Using Metrics in SQA

Using Software Metrics to analyze the
implementation and design of
object-oriented systems Mo Fractce

T D

Object-Oriented

Q) Springer

s.e.a.l.
‘ﬂwa

The Metrics Pyramid

O A metrics-based means to both describe and characterize
the structure of an object-oriented system by quantifying its
complexity, coupling and usage of inheritance

O Measuring these 3 aspects at system level provides a
comprehensive characterization of an entire system

Inheritance

_l (X w ot S AN
ity 1 WM@W@‘?&W‘RW e SR N

IV

&5 Size & Complexity § Coupling
’ ; - ¥ {l A G P S e I LN &

The Metrics Pyramid in Detalil

O The left side: System Size & Complexity
e Direct metrics: NOP, NOC, NOM, LOC, CYCLO
e Derived metrics: NOC/P, NOM/C, LOC/M, CYCLO/LOC

The Overview Pyramid in Detail

O The left side: System Size & Complexity
e Direct metrics: NOP, NOC, NOM, LOC, CYCLO
e Derived metrics: NOC/P, NOM/C, LOC/M, CYCLO/LOC

O The right side: System Coupling
e Direct metrics: CALLS, FANOUT
e Derived metrics: CALLS/M, FANOUT/CALL

4,18
35175]15128 CALLS
5579|8590

The Overview Pyramid in Detail

O The left side: System Size & Complexity
e Direct metrics: NOP, NOC, NOM, LOC, CYCLO
e Derived metrics: NOC/P, NOM/C, LOC/M, CYCLO/LOC

O The right side: System Coupling
e Direct metrics: CALLS, FANOUT
e Derived metrics: CALLS/M, FANOUT/CALL

O The top: System Inheritance
e Direct metrics: ANDC, AHH

4,18
35175]15128 CALLS
5579|8590

Metrics listed

O NOP - Number Of Packages

o NOC - Number Of Classes

O NOM - Number Of Methods

O LOC - Lines of Code

o CYCLO - Cyclomatic complexity

O CALLS - number of distinct function- and method-calls
O ANDC - Average Number of Derived Classes

O AHH - Average Hierarchy Height

Interpreting the Overview Pyramid

O The pyramid characterizes a system in terms of
size&complexity, coupling, and inheritance; based on 8
computed proportions:

e They are independent of the size of the system!

e This enables an objective assessment...
* Wait a second...objective? Where is the reference point?

418
35175)15128 CALLS
557918590

Putting things in a real-world context

O We measured 80+ systems written in Java and C++

O Based on the obtained measurements we can now statistically assess the
design of a system

Java | C++

Metric Low Average |High Low |Average [High
CYCLO/Line of code 0.16 0.20 0.24 0.20 0.25 0.30
LOC/Operation 7 10 13 5 10 16
NOM/Class 1 7 10 1 9 15
NOC /Package 6 17 26 3 19 35
CALLS/Operation 2.01 2.62 3.2 1.17 1.58 2
FANOUT /Call 0.56 0.62 0.68 0.20 0.34 0.48
ANDC 0.25 0.41 0.57 0.19 0.28 0.37
AHH 0.09 0.21 0.32 0.05 0.13 0.21

557918590

Overview Pyramid Example: ArgoUML

|Metric | Value Remarks
No. of Lines of Code 223,068 |including comments
No. of Source Files 1,209|*.java files
No. of Packages 99 |-
No. of Classes 1,393 [including 140 inner classes
No. of Methods 9,561 |including accessor methods
No. of Attributes 3,358 all variables including static and local variables
Java | C++
Metric Low Average [High Low |Average [High
CYCLO/Line of code 0.16 0.20 0.24 0.20 0.25 0.30
LOC/Operation 7 10 13 5 10 16
NOM/Class 4 7 10 4 9 15
NOC /Package 6 17 26 3 19 35
CALLS/Operation 2.01 2.62 3.2 1.17 1.58 2
FANOUT /Call 0.56 0.62 0.68 0.20 0.34 0.48
ANDC 0.25 0.41 0.57 0.19 0.28 0.37
AHH 0.09 0.21 0.32 0.05 0.13 0.21

97487)30262

22405017714

Pattern: Study the Exceptional Entities

Problem
e How can you quickly gain insight into complex software?

Solution
e Measure software entities and study the anomalous ones

Steps
e Use simple metrics
e Visualize metrics to get an overview
e Browse the code to get insight into the anomalies

10

System Complexity View

00 DD“I]DDI:ID 0 -
U R PN
ot |I :
T74dn) B

. U L]
1 - I [0
o I0A(] B
System Complexity View Width Metric
Nodes = Classes Heaht I
Edges = Inheritance Relationships
Width = Number of Attributes Position
Height = Number of Methods i
Color = Number of Lines of Code Color

Metric

Detection strategy

O A detection strateqy is a metrics-based predicate to identify
candidate software artifacts that conform to (or violate) a
particular design rule

12

Filters and composition

O A data filter is a predicate used to focus attention on a
subset of interest of a larger data set
e Statistical filters
* |.e., top and bottom 25% are considered outliers
e Other relative thresholds
* |.e., other percentages to identify outliers (e.g., top 10%)

e Absolute thresholds
* |.e., fixed criteria, independent of the data set

O A useful detection strategy can often be expressed as a
composition of data filters

13

God Class

O A God Class centralizes intelligence in the system
e Impacts understandibility
e Increases system fragility

Class uses directly more than a
few attributes of other classes

(ATFD > FEW)

Functional complexity of the
class is very high

AND GodClass J

(WMC = VERY HIGH)

Class cohesion is low

(TCC < ONE THIRD J

ModelFacade (ArgoUML)

O 453 methods J .
O 114 attributes
O over 3500 LOC (LIl

E
o all methods and all T
attributes are static T

S T

(=

—
e

—

//

/
% /
N

15

The Class Blueprint - Principles

Initialization External Interface Internal Implementation Accessor Attribute
] | | e
I D -] |
SO
- B

[

A

* The class is divided into 5 layers
* Nodes
» Methods, Attributes, Classes
* Edges
* Invocation, Access, Inheritance

16

Invocation Sequence

A 4

* The method nodes are positioned according to

* Layer
* Invocation sequence

Tutorial F7

The Class Blueprint - Principles (ll)

[T Abstract Method . Constant Method
Method # lines . Overriding Method . Read Accessor
Delegating Method Write Accessor
<— #external accesses —>
T Extending Method . Attribute

internal accesses

|

Initialization External Interface Internal Implementation Accessor Attribute

%}%ﬁ }

»

» Invocation Sequence

|
/

Method Invocation Direct Attribute Access

P

17 Tutorial F7

Feature Envy

O Methods that are more interested in data of other classes

than their own [Fowler et al. 99]

a few attributes of other classes

[Method uses directly more than

(ATFD > FEW)

}

other classes than its own

[Method uses more attributes of

(LAA < ONE THIRD J

k

belong to very few other classes

{ The used "foreign" attributes

[FDP s FEW J

}

AND

Feature Envy]

18

ClassDiagramLayouter

layout
,—/

— A< /E weightAndPlaceClasses()
/ 4
/ : 7
|
b =i
A =
\ % ==
77
?/

ClassDiagramLayouter ClassDiagramNode

Data Class

O A Data Class provides data to other classes but little or
no functionality of its own

Interface of class reveals data
rather than offering services
(WOC < ONE THIRD)

—————————————— ———

\
: Class reveals many attributes and is
| not complex !

AND Data Class]

Data Class (2)

Class has many public
data

\(NOAP + NOAM > MANY)J

4 ~\
Complexity of class is not
very high

\(WMC < VERY HIGH),

More than a few public
data

\(NOAP + NOAM > FEW),

4 N\
Complexity of class is not

high

'_l

(wvme<heH)

. J

AND

AND

Class reveals many
attributes and is not
complex

21

Property

PropertyTable n—] H

¥

SettingsTabLayout

Z 7
X

E??

=
—
AN

N
~

~

ooag oo

S‘\

|

I
-

Property

L [Propery | | [ompazero] ||

.

N

PropertyTable$PropertyTableModel \\\

Shotgun Surgery

O A change in an operation implies many (small) changes
to a lot of different operations and classes

-

AND Shotgun Surgery]
\

Method is called by too many other
methods
(CM > Short Memory Cap)

Incoming calls are from
many classes
(CC > MANY)

)

K

23

Code Duplication

s.e.a.l.
‘ﬂwa

Code Duplication

a.k.a. Software Cloning, Copy&Paste
Programming

O Code Duplication
e Whatisit?
e Why is it harmful?

Detecting Code Duplication
Approaches

A Lightweight Approach
Visualization (dotplots)

o O O O O

Duploc

25

Code is Copied

Small Example from the Mozilla Distribution (Milestone 9)
Extract from /dom/src/base/nsLocation.cpp

[432] NS_IMETHODIMP [467] NS_IMETHODIMP [497] NS_IMETHODIMP

[433] LocationIlmpl::GetPathname(nsString[468] LocationImpl::SetPathname(const nsString [498] LocationImpl::GetPort(nsString& aPort)
[434] { [469] { [499]

[435] nsAutoString href; [470] nsAutoString href; [500] nsAutoString href;

[436] nsIURI *url; [471] nsIURI *url; [501] nsIURI *url;

[437] nsresult result = NS_OK; [472] nsresult result = NS_OK; [502] nsresult result = NS_OK;

[438] [473] [503]

[439] result = GetHref(href); [474] result = GetHref(href); [504] result = GetHref(href);

[440] if (NS_OK == result) { [475] if (NS_OK ==result) { [505] if (NS_OK ==result) {

[441] #ifndef NECKO [476] #ifndef NECKO [506] #ifndef NECKO

[442] result = NS_NewURL(&url, href); [477] result = NS_NewURL(&url, href); [507] result = NS_NewURL(&url, href);
[443] #else [478] #else [508] #else

[444] result = NS_NewURI(&url, href); [479] result = NS_NewURI(&url, href); [509] result = NS_NewURI(&url, href);
[445] #endif // NECKO [480] #endif // NECKO [510] #endif // NECKO

[446] if (NS_OK == result) { [481] if (NS_OK == result) { [511] if (NS_OK == result) {

[447] #ifdef NECKO [482] char *buf = aPathname.ToNewCString();[512] aPort.SetLength(0);

[448] char* file; [483] #ifdef NECKO [513] #ifdef NECKO

[449] result = url->GetPath(&file); [484] url->SetPath(buf); [514] PRInt32 port;

[450] #else [485] #else [515] (void)url->GetPort(&port);
[451] const char* file; [486] url->SetFile(buf); [516] #else

[452] result = url->GetFile(&file); [487] #endif [517] PRUint32 port;

[453] #endif [488] SetURL(url); [518] (void)url->GetHostPort(&port);
[454] if (result == NS_OK) { [489] delete[] buf; [519] #endif

[455] aPathname.SetString(file); [490] NS_RELEASE(url); [520] if (-1 !=port) {

[456] #ifdef NECKO [491] } [521] aPort.Append(port, 10);

[457] nsCRT::free(file); [492] 1} [522]

[458] #endif [493] [523] NS_RELEASE(url);

[459] } [494] return result; [524] }

[460] NS_IF_RELEASE(url); [495] } [525] }

[461] : [496] [526]

[462] 1} [527] return result;

[463] [528] }

[464] return result; [529]

[465] }

[466]

26

How Much Code is Duplicated?

Usual estimates: 8 to 12% in normal industrial code
1510 25 % is already a lot!

Duplication with
Case Study LOC without
comments
comments

gcc 460’000 8.7% 5.6%
Database Server 245°000 36.4% 23.3%
Payroll 40’000 59.3% 25.4%
Message Board 6’500 29.4% 17.4%

What Is Considered To Be Copied Code?

Duplicated Code = Source code segments that are found in
different places of a system.
in different files
in the same file but in different functions
in the same function

The segments must contain some /ogic or structure that can be abstracted, i.e.,

e . is not considered
computeIt(a,b,c,d); computeIt(w,X,y,z); duplicated code.

could be abstracted
getIt(hash(tail(z))); getIt(hash(tail(a))); to a new function

Copied artifacts range from expressions, to functions, to data structures, and to entire
subsystems.

28

Copied Code Problems

O

O

O

O

General negative effect:
e Code bloat

Negative effects on Software Maintenance
e Copied Defects
e Changes take double, triple, quadruple, ... Work
e Dead code
e Add to the cognitive load of future maintainers
Copying as additional source of defects
e Errors in the systematic renaming produce unintended aliasing

Metaphorically speaking:
e Software Aging, “hardening of the arteries”,

e “Software Entropy” increases even small design changes become very difficult to
effect

29

Code Duplication Detection

Nontrivial problem:
* No a priori knowledge about which code has been copied

* How to find all clone pairs among all possible pairs of segments?

iy

I
A I

b A

nf

fININ
“'H

)

[|I||||||“\D [
i I

Ui m[

I

N
/
T

NI
I

| [

I
Uil [

I
|
[l
|

D D
®
S
=
3}
M
=
<
QO
=)
)
D

= e == = —
= = =FE = EE = — =
=5 m=mE\ls2a e AElE=E =
= ||| exical Equivalence = =S\ = _:_5'
= == — = == = =1
ntactical Equivalence= — _l——l — |=||=

U
i

I
0l
I

30

General Schema of Detection Process

Transformation

Source Code

Comparison

Transformed Code

Duplication Data

Author Level Transformed Code Comparison Technique
[John94a] Lexical Substrings String-Matching
[Duca99a] Lexical Normalized Strings String-Matching
[Bake95a] Syntactical Parameterized Strings String-Matching
[Mayr96a] Syntactical Metric Tuples Discrete comparison
[Kont97a] Syntactical Metric Tuples Euclidean distance
[Baxt98a] Syntactical AST Tree-Matching

31

A Lightweight Approach (1)

* Assumption

* Code segments are just copied and changed at a few places

* Code Transformation Step

* remove white space, comments
* remove lines that contain uninteresting code elements

(e.g., just‘else’ or‘})

//assign same fastid as container
fastid = NULL,;
const char* fidptr = get_fastid();
if(idptr != NULL) {

int 1 = strlen(fidptr);

fastid =newchar[1+ 1 J;

—)

fastid=NULL,;
constchar*fidptr=get_fastid();
if(fidptr!=NULL)
intl=strlen(fidptr)

fastid = newchar[l+1]

32

A Lightweight Approach (2)

o Code Comparison Step

e Line based comparison (Assumption: Layout did not change during
copying)
e Compare each line with each other line.

e Reduce search space by hashing:
* Preprocessing: Compute the hash value for each line
* Actual Comparison: Compare all lines in the same hash bucket

O Evaluation of the Approach
e Advantages: Simple, language independent
e Disadvantages: Difficult interpretation

33

Enhanced Simple Detection Approach

o Code Comparison Step
Same as before +
» Collect consecutive matching lines into match sequences
* Allow holes in the match sequence

O Evaluation of the Approach
Advantages
* |dentifies more real duplication, language independent

Disadvantages
* Less simple
* Misses copies with (small) changes on every line

34

Visualization of Duplicated Code

* Visualization provides insights into the duplication situation
* A simple version can be implemented in three days
* Scalability issue

* Dotplots — Technique from DNA Analysis
* Code is put on vertical as well as horizontal axis
* A match between two elements is a dot in the matrix

abcdefabcdef abcdefabxyef abcdeabxycde axbc xdexfgxh

'0 ° '0 ° .Q ° .0 '0 ° '0 ° .Q ° e O ©o
.O .O .0 o .0 .Qi ® .0 ® O
® .0 ¢ ® ‘. * .. .Q ..
o o o ® o ® 6 o ©°
‘0 ‘. .0 o ‘0 .0
o ® o o ® o ® 6 o o
@ [@ [@ [[
Exact Copies Copies with Inserts/Deletes Repetitive

Variations Code Elements

35

Visualization of Copied Code Sequences

Detected Problem
File A contains two copies of a
piece of code

File B contains another copy of
this code

Possible Solution
Extract Method

All examples are made using Duploc from an industrial case study

(I Mio LOC C++ System)

File A

i

File A

File B

File B

.............
.............
.............
.............
.............

xxxxx

36

Visualization of Repetitive Structures

Detected Problem
4 Object factory clones: a switch
statement over a type variable is

used to call individual construction
code

Possible Solution
Strategy Method

37

Visualization of Cloned Classes

Detected Problem
Class A is an edited copy

of class B. Editing & Insertion

Possible Solution
Subclassing ...

Class A

Class A

Class B

38

Visualization of Clone Families

Overview

[F

¥ ¥ ¥
eE b bee + e e
+
e+
* 24 s
+ rees
4 eee
* theeee
‘e

o

"

Detail

20 Classes implementing lists for different data types

39

Lightweight is sometimes not enough

Duploc is scalable, integrates detection and visualization

Duploc
File Configuration Display Windows
TERED Lines: 71 i
wer 1 DataBanker java Dot size _u |3—
nvestor java
Cobol
Smalltalk
displ
4 user selection
f & overview
Perl o fﬁ;::

=1
< &g
gz £
) g
£ 3
&
z
E

E || e - 191@191 o‘zl E

It runs really everywhere (Smalltalk inside)

40

More Clone Detection

Tool Author Supported Domain Approach Background
Languages Category
CCFinder | T.Kamiya C, C++, COBOL, Java, | Clone Transformation Academic
Emacs Lisp, Plain Text | Detection followed by token
matching
CloneDr |. Baxter C, C++, COBOL, Java, | Clone Abstract Syntax Commercial
Progress Detection Tree comparison
Covet J. Bailey Java Clone Comparison of Academic
Detection Function Metrics
J. Mayrand
JPlag G. Malpohl | C, C++, Java, Scheme Plagiarism Transformation Academic
Detection followed by token
matching
Moss A. Aiken Ada, C, C++, Java, Plagiarism Unpublished Academic
Lisp, ML, Pascal, Detection
Scheme

[Burd02]

41

V 4

Résumé

O Duplicated code is a real problem
e makes a system progressively harder to change

O Detecting duplicated code is a hard problem
e some simple technique can help
e tool support is needed

O Visualization of code duplication is useful

@ some basic support are easy to build
e one student build a simple visualization tool in three days

o Curing duplicated code is an active research area

42

