Any line may be “circularly shifted”
!  by repeatedly removing the first word and
!  appending it at the end of the line.

The KWIC index system outputs
!  a listing of all circular shifts of all lines in alphabetical order.

72

KWIC example
Text:
Wikipedia, The Free Encyclopedia
KWIC is an acronym for Key Word In Context, the most common format for concordance lines.
"
KWIC is an acronym for Key Word In Context, ... page 1
... Key Word In Context, the most common format for concordance lines. page 1
... the most common format for concordance lines. page 1
... is an acronym for Key Word In Context, the most common format ... page 1
Wikipedia, The Free Encyclopedia page 0
... In Context, the most common format for concordance lines. page 1
Wikipedia, The Free Encyclopedia page 0
KWIC is an acronym for Key Word In Context, the most ... page 1
KWIC is an acronym for Key Word ... page 1
... common format for concordance lines. page 1
... for Key Word In Context, the most common format for concordance ... page 1
Wikipedia, The Free Encyclopedia page 0
KWIC is an acronym for Key Word In Context, the most common ... page 1

© 2012, H. Gall, AdvSE

used in D.L. Parnas, “On the Criteria To Be Used in
Decomposing Systems into Modules”, CACM, 1972.

example taken from Wikipedia.org

73 © 2012, H. Gall, AdvSE

Considerations

What are the components?
What architectural style shall be used?
What about principles of encapsulation,

changeability, information hiding?

Next we present alternative solutions following

different architectural styles.

74 © 2012, H. Gall, AdvSE

Solution 1: Main program/subroutine
 with shared data

subprogram call

Master Control

Input Circular Shift Alphabetizer Output

Characters Index Alphabet. Index

Input medium Output medium

direct memory access
system i/o

75 © 2012, H. Gall, AdvSE

Solution 2: Abstract data types (ADTs)

Master Control

Input Output

Circular shift Alphabet. shifts

Input medium Output medium

subprogram call

system i/o
se

tC
ha

r

ch
ar

w
or

d

se
tC

ha
r

ch
ar

se
tu

p

w
or

d

al
ph

i-t
h

Characters

76 © 2012, H. Gall, AdvSE

Assessing Changeability /1

Differences are in the way that they are divided into work
assignments, and the interfaces between modules.

Algorithms might be identical.
Changeability (design decisions that are likely to

change):
!  input format
!  have all lines stored
!  pack the characters four to a word
!  make an index for the circular shifts rather than store them as

such
!  alphabetize the list once (search for item when needed or

partially alphabetize)

77 © 2012, H. Gall, AdvSE

Assessing Changeability /2

input format
!  confined to one module in S1/ShaD & S2/ADT

all lines stored and characters packed
!  S1/ShaD: changes in every module!

In S1/ShaD the format of the line storage must
be used by all programs

In S2/ADT the exact way that the lines are
stored is entirely hidden from all but module 1.

78 © 2012, H. Gall, AdvSE

Assessing Changeability /3

index of circular shifts
!  S1/ShaD: alphabetizer and output routines affected
!  S2/ADT: confined to circular shift

alphabetize once
!  S1/ShaD: output module will expect the index to

have been completed
!  S2/ADT: alphabetizer locally

79 © 2012, H. Gall, AdvSE

Assessing Independent development

Interfaces in S1/ShaD
!  complex formats and table organizations
!  table structure and organization are essential to

the efficiency
!  complex; joint effort of all development groups

Interfaces in S2/ADT
!  more abstract
!  consist primarily of function names and the

numbers and types of the parameters
!  simple decisions and independent development

much earlier

80 © 2012, H. Gall, AdvSE

Assessing Comprehensibility

in S1/ShaD
!  to understand the output module, it is necessary to

understand the alphabetizer, the circular shifter,
and the input module

!  aspects of the tables used by the output module:
constraints on the structure of the tables due to
algorithms used in other modules

!  system is comprehensible only as a whole

not in S2/ADT

81 © 2012, H. Gall, AdvSE

Assessing Decomposition

S1/ShaD: make each major step in processing a
module
!  flowchart approach not sufficient for large systems

S2/ADT: information hiding
!  line storage module is used in almost every action
!  circular shift might not make any table at all but

calculate each character as demanded
!  every module is characterized by its knowledge of

a design decision which it hides from all others. Its
interface or definition was chosen to reveal as little
as possible about its inner workings.

82 © 2012, H. Gall, AdvSE

Assessing Hierarchical structure

It is easy to confuse the benefits of a good
decomposition with those of a hierarchical structure!

Concerned with a partial ordering relation “uses” or
“depends”
!  parts of the system are simplified because they use services

of the lower levels
!  able to cut off the upper levels and still have a usable and

useful product (e.g. symbol table)
!  start “new tree on the old trunk”

Start with a list of difficult design decisions or design
decisions that are likely to change!

83 © 2012, H. Gall, AdvSE

Solution 3: Implicit invocation

de
le

te

in
se

rt

i-t
h

Master Control

Input Output

Input medium Output medium

subprogram call

system i/o

Circular Shift Alphabetizer

in
se

rt

de
le

te

i-t
h

implicit invocation

Lines C-A Lines

84 © 2012, H. Gall, AdvSE

Solution 4: Pipe-and-Filters

Input
medium Input Circular

Shift

Alphabetizer Output Output
medium

85 © 2012, H. Gall, AdvSE

KWIC: Comparisons of solutions

86 © 2012, H. Gall, AdvSE

Next time

Patterns of Software Architecture
Architecture Description Languages

87

SOME STANDARD
ARCHITECTURES

© 2012, H. Gall, AdvSE

88

Architecture of Windows 2000

© 2012, H. Gall, AdvSE

89

Architecture of Windows

© 2012, H. Gall, AdvSE

90

Architecture of Mac OS X

© 2012, H. Gall, AdvSE

91

Architecture of JBoss

© 2012, H. Gall, AdvSE

