
Architectural Description

Harald Gall, Prof. Dr.
http://seal.ifi.unizh.ch

2

Overview

 Architecture Description Languages
(ADLs)

 ACME: an ADL and tool enviroment
 ACMEStudio: the tool for Acme

3

Architectural Description

 Architectural design has always played a strong role
in determining the success of complex software-
based systems:
 the choice of an appropriate architecture can lead to a

product that satisfies its requirements and is easily modified
as new requirements present themselves,

 while an inappropriate architecture can be disastrous.

4

Architectural Description /2
 the practice of architectural design has been largely ad hoc,

informal, and idiosyncratic. As a result
 architectural designs are often poorly understood by developers;
 architectural choices are based more on default than solid

engineering principles;
 architectural designs cannot be analyzed for consistency or

completeness;
 architectural constraints assumed in the initial design are not

enforced as a system evolves;
 there are few tools to help architectural designers with their tasks.

 Response: Architecture Description Languages (ADLs)
 They provide both a conceptual framework and a concrete syntax

for characterizing software architectures.
 They also typically provide tools for parsing, unparsing, displaying,

compiling, analyzing, or simulating architectural descriptions written
in their associated language

5

ADLs
 Aesop [GAO94] supports the use of architectural styles
 Adage [CS93] supports the description of architectural frameworks for

avionics navigation and guidance
 C2 [MORT96] supports the description of user interface systems using an

event-based style
 Darwin [MDEK95] supports the analysis of distributed message-passing

systems
 Rapide [LAK + 95] allows architectural designs to be simulated, and has tools

for analyzing the results of those simulations
 SADL [MQR95] provides a formal basis for architectural refinement
 UniCon [SDK + 95] has a high-level compiler for architectural designs
 Meta-H [BV93] supports design of real-time avionics control software
 Wright [AG97] supports the formal specification and analysis of interactions

between architectural components
 xADL 2.0 [UCI] - supports run-time and design-time elements of a system;

architectural types; advanced configuration management concepts such as
versions, options, and variants; product family architectures; and architecture
"diff"ing (initial support)

While all of these languages are concerned with architectural
design, each provides certain distinctive capabilities!

6

ADLs’ conceptual basis (ontology)

 Components represent the primary
computational elements and data stores of a
system. Intuitively, they correspond to the
boxes in box-and-line descriptions of software
architectures.
 In most ADLs components may have multiple

interfaces, each interface defining a point of
interaction between a component and its
environment.

 Typical examples of components include
 clients, servers, filters, objects, blackboards, and

databases.

7

ADLs’ conceptual basis /2

 Connectors represent interactions among components.
 Computationally speaking, connectors mediate the communication

and coordination activities among components.
 They provide the “glue” for architectural designs, and intuitively, they

correspond to the lines in box-and-line descriptions.
 Examples include

 simple forms of interaction, such as pipes, procedure call, and
event broadcast

 But connectors may also represent more complex interactions:
 a client-server protocol or an SQL link between a database and

an application
 Connectors also have interfaces that define the roles played by the

various participants in the interaction represented by the connector.

8

ADLs’ conceptual basis /3

 Systems represent configurations (graphs) of
components and connectors.
 In modern ADLs a key property of system

descriptions is that the overall topology of a system
is defined independently from the components and
connectors that make up the system.

 (This is in contrast to most programming language
module systems where dependencies are wired
into components via import clauses.)

 Systems may also be hierarchical:
 components and connectors may represent

subsystems that have “internal” architectures.

9

ADLs’ conceptual basis /4

 Properties represent semantic information
about a system and its components that goes
beyond structure.
 Different ADLs focus on different properties, but

virtually all provide some way to define one or more
extra-functional properties together with tools for
analyzing those properties.

 some ADLs allow one to calculate overall system
throughput and latency based on performance
estimates of each component and connector
[SG98].

10

ADLs’ conceptual basis /5

 Constraints represent claims about an
architectural design that should remain true
even as it evolves over time.
 Typical constraints include restrictions on allowable

values of properties, topology, and design
vocabulary.

 For example, an architecture might constrain its
design so that the number of clients of a particular
server is less than some maximum value.

11

ADLs’ conceptual basis /6

 Styles represent families of related systems.
 An architectural style typically defines a vocabulary of

design element types and rules for composing them
[SG96].
 Examples: data flow architectures based on graphs of pipes

and filters, blackboard architectures based on shared data
space and a set of knowledge sources, and layered systems.

 Some architectural styles additionally prescribe a framework
as a set of structural forms that specific applications can
specialize.

 Examples: traditional multistage compiler framework, 3-tiered
client-server systems, the OSI protocol stack, or user
interface management systems.

12

Example: Client-Server
 A client and server component

connected by an RPC connector.
The server might be represented by
a sub-architecture (not shown).
 Properties of the connector might

include the protocol of interaction
that it requires. Properties of the
server might include the average
response time for requests.

 Constraints on the system might
stipulate that no more than five
clients can ever be connected to
this server and that servers may
not initiate communication with a
client.

 The style of the system might be a
“client-server” style in which the
vocabulary of design includes
clients, servers, and RPC
connectors.

Acme: An Architecture
Description Language

14

Acme: an ADL [GMW00]

 second-generation ADL; developed by the
SEI/CMU

 providing in a simple language the essential
elements of architectural design, and
supporting natural extensions to support more
complex architectural features.

 In particular, Acme embodies the architectural
ontology, providing a semantically extensible
language and a rich toolset for architectural
analysis and integration of independently
developed tools.

15

Acme’s 4 aspects of architecture

 Structure the organization of a system into its
constituent parts.

 Properties of interest: information about a
system or its parts that allow one to reason
abstractly about overall behavior (both
functional and nonfunctional).

 Constraints: guidelines for how the
architecture can change over time.

 Types and styles: defining classes and
families of architecture

16

An Acme C/S Description

System simple_cs = {
 Component client = { Port sendRequest }
 Component server = { Port receiveRequest }
 Connector rpc = { Roles {caller, callee} }
 Attachments : {
 client.sendRequest to rpc.caller ;
 server.receiveRequest to rpc.callee }
}

17

Architectural structure
 Acme components represent computational elements and data stores of a

system. A component may have multiple interfaces, each of which is termed
a port.

 A port identifies a point of interaction between the component and its
environment, and can represent an interface as simple as a single
procedure signature. Alternatively, a port can define a more complex
interface, such as a collection of procedure calls that must be invoked in
certain specified orders, or an event multicast interface.

 Acme connectors represent interactions among components. Connectors
also have interfaces that are defined by a set of roles. Each role of a
connector defines a participant of the interaction represented by the
connector. Binary connectors have two roles such as the caller and callee
roles of an RPC connector, the reading and writing roles of a pipe, or the
sender and receiver roles of a message passing connector. Other kinds of
connectors may have more than two roles.
 For example an event broadcast connector might have a single event-announcer

role and an arbitrary number of event-receiver roles.
 Acme systems are defined as graphs in which the nodes represent

components and the arcs represent connectors. This is done by identifying
which component ports are attached to which connector roles.

18

Representations and Properties

19

Representations and Properties /2

 Representation:
 to support hierarchical descriptions of architectures, Acme

permits any component or connector to be represented by
one or more detailed, lower-level descriptions.

 Representation map (rep-map):
 indicate the correspondence between the internal system

representation and the external interface of the component or
connector that is being represented.

 In the simplest case a rep-map provides an association
between internal ports and external ports (or, for connectors,
internal roles, and external roles).

 In other cases the map may be considerably more complex.
 But rep-maps are not connectors!

20

Hierarchical C/S system

21

System simpleCS = {
 Component client = { ... }
 Component server = {
 Port receiveRequest;
 Representation serverDetails = {
 System serverDetailsSys = {
 Component connectionManager = {
 Ports { externalSocket; securityCheckIntf; dbQueryIntf } }
 Component securityManager = {
 Ports { securityAuthorization; credentialQuery; } }
 Component database = {
 Ports { securityManagementIntf; queryIntf; } }
 Connector SQLQuery = { Roles { caller; callee } }
 Connector clearanceRequest = { Roles { requestor; grantor } }
 Connector securityQuery = {
 Roles { securityManager; requestor } }
 Attachments {
 connectionManager.securityCheckIntf to clearanceRequest.requestor;
 securityManager.securityAuthorization to clearanceRequest.grantor;
 connectionManager.dbQueryIntf to SQLQuery.caller;
 database.queryIntf to SQLQuery.callee;
 securityManager.credentialQuery to securityQuery.securityManager;
 database.securityManagementIntf to securityQuery.requestor; }
 }
 Bindings { connectionManager.externalSocket to server.receiveRequest }
 }
}
Connector rpc = { ... }
Attachments { client.send-request to rpc.caller ;
 server.receive-request to rpc.callee }

C/S system with representation

22

Properties

 To accommodate the open-ended
requirements for specification of auxiliary
information, Acme supports annotation of
architectural structure with arbitrary lists of
properties.

 Each property has a name, an optional type,
and a value.

 Any of the seven classes of Acme
architectural design entities can be annotated
with a property list (components, connectors,
ports, etc.)

23

C/S system with properties
System simple_cs = {
 Component client = {
 Port sendRequest;
 Properties { requestRate : float = 17.0;
 sourceCode : externalFile = "CODE-LIB/client.c" }}
 Component server = {
 Port receiveRequest;
 Properties { idempotent : boolean = true;
 maxConcurrentClients : integer = 1;
 multithreaded : boolean = false;
 sourceCode : externalFile = "CODE-LIB/server.c" }}
 Connector rpc = {
 Role caller;
 Role callee;
 Properties { synchronous : boolean = true;
 maxRoles : integer = 2;
 protocol : WrightSpec = "..." }}
 Attachments {
 client.send-request to rpc.caller ;
 server.receive-request to rpc.callee }
}

24

Design Constraints

 Design Constraints determine how an architectural design is
permitted to evolve over time.

 Constraints can be considered a special kind of property, but
since they play such a central role in architectural design, Acme
provides special syntax for describing them. (Of course, this also
permits the creation of tools for checking constraint satisfaction
of an architectural description.)

 Constraints can be associated with any design element of an
Acme description. The scope of the constraint is determined by
that association.
 if a constraint is attached to a system then it can refer to any of the

design elements contained within it (components, connectors, and
their parts).

 a constraint attached to a component can only refer to that
component – using the special keyword self, and its parts (that is, its
ports, properties, and representations).

25

Sample functions for constraints

 Acme uses a constraint language based on first order predicate logic
(FOPL). That is, design constraints are expressed as predicates over
architectural specifications.

 The constraint language includes the standard set of FOPL constructs
(conjunction, disjunction, implication, quantification, and others).

 It also includes a number of special functions that refer to architecture-
specific aspects of a system.

26

Some constraint examples

 connected(client, server)
 will be true if the components named client and server are connected

directly by a connector.

 Forall conn : connector in SystemInstance.Connectors @ size(conn.roles) = 2
 will be true of a system in which all of the connectors are binary connectors

 Forall conn : connector in SystemInstance.Connectors @
 Forall r :role in conn.Roles @
 Exists comp : component in systemInstance.Components @

 Exists p : port in comp.Ports @ attached(p,r) and (p.protocol =
r.protocol)
 will be true when all connectors in the system are attached to a port, and the

attached (port, role) pair share the same protocol.

 self.throughputRate > = 3095

 comp.totalLatency = (comp.readLatency + comp.processingLatency +
comp.writeLatency)

27

Constraints: invariants, heuristics

 Constraints may be attached to design elements in
one of two ways:
 as an invariant: the constraint is taken to be a rule that

cannot be violated.
 as a heuristic: the constraint is taken to be a rule that should

be observed, but may be selectively violated.

 Tools that check for consistency of an Acme
specification will naturally treat these differently.
 A violation of an invariant makes the architectural

specification invalid,
 while a violation of a heuristic is treated as a warning.

28

Constraints example

System messagePathSystem = {
 ...
 Connector MessagePath = {
 Roles {source; sink;}
 Property expectedThroughput : float = 512;

 Invariant (queueBufferSize >= 512) and (queueBufferSize <= 4096);

 Heuristic expectedThroughput <= (queueBufferSize / 2);
 }
}

29

Types & Styles
 An important general capability for the description of

architectures is the ability to define styles or families of
systems.

 Styles allow one to define a domain-specific or application-
specific design vocabulary, together with constraints on how
that vocabulary can be used. This supports
 packaging of domain-specific design expertise,
 use of special-purpose analysis and code-generation tools,
 simplification of the design process, and
 the ability to check for conformance to architectural standards.

 3 kinds of types (interpreted as predicates)
 property types,
 structural types,
 styles (or families)

30

Component type “Client”

Component Type Client = {
 Port Request = {Property protocol: CSPprotocolT};
 Property request-rate: Float;

 Invariant Forall p in self.Ports @ p.protocol = rpc-client;
 Invariant size(self.Ports) <= 5;
 Invariant request-rate >= 0;

 Heuristic request-rate < 100;
}

31

Family PipeFilterFam = {
 Component Type FilterT = {
 Ports { stdin; stdout; };
 Property throughput : int;
 };
 Component Type UnixFilterT extends FilterT with {
 Port stderr;
 Property implementationFile : String;
 };
 Connector Type PipeT = {
 Roles { source; sink; };
 Property bufferSize : int;
 };
 Property Type StringMsgFormatT = Record [size:int; msg:String;];
 Invariant Forall c in self.Connectors @ HasType(c, PipeT);
}
System simplePF : PipeFilterFam = {
 Component smooth : FilterT = new FilterT
 Component detectErrors : FilterT;
 Component showTracks : UnixFilterT = new UnixFilterT extended with {
 Property implementationFile : String = "IMPL_HOME/showTracks.c";
 };
 // Declare the system's connectors
 Connector firstPipe : PipeT;
 Connector secondPipe : PipeT;
 // Define the system's topology
 Attachments { smooth.stdout to firstPipe.source;
 detectErrors.stdin to firstPipe.sink;
 detectErrors.stdout to secondPipe.source;
 showTracks.stdin to secondPipe.sink; }
}

Definition of a Pipe-Filter Family

32

Roles of Acme
 as a basis for new architecture design and analysis

tools
 Currently over a dozen tools and three design environments

have been built to operate on Acme descriptions. The tools
perform a variety of tasks, including

 type checking Acme (including satisfaction of invariants and
constraints) [Mon99],

 generation of Web-based documentation, automated graph
layout,

 animation of runtime behavior in architectural terms [GB99, LAK
+ 95],

 dependence analysis for predicting the impacts of changes
[SRW98], and

 performance and reliability analyses (for certain styles) [SG98].
 The environments provide graphical front ends for creating

Acme descriptions and support various analysis capabilities

AcmeStudio
http://acme.able.cs.cmu.edu/acmeweb

