
ReUse: Challenges and
Business Success

Harald Gall
Department of Informatics
software evolution and architecture lab
seal.ifi.uzh.ch/gall

2

Objects and reuse …

Reuse

… some practical observations

3

Outline

Reuse Challenges
Reuse Technologies

software analysis & visualization
product lines, feature engineering & variability

Economics of reuse
cost/benefit relation
cost estimation

Case Studies & Empirical Investigations
Business Success
Conclusions

Reuse

4

I. REUSE CHALLENGES

Reuse

5

Software Reuse

n  Software Reuse (Mili et al., 2002)
 “Software reuse is the process whereby an organization
defines a set of systematic operating procedures to
specify, produce, classify, retrieve, and adapt software
artifacts for the purpose of using them in its development
activities.”

Reuse

6

Reusable Software Engineering (Freeman 1983)

Generic Systems

Functional Collections

Software Architecture

Source Code

Tech-transfer
knowledge

Utilization
knowledge

Application-area
knowledge

Development
knowledge

B cannot be realized without A

Environmental

External

Functional Architectures

Logical Structures

Code Fragments

Reuse

7

Challenges of Software Reuse

n  Organizational aspects
n  Operational and technological infrastructure
n  Reuse introduction

n  Technical aspects
n  Domain engineering
n  Component engineering
n  Application engineering

n  Economical aspects
n  Reuse metrics
n  Reuse cost estimation

n  Legal aspects
n  Copyright
n  Warranty
n  Open Source

Reuse

8

Challenge to the benefit (1)

Increased dependability Reused software, that has been tried and tested in working systems,
should be m ore dependable than new software. The initial use of the
software reveals any design and implementation faults. These are then
fixed, thus reducing the number of failures when the software is reused.

Reduced process risk If software exists, there is less uncertainty in the costs of reusing that
software than in the costs of development. This is an important factor
for project management as it reduces the margin of error in project cost
estimation. This is particularly true when relatively large software
components such as sub-systems are reused.

Effective use of specialists Instead of application specialists doing the same work on different
projects, these specialists can develop reusable software that
encapsulate their knowledge.

Reuse

(Sommerville, 2010)

9

Challenge to the benefit (2)

Standards compliance Some standards, such as user interface standards, can be
implemented as a set of standard reusable components. For
example, if menus in a user interfaces are implemented using
reusable components, all applications present the same menu
formats to users. The use of standard user interfaces improves
dependability as users are less likely to make mistakes when
presented with a familiar interface.

Accelerated development Bringing a system to market as early as possible is o ften more
important than overall development costs. Reusing software can
speed up system production because both development and
validation time should be reduced.

Reuse

10

Reuse problems (1)

Increased maintenance
costs

If the source code of a reused software system or component is n ot
available then maintenance costs may be increased as the reused
elements of the system may become increasingly incompatible with
system changes.

Lack of tool support CASE toolsets may not support development with reuse. It may be
difficult or impossible to integrate these tools with a component
library system. The software process assumed by these tools may not
take reuse into account.

Not-invented-here
syndrome

Some software engineers sometimes prefer to re-write components as
they believe that they can improve on the reusable component. This is
partly to do with trust and partly to do with the fact that writing
original software is s een as more challenging than reusing other
people’s software.

Reuse

11

Reuse problems (2)

Creating and maintaining a
component library

Populating a reusable component library and ensuring the software
developers can use this library can be expensive. Our current techniques
for classifying, cataloguing and retrieving software components are
immature.

Finding, understanding and
adapting reusable components

Software components have to be discovered in a library, understood and,
sometimes, adapted to work in a n ew environment. Engineers must be
reasonably confident of finding a component in the library before they will
make routinely include a component search as part of their normal
development process.

Reuse

12

II. REUSE TECHNOLOGIES

Reuse

13

The reuse landscape

Reuse

14

Software Evolution Metrics

Reuse

Fan-in
 invoke
 access

Class/module metrics
files, directories,
packages, ...
global variables,
NOM, NOA, ...

Change dependencies
 change couplings
 bugs, issues	

Fan-out
invoke
access

Martin Pinzger, Harald C. Gall, Michael Fischer, and Michele Lanza, Visualizing Multiple Evolution Metrics
In Proceedings of the ACM Symposium on Software Visualization, 2005.

15

Mozilla Module DOM: 0.92 -> 1.7

Reuse

16

Mozilla: Change Dependencies

Kiviat graph:
26 metrics
7 Mozilla modules
7 subsequent releases

Reuse

17

Software as City

Richard Wettel, Michele Lanza. Visualizing Software Systems as Cities. In VISSOFT 2007
Reuse

18

Buildings of ArgoUML

Reuse

19

III. REUSE ECONOMICS

Reuse

20

Reuse investment

n  Reuse investment cost
n  cost of producer to provide components for reuse

n  Component generality
n  variations of a component in relation to the reuse technology

n  Cost of reuse
n  cost of reuser for finding, adapting, integrating, and testing of a

reusable component

Reuse

21

Reuse investment relation

Reuse

22

Reuse cost estimation (1)

n  Cno-reuse = development cost without reuse
n  Reuse Level, R =

n  Fuse = relative cost for the reuse of a component
n  typically 0.1 - 0.25 of development cost

n  Cpart-with-reuse = Cno-reuse * (R * Fuse)

n  Cpart-with-no-reuse = Cno-reuse * (1 - R)

n  Cwith-reuse = Cpart-with-reuse + Cpart-with-no-reuse

n  Cwith-reuse = Cno-reuse * (R * Fuse + (1 - R))

Reuse

total size of reused components

size of application

23

Reuse cost estimation (2)

n  Example: R = 50%, Fuse = 0.2
n  cost for developing with reuse = 60% of cost for developing

without reuse

n  Csaved = Cno-reuse - Cwith-reuse
 = Cno-reuse * (1 - (R * Fuse + (1 - R)))
 = Cno-reuse * R * (1 - Fuse)

n  ROIsaved =

 = R * (1 - Fuse)

Reuse

Csaved

Cno-reuse

24

Reuse cost estimation (3)

n  Fcreate = relative cost for the creation and management of
a reusable component system

n  Ccomponent-systems = cost for developing enough
components for R percent

n  Fcreate >> Fuse 1 <= Fcreate <= 2.5

n  Cfamily-saved = n * Csaved - Ccomponent-system
 = Cno-reuse * (n * R * (1 - Fuse) - R * Fcreate)

Reuse

25

Reuse cost estimation (4)

Reuse

ROI =
Cfamily-saved

Ccomponent-systems

n * R * (1 - Fuse) - R * Fcreate

R * Fcreate
=

n * (1 - Fuse) - Fcreate

Fcreate
=

Example: Fuse = 0.2 and Fcreate = 1.5

ROI =
n * 0.8 - 1.5

1.5 Break-even mit n > 2

26

COPLIMO – Software Product Line
Life Cycle Cost Estimation

Reuse

(Boehm et al., 2004)

27

Relative Cost of Writing for Reuse

n  RCWR is the added cost of writing software to be most cost-effectively
reused across a product line family of applications, relative to the cost
of writing a standalone application.

n  CRCWR = LaborRate * COPLIMORCWR + SoftwareQualityCostRCWR

n  CRCWR = LaborRate * [COCOMO baseline (initialSoftwareSize) *
 EffortAdjustment for RCWR] + [CostPerDefect *
 (1- TestingEffectiveness) *
 (COQUALMO(initialSoftwareSize, EMPL)],

 where EMPL is the Effort Multiplier of the COCOMO II cost drivers for the product line
development and COCOMO baseline is calculated as 2.94 * (software size1.0997 *
PI(EM)

Reuse

(Boehm et al., 2006)

28

Relative Cost for Reuse

n  RCR is the cost of reusing the software in a new
application with the same product line family, relative to
developing newly built software for the application.

n  CRCR = LaborRate * COPLIMORCR + SoftwareQualityCostRCR

n  CRCR = LaborRate * [COCOMO baseline (softwareSizeForReuse)] +
[CostPerDefect * (1 – TestingEffectiveness) *
COQUALMO(softwareSizeForReuse, EMPL)]

Reuse

(Boehm et al., 2006)

29

Estimated quality-based SPL cost

n  CPL(N) = CRCWR + (N-1) * CRCR
where N is the number of products to be developed in SPL

 CPL(N) = $6’333 + (N - 1) * $2’174

Reuse

(Boehm et al., 2006)

30

Saving of NPL vs. PL

Reuse

31

IV. CASE STUDIES

Reuse

32

A. HP case study

Reuse

aus W.C. Lim, IEEE Software, Sept. 1994

33

Reuse program economic profiles

Reuse

au
s

W
.C

. L
im

, I
E

E
E

 S
of

tw
ar

e,
 S

ep
t.

19
94

34

Quality, productivity, time-to-Market

Reuse

aus W.C. Lim, IEEE Software, Sept. 1994

35

Reuse cost

Reuse

aus W.C. Lim, IEEE Software, Sept. 1994

36

B. Ericsson study (2008)

n  3y software reuse in 2 large telecom products (Norway and Sweden)
n  reused components were developed in-house and shared in a

product-family approach
n  reuse as risk mitigation since development moved to Sweden
n  quantitative data mined and qualitative observations

Reuse

(Mohagheghi & Conradi, 2008)

37

Ericsson study, continued

n  Component-based architecture (CORBA)
n  Components programmed in Erlang, C, and some Java

(GUI)
n  Data analyzed:

n  Trouble Reports: failures observed by testers or users
n  Change Requests: changes to requirements after baseline
n  KLOC and modified KLOC between releases
n  Person Hours used in system test
n  code modification rate: (m-KLOC/KLOC)*100
n  reuse rate: size of reused code

Reuse

38

Ericsson study, continued

n  Quality benefits of large-scale reuse programs
n  significant benefits in terms of lower fault density and
n  less modified code between releases of reused code
n  reuse reduced risks and lead time of second product since it was

developed based on a tested platform
n  reuse and standardization of software architecture, processes

and skills can help reduce organizational restructuring risks

n  Study showed that there is a need to adapt software
processes such as RUP for reuse, and define metrics to
evaluate corporate/project/software goals

Reuse

39

V. BUSINESS SUCCESS

Reuse

40

Strategies for Software Reuse

n  Potential reuse adopters must be able to understand reuse
strategy alternatives and their implications

n  Organizations must make an informed decision
n  The study:

n  survey data from 71 software development groups (of 67 different
organizations), 80% working in organizations > 200 employees

n  software engineers, development consultants, project managers,
software engineering researchers

n  to empirically analyze dimensions that describe the practices
employed in reuse programs

n  classify reuse settings and assess their potential for success

Reuse

(Rothenberger et al., 2003)

41

Reuse archetypes

Reuse

(Rothenberger et al., 2003)

42

Software Reuse Strategies: Findings

n  An organization’s reuse success is not dependent on the
use of object-oriented techniques. Nevertheless, object
technologies may be conducive to reuse, yet the other
dimensions ultimately determine reuse success.

n  The qualitative analysis yielded additional insights:
n  An improvement of software quality can be achieved without an

emphasis on the reuse process
n  An organization will only obtain the full benefit of reuse if a

formal reuse program is employed and subject to quality control
through formal planning and continuous improvement.

Reuse

(Rothenberger et al., 2003)

43

CONCLUSIONS

Reuse

44

Conclusions

Reuse

45

References
n  B. Boehm, A Winsor Brown, R. Madachy, Y. Yang, A Software Product Line Life Cycle Cost Estimation Model, in

Proceedings of the 2004 Symposium on Empirical Software Engineering, IEEE, 2004.
n  B.H. Peter In, J. Baik, S. Kim, Y. Yang, B. Boehm, Quality-Based Cost Estimation Model for the Product Line Life

Cycle, Communications of the ACM, Vol. 49(12), Dec 2006.
n  W.C. Lim, Effects of reuse on quality, productivity, and economics, IEEE Software, Vol.11(5), pp.23-30, Sep 1994,

doi: 10.1109/52.311048
n  D. Lucredio, K. dos Santos Brito, A. Alvaro, V.C. Garcia, E.S. de Almeida, R.P. de Mattos Fortes, S.L.Meira,

Software reuse: the Brazilian indudustry scenario, Journal of Systems and Software, 81, Elsevier, 2008.
n  H. Mili, A. Mili, S. Yacoub, E. Addy, Reuse Based Software Engineering: Techniques, Organizations, and

Measurement, Wiley, 2001.
n  P. Mohagheghi, R. Conradi, An Empirical Investigation of Software Reuse Benefits in a Large Telecom Product,

ACM Transactions on Software Engineering and Methodology, Vol. 17(3), June 2008.
n  P. Mohagheghi, R. Conradi, O.M. Killi, H. Schwarz, An Empirical Study of Software Reuse vs. Defect-Density and

Stability, in Proceedings of the 26th International Conference on Software Engineering (ICSE), IEEE, 2004.
n  M.A. Rothenberger, K.J. Dooley, U.R. Kulkarni, Strategies for Software Reuse: A Principal Component Analysis of

Reuse Practices, Transactions on Software Engineering, Vol. 29(8), Sept. 2003.
n  K.C. Desouza, Y. Awazu, A. Tiwana, Four Dynamics for Bringing Use back into Software Reuse, Communications

of the ACM, Vol. 49(1), Jan. 2006.
n  T. Ravichandran, M.A. Rothenberger, Software Reuse Strategies and Component Markets, Communicatinos of

the ACM, Vol. 46(8), Aug. 2003.

Reuse

46

BACKUP

Reuse

47 47
COCOMO II rating for software understanding

Very low Low Nominal High Very high
Structure Very low

cohesion, high
coupling,
spaghetti code

Moderately low
cohesion, high
coupling

Reasonably
well-
structured;
some weak
areas

High cohesion,
low coupling

Strong
modularity,
information-
hiding in data
and control
structures

Application
clarity

No match
between
program and
application
world views

Some
correlation
between
program and
application

Moderate
correlation
between
program and
application

Good
correlation
between
program and
application

Clear match
between
program and
application
world views

Self-
descriptiveness

Obscure code;
documentation
missing,
obscure or
obsolete

Some code
commentary
and headers;
some useful
documentation

Moderate level
of code
commentary,
headers,
documentation

Good code
commentary
and headers;
useful
documentation;
some weak
areas

Self-descriptive
code;
documentation
up-to-date,
well-organized,
with design
rationale

SU increment 50 40 30 20 10

COCOMO II - Software Understanding (Boehm et al., 2004)

48 48

COCOMO II - Assessment & Assimilation effort
(Boehm et al., 2004)

Assessment and
Assimilation increment

Level of assessment and
assimilation effort

0 None

2 Basic component search and
documentation

4 Some component test and
evaluation

6 Considerable component test and
evaluation

8 Extensive component test and
evaluation

