
Using Metrics in SQA!

Using Software Metrics to analyze the
implementation and design of  
object-oriented systems!

2!

The Metrics Pyramid!

❍  A metrics-based means to both describe and characterize
the structure of an object-oriented system by quantifying its
complexity, coupling and usage of inheritance!

❍  Measuring these 3 aspects at system level provides a
comprehensive characterization of an entire system!

Inheritance

Size & Complexity Coupling

3!

The Metrics Pyramid in Detail!

❍  The left side: System Size & Complexity!
●  Direct metrics: NOP, NOC, NOM, LOC, CYCLO!
●  Derived metrics: NOC/P, NOM/C, LOC/M, CYCLO/LOC!

4!

The Overview Pyramid in Detail!

❍  The left side: System Size & Complexity!
●  Direct metrics: NOP, NOC, NOM, LOC, CYCLO!
●  Derived metrics: NOC/P, NOM/C, LOC/M, CYCLO/LOC!

❍  The right side: System Coupling!
●  Direct metrics: CALLS, FANOUT!
●  Derived metrics: CALLS/M, FANOUT/CALL!

5!

The Overview Pyramid in Detail!

❍  The left side: System Size & Complexity!
●  Direct metrics: NOP, NOC, NOM, LOC, CYCLO!
●  Derived metrics: NOC/P, NOM/C, LOC/M, CYCLO/LOC!

❍  The right side: System Coupling!
●  Direct metrics: CALLS, FANOUT!
●  Derived metrics: CALLS/M, FANOUT/CALL!

❍  The top: System Inheritance!
●  Direct metrics: ANDC, AHH!

Metrics listed!

❍  NOP - Number Of Packages!
❍  NOC - Number Of Classes!

❍  NOM - Number Of Methods!
❍  LOC – Lines of Code!
❍  CYCLO - Cyclomatic complexity!
❍  CALLS - number of distinct function- and method-calls!
❍  ANDC - Average Number of Derived Classes

❍  AHH - Average Hierarchy Height!

6!

7!

Interpreting the Overview Pyramid!

❍  The pyramid characterizes a system in terms of
size&complexity, coupling, and inheritance; based on 8
computed proportions:!
●  They are independent of the size of the system!!
●  This enables an objective assessment…!

•  Wait a second…objective? Where is the reference point?!

8!

Putting things in a real-world context!

❍  We measured 80+ systems written in Java and C++!
❍  Based on the obtained measurements we can now statistically assess the

design of a system!

Average

High

Low

9!

Overview Pyramid Example: ArgoUML!

Average

High

Low

Pattern: Study the Exceptional Entities!

Problem!
●  How can you quickly gain insight into complex software?!

Solution!
●  Measure software entities and study the anomalous ones!

Steps!
●  Use simple metrics!
●  Visualize metrics to get an overview!
●  Browse the code to get insight into the anomalies!

10!

System Complexity View!

Nodes = Classes
Edges = Inheritance Relationships

Width = Number of Attributes
Height = Number of Methods
Color = Number of Lines of Code

System Complexity View

Color
Metric

Position
Metrics

Width Metric

Height
Metric

11!

Detection strategy!

❍  A detection strategy is a metrics-based predicate to identify
candidate software artifacts that conform to (or violate) a
particular design rule!

12!

Filters and composition!

❍  A data filter is a predicate used to focus attention on a
subset of interest of a larger data set!
●  Statistical filters!

•  I.e., top and bottom 25% are considered outliers!
●  Other relative thresholds!

•  I.e., other percentages to identify outliers (e.g., top 10%)!
●  Absolute thresholds!

•  I.e., fixed criteria, independent of the data set!

❍  A useful detection strategy can often be expressed as a
composition of data filters!

13!

God Class!

❍  A God Class centralizes intelligence in the system!
●  Impacts understandibility!
●  Increases system fragility!

14!

ModelFacade (ArgoUML)!

❍  453 methods!
❍  114 attributes!

❍  over 3500 LOC!
❍  all methods and all

attributes are static!

15!

Tutorial F7
 Software Evolution: Analysis and Visualization

© 2006 Harald

C. Gall &
Michele Lanza

16

The Class Blueprint - Principles

Invocation Sequence

Initialization External Interface Internal Implementation Accessor Attribute

•  The class is divided into 5 layers
•  Nodes

•  Methods, Attributes, Classes
•  Edges

•  Invocation, Access, Inheritance

	

	

	

•  The method nodes are positioned according to
•  Layer
•  Invocation sequence

Tutorial F7
 Software Evolution: Analysis and Visualization

© 2006 Harald

C. Gall &
Michele Lanza

17

The Class Blueprint - Principles (II)

Attribute

Read Accessor

Delegating Method

Constant Method Abstract Method

Overriding Method

Extending Method

Write Accessor

Method

invocations

lines

Attribute

external accesses

internal accesses

Direct Attribute Access Method Invocation

Feature Envy!

❍  Methods that are more interested in data of other classes
than their own [Fowler et al. 99]!

18!

ClassDiagramLayouter!

19!

Data Class!

❍  A Data Class provides data to other classes but little or
no functionality of its own!

20!

21	

Data Class (2)!

22	

Property!

23	

Shotgun Surgery!

❍  A change in an operation implies many (small) changes
to a lot of different operations and classes!

Code Duplication!

25!

Code Duplication!

a.k.a. Software Cloning, Copy&Paste
Programming!

!
❍  Code Duplication!

●  What is it?!
●  Why is it harmful?!

❍  Detecting Code Duplication!
❍  Approaches!
❍  A Lightweight Approach!
❍  Visualization (dotplots)!
❍  Duploc!

26!

Code is Copied!

Small Example from the Mozilla Distribution (Milestone 9)	

Extract from /dom/src/base/nsLocation.cpp

[432] NS_IMETHODIMP
[433] LocationImpl::GetPathname(nsString
[434] {
[435] nsAutoString href;
[436] nsIURI *url;
[437] nsresult result = NS_OK;
[438]
[439] result = GetHref(href);
[440] if (NS_OK == result) {
[441] #ifndef NECKO
[442] result = NS_NewURL(&url, href);
[443] #else
[444] result = NS_NewURI(&url, href);
[445] #endif // NECKO
[446] if (NS_OK == result) {
[447] #ifdef NECKO
[448] char* file;
[449] result = url->GetPath(&file);
[450] #else
[451] const char* file;
[452] result = url->GetFile(&file);
[453] #endif
[454] if (result == NS_OK) {
[455] aPathname.SetString(file);
[456] #ifdef NECKO
[457] nsCRT::free(file);
[458] #endif
[459] }
[460] NS_IF_RELEASE(url);
[461] }
[462] }
[463]
[464] return result;
[465] }
[466]

[467] NS_IMETHODIMP
[468] LocationImpl::SetPathname(const nsString
[469] {
[470] nsAutoString href;
[471] nsIURI *url;
[472] nsresult result = NS_OK;
[473]
[474] result = GetHref(href);
[475] if (NS_OK == result) {
[476] #ifndef NECKO
[477] result = NS_NewURL(&url, href);
[478] #else
[479] result = NS_NewURI(&url, href);
[480] #endif // NECKO
[481] if (NS_OK == result) {
[482] char *buf = aPathname.ToNewCString();
[483] #ifdef NECKO
[484] url->SetPath(buf);
[485] #else
[486] url->SetFile(buf);
[487] #endif
[488] SetURL(url);
[489] delete[] buf;
[490] NS_RELEASE(url);
[491] }
[492] }
[493]
[494] return result;
[495] }
[496]

[497] NS_IMETHODIMP
[498] LocationImpl::GetPort(nsString& aPort)
[499] {
[500] nsAutoString href;
[501] nsIURI *url;
[502] nsresult result = NS_OK;
[503]
[504] result = GetHref(href);
[505] if (NS_OK == result) {
[506] #ifndef NECKO
[507] result = NS_NewURL(&url, href);
[508] #else
[509] result = NS_NewURI(&url, href);
[510] #endif // NECKO
[511] if (NS_OK == result) {
[512] aPort.SetLength(0);
[513] #ifdef NECKO
[514] PRInt32 port;
[515] (void)url->GetPort(&port);
[516] #else
[517] PRUint32 port;
[518] (void)url->GetHostPort(&port);
[519] #endif
[520] if (-1 != port) {
[521] aPort.Append(port, 10);
[522] }
[523] NS_RELEASE(url);
[524] }
[525] }
[526]
[527] return result;
[528] }
[529]

27!

Case Study! LOC!
Duplication

without
comments!

with
comments!

gcc! 460’000! 8.7%! 5.6%!

Database Server! 245’000! 36.4%! 23.3%!

Payroll! 40’000! 59.3%! 25.4%!

Message Board! 6’500! 29.4%! 17.4%!

How Much Code is Duplicated?!

Usual estimates: 8 to 12% in normal industrial code!
15 to 25 % is already a lot! !

28!

Duplicated Code = Source code segments that are found in
different places of a system.!

•  in different files!
•  in the same file but in different functions!
•  in the same function ! !!

The segments must contain some logic or structure that can be abstracted, i.e., !
!
!
!
!
!
!
!
Copied artifacts range from expressions, to functions, to data structures, and to entire

subsystems. !

What Is Considered To Be Copied Code?!

is not considered
duplicated code.

could be abstracted
to a new function

...

getIt(hash(tail(z)));

...

...

getIt(hash(tail(a)));

...

...

computeIt(a,b,c,d);

...

...

computeIt(w,x,y,z);

...

29!

Copied Code Problems!

❍  General negative effect:!
●  Code bloat!

❍  Negative effects on Software Maintenance!
●  Copied Defects !
●  Changes take double, triple, quadruple, ... Work!
●  Dead code!
●  Add to the cognitive load of future maintainers!

❍  Copying as additional source of defects !
●  Errors in the systematic renaming produce unintended aliasing!

❍  Metaphorically speaking:!
●  Software Aging, “hardening of the arteries”, !
●  “Software Entropy” increases even small design changes become very difficult to

effect!

30!

Nontrivial problem: 	

•  No a priori knowledge about which code has been copied	

•  How to find all clone pairs among all possible pairs of segments?

Lexical Equivalence

Semantic Equivalence

Syntactical Equivalence

Code Duplication Detection!

31!

General Schema of Detection Process!

Source Code Transformed Code Duplication Data

Transformation Comparison

Author! Level! Transformed Code! Comparison Technique!

[John94a]! Lexical! Substrings! String-Matching!

[Duca99a]! Lexical! Normalized Strings! String-Matching!

[Bake95a]! Syntactical! Parameterized Strings! String-Matching!

[Mayr96a] ! Syntactical! Metric Tuples! Discrete comparison!

[Kont97a]! Syntactical! Metric Tuples! Euclidean distance!

[Baxt98a]! Syntactical! AST! Tree-Matching!

32!

A Lightweight Approach (1)!

•  Assumption 	

 	

•  Code segments are just copied and changed at a few places	

•  Code Transformation Step	

•  remove white space, comments	

•  remove lines that contain uninteresting code elements 	

(e.g., just ‘else’ or ‘}’)	

…

//assign same fastid as container

fastid = NULL;

const char* fidptr = get_fastid();

if(fidptr != NULL) {

 int l = strlen(fidptr);

 fastid = newchar[l + 1];

…

fastid=NULL;

constchar*fidptr=get_fastid();

if(fidptr!=NULL)

intl=strlen(fidptr)

fastid = newchar[l+1]

33!

A Lightweight Approach (2)!

❍  Code Comparison Step!
●  Line based comparison (Assumption: Layout did not change during

copying)!
●  Compare each line with each other line. !
●  Reduce search space by hashing:!

•  Preprocessing: Compute the hash value for each line!
•  Actual Comparison: Compare all lines in the same hash bucket!

❍  Evaluation of the Approach!
●  Advantages: Simple, language independent !
●  Disadvantages: Difficult interpretation!

34!

Enhanced Simple Detection Approach!

❍  Code Comparison Step!
●  Same as before + !

•  Collect consecutive matching lines into match sequences!
•  Allow holes in the match sequence!

❍  Evaluation of the Approach!
●  Advantages!

•  Identifies more real duplication, language independent!
●  Disadvantages!

•  Less simple!
•  Misses copies with (small) changes on every line!

35!

Visualization of Duplicated Code!

•  Visualization provides insights into the duplication situation	

•  A simple version can be implemented in three days	

•  Scalability issue	

	

	

•  Dotplots — Technique from DNA Analysis 	

•  Code is put on vertical as well as horizontal axis	

•  A match between two elements is a dot in the matrix	

Exact Copies Copies with Inserts/Deletes Repetitive

a b c d e f a b c d e f a b c d e fa b x y e f b c d e a b x y dc ea x b c x d e x f xg ha

Variations Code Elements

36!

Visualization of Copied Code Sequences!

All examples are made using Duploc from an industrial case study 	

(1 Mio LOC C++ System)

Detected Problem	

File A contains two copies of a
piece of code	

	

File B contains another copy of
this code	

	

Possible Solution	

Extract Method	

File A

File A

File B

File B

37!

Visualization of Repetitive Structures!

Detected Problem	

4 Object factory clones: a switch
statement over a type variable is
used to call individual construction
code	

	

Possible Solution	

Strategy Method	

38!

Visualization of Cloned Classes!

Class A!

Class B!

Class B!Class A!

Detected Problem	

Class A is an edited copy 	

of class B. Editing & Insertion	

	

Possible Solution	

Subclassing …

39!

Visualization of Clone Families!

20 Classes implementing lists for different data types	

Detail	

Overview	

40!

Lightweight is sometimes not enough!

Cobol

Perl

Phyton

C/C++

Smalltalk

Java

...

Pascal

It runs really everywhere (Smalltalk inside)

Duploc is scalable, integrates detection and visualization	

41!

More Clone Detection!

Tool! Author! Supported!
Languages!

Domain! Approach!
Category!

Background!

CCFinder! T.Kamiya! C, C++, COBOL, Java,
Emacs Lisp, Plain Text !

Clone
Detection!

Transformation
followed by token
matching!

Academic!

CloneDr! I. Baxter! C, C++, COBOL, Java,
Progress!

Clone
Detection!

Abstract Syntax
Tree comparison!

Commercial!

Covet! J. Bailey!
J. Mayrand!

Java! Clone
Detection!

Comparison of
Function Metrics!

Academic!

JPlag! G. Malpohl! C, C++, Java, Scheme! Plagiarism
Detection!

Transformation
followed by token
matching!

Academic!

Moss! A. Aiken! Ada, C, C++, Java,
Lisp, ML, Pascal,
Scheme!

Plagiarism
Detection!

Unpublished! Academic!

[Burd02]

42!

Résumé !

❍  Duplicated code is a real problem!
●  makes a system progressively harder to change!

❍  Detecting duplicated code is a hard problem!
●  some simple technique can help!
●  tool support is needed!

❍  Visualization of code duplication is useful!
●  some basic support are easy to build !
●  one student build a simple visualization tool in three days!

❍  Curing duplicated code is an active research area!

