
Using Metrics in SQA!

Using Software Metrics to analyze the 
implementation and design of  
object-oriented systems!
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The Metrics Pyramid!

❍  A metrics-based means to both describe and characterize 
the structure of an object-oriented system by quantifying its 
complexity, coupling and usage of inheritance!

❍  Measuring these 3 aspects at system level provides a 
comprehensive characterization of an entire system!

Inheritance 

Size & Complexity Coupling 
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The Metrics Pyramid in Detail!

❍  The left side: System Size & Complexity!
●  Direct metrics: NOP, NOC, NOM, LOC, CYCLO!
●  Derived metrics: NOC/P, NOM/C, LOC/M, CYCLO/LOC!
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The Overview Pyramid in Detail!

❍  The left side: System Size & Complexity!
●  Direct metrics: NOP, NOC, NOM, LOC, CYCLO!
●  Derived metrics: NOC/P, NOM/C, LOC/M, CYCLO/LOC!

❍  The right side: System Coupling!
●  Direct metrics: CALLS, FANOUT!
●  Derived metrics: CALLS/M, FANOUT/CALL!
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The Overview Pyramid in Detail!

❍  The left side: System Size & Complexity!
●  Direct metrics: NOP, NOC, NOM, LOC, CYCLO!
●  Derived metrics: NOC/P, NOM/C, LOC/M, CYCLO/LOC!

❍  The right side: System Coupling!
●  Direct metrics: CALLS, FANOUT!
●  Derived metrics: CALLS/M, FANOUT/CALL!

❍  The top: System Inheritance!
●  Direct metrics: ANDC, AHH!



Metrics listed!

❍  NOP - Number Of Packages!
❍  NOC - Number Of Classes!

❍  NOM - Number Of Methods!
❍  LOC – Lines of Code!
❍  CYCLO - Cyclomatic complexity!
❍  CALLS - number of distinct function- and method-calls!
❍  ANDC - Average Number of Derived Classes 

❍  AHH - Average Hierarchy Height!
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Interpreting the Overview Pyramid!

❍  The pyramid characterizes a system in terms of 
size&complexity, coupling, and inheritance; based on 8 
computed proportions:!
●  They are independent of the size of the system!!
●  This enables an objective assessment…!

•  Wait a second…objective? Where is the reference point?!
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Putting things in a real-world context!

❍  We measured 80+ systems written in Java and C++!
❍  Based on the obtained measurements we can now statistically assess the 

design of a system!

Average 

High 

Low 
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Overview Pyramid Example: ArgoUML!

Average 

High 

Low 



Pattern: Study the Exceptional Entities!

Problem!
●  How can you quickly gain insight into complex software?!

Solution!
●  Measure software entities and study the anomalous ones!

Steps!
●  Use simple metrics!
●  Visualize metrics to get an overview!
●  Browse the code to get insight into the anomalies!
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System Complexity View!

Nodes =  Classes 
Edges =  Inheritance Relationships 

Width =  Number of Attributes 
Height =  Number of Methods 
Color =  Number of Lines of Code 

System Complexity View 

Color 
Metric 

Position 
Metrics 

Width Metric 

Height  
Metric 
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Detection strategy!

❍  A detection strategy is a metrics-based predicate to identify 
candidate software artifacts that conform to (or violate) a 
particular design rule!
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Filters and composition!

❍  A data filter is a predicate used to focus attention on a 
subset of interest of a larger data set!
●  Statistical filters!

•  I.e., top and bottom 25% are considered outliers!
●  Other relative thresholds!

•  I.e., other percentages to identify outliers (e.g., top 10%)!
●  Absolute thresholds!

•  I.e., fixed criteria, independent of the data set!

❍  A useful detection strategy can often be expressed as a 
composition of data filters!
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God Class!

❍  A God Class centralizes intelligence in the system!
●  Impacts understandibility!
●  Increases system fragility!
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ModelFacade (ArgoUML)!

❍  453 methods!
❍  114 attributes!

❍  over 3500 LOC!
❍  all methods and all 

attributes are static!
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Tutorial F7   
  Software Evolution: Analysis and Visualization 

 
© 2006 Harald 

C. Gall & 
Michele Lanza 
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The Class Blueprint - Principles 

Invocation Sequence 

Initialization External Interface Internal Implementation Accessor Attribute 

•  The class is divided into 5 layers 
•  Nodes 

•  Methods, Attributes, Classes 
•  Edges 

•  Invocation, Access, Inheritance 

	


	


	



•  The method nodes are positioned according to 
•  Layer 
•  Invocation sequence 



Tutorial F7   
  Software Evolution: Analysis and Visualization 

 
© 2006 Harald 

C. Gall & 
Michele Lanza 
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The Class Blueprint - Principles (II) 

Attribute 

Read Accessor 

Delegating Method 

Constant Method Abstract Method 

Overriding Method 

Extending Method 

Write Accessor 

Method 

# invocations 

# lines 

Attribute 

# external accesses 

# internal accesses 

Direct Attribute Access Method Invocation 



Feature Envy!

❍  Methods that are more interested in data of other classes 
than their own [Fowler et al. 99]!
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ClassDiagramLayouter!
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Data Class!

❍  A Data Class provides data to other classes but little or 
no functionality of its own!
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Data Class (2)!
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Property!
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Shotgun Surgery!

❍  A change in an operation implies many (small) changes 
to a lot of different operations and classes!



Code Duplication!
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Code Duplication!

a.k.a. Software Cloning, Copy&Paste 
Programming!

!
❍  Code Duplication!

●  What is it?!
●  Why is it harmful?!

❍  Detecting Code Duplication!
❍  Approaches!
❍  A Lightweight Approach!
❍  Visualization (dotplots)!
❍  Duploc!
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Code is Copied!

Small Example from the Mozilla Distribution (Milestone 9)	


Extract from /dom/src/base/nsLocation.cpp 

[432]   NS_IMETHODIMP    
[433]   LocationImpl::GetPathname(nsString
[434]   {
[435]     nsAutoString href;
[436]     nsIURI *url;
[437]     nsresult result = NS_OK;
[438]     
[439]     result = GetHref(href);
[440]     if (NS_OK == result) {
[441]   #ifndef NECKO
[442]       result = NS_NewURL(&url, href);
[443]   #else
[444]       result = NS_NewURI(&url, href);
[445]   #endif // NECKO
[446]       if (NS_OK == result) {
[447]   #ifdef NECKO
[448]         char* file;
[449]         result = url->GetPath(&file);
[450]   #else
[451]         const char* file;
[452]         result = url->GetFile(&file);
[453]   #endif
[454]         if (result == NS_OK) {
[455]           aPathname.SetString(file);
[456]   #ifdef NECKO
[457]           nsCRT::free(file);
[458]   #endif
[459]         }
[460]         NS_IF_RELEASE(url);
[461]       }
[462]     }
[463]   
[464]     return result;
[465]   }
[466] 

[467]   NS_IMETHODIMP    
[468]   LocationImpl::SetPathname(const nsString
[469]   {
[470]     nsAutoString href;
[471]     nsIURI *url;
[472]     nsresult result = NS_OK;
[473]   
[474]     result = GetHref(href);
[475]     if (NS_OK == result) {
[476]   #ifndef NECKO
[477]       result = NS_NewURL(&url, href);
[478]   #else
[479]       result = NS_NewURI(&url, href);
[480]   #endif // NECKO
[481]       if (NS_OK == result) {
[482]         char *buf = aPathname.ToNewCString();
[483]   #ifdef NECKO
[484]         url->SetPath(buf);
[485]   #else
[486]         url->SetFile(buf);
[487]   #endif
[488]         SetURL(url);
[489]         delete[] buf;
[490]         NS_RELEASE(url);      
[491]       }
[492]     }
[493]   
[494]     return result;
[495]   }
[496] 

[497]   NS_IMETHODIMP    
[498]   LocationImpl::GetPort(nsString& aPort)
[499]   {
[500]     nsAutoString href;
[501]     nsIURI *url;
[502]     nsresult result = NS_OK;
[503]     
[504]     result = GetHref(href);
[505]     if (NS_OK == result) {
[506]   #ifndef NECKO
[507]       result = NS_NewURL(&url, href);
[508]   #else
[509]       result = NS_NewURI(&url, href);
[510]   #endif // NECKO
[511]       if (NS_OK == result) {
[512]         aPort.SetLength(0);
[513]   #ifdef NECKO
[514]         PRInt32 port;
[515]         (void)url->GetPort(&port);
[516]   #else
[517]         PRUint32 port;
[518]         (void)url->GetHostPort(&port);
[519]   #endif
[520]         if (-1 != port) {
[521]           aPort.Append(port, 10);
[522]         }
[523]         NS_RELEASE(url);
[524]       }
[525]     }
[526]   
[527]     return result;
[528]   }
[529]
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Case Study! LOC!
Duplication 

without 
comments!

with 
comments!

gcc! 460’000! 8.7%! 5.6%!

Database Server! 245’000! 36.4%! 23.3%!

Payroll! 40’000! 59.3%! 25.4%!

Message Board! 6’500! 29.4%! 17.4%!

How Much Code is Duplicated?!

Usual estimates: 8 to 12% in normal industrial code!
15 to 25 % is already a lot! !
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Duplicated Code = Source code segments that are found in 
different places of a system.!

•   in different files!
•   in the same file but in different functions!
•   in the same function ! !!

The segments must contain some logic or structure that can be abstracted, i.e., !
!
!
!
!
!
!
!
Copied artifacts range from expressions, to functions, to data structures, and to entire 

subsystems. !

What Is Considered To Be Copied Code?!

is not considered 
duplicated code.

could be abstracted 
to a new function

...

getIt(hash(tail(z)));

...

...

getIt(hash(tail(a)));

...

...

computeIt(a,b,c,d);

...

...

computeIt(w,x,y,z);

...
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Copied Code Problems!

❍  General negative effect:!
●  Code bloat!

❍  Negative effects on Software Maintenance!
●  Copied Defects !
●  Changes take double, triple, quadruple, ... Work!
●  Dead code!
●  Add to the cognitive load of future maintainers!

❍  Copying as additional source of defects !
●  Errors in the systematic renaming produce unintended aliasing!

❍  Metaphorically speaking:!
●  Software Aging, “hardening of the arteries”, !
●  “Software Entropy” increases even small design changes become very difficult to 

effect!
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Nontrivial problem: 	


•  No a priori knowledge about which code has been copied	


•  How to find all clone pairs among all possible pairs of segments? 

Lexical Equivalence

Semantic Equivalence

Syntactical Equivalence

Code Duplication Detection!
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General Schema of Detection Process!

Source Code Transformed Code Duplication Data

Transformation Comparison

Author! Level! Transformed Code! Comparison Technique!

[John94a]! Lexical! Substrings! String-Matching!

[Duca99a]! Lexical! Normalized Strings! String-Matching!

[Bake95a]! Syntactical! Parameterized Strings! String-Matching!

[Mayr96a] ! Syntactical! Metric Tuples! Discrete comparison!

[Kont97a]! Syntactical! Metric Tuples! Euclidean distance!

[Baxt98a]! Syntactical! AST! Tree-Matching!
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A Lightweight Approach (1)!

•  Assumption 	

 	


•  Code segments are just copied and changed at a few places	



•  Code Transformation Step	


•  remove white space, comments	


•  remove lines that contain uninteresting code  elements 	



(e.g.,  just ‘else’ or ‘}’)	



…

//assign same fastid as container

fastid = NULL;

const char* fidptr = get_fastid();

if(fidptr != NULL) {

  int l = strlen(fidptr);

  fastid = newchar[ l + 1 ];


…

fastid=NULL;

constchar*fidptr=get_fastid();

if(fidptr!=NULL)

intl=strlen(fidptr)

fastid = newchar[l+1]




33!

A Lightweight Approach (2)!

❍  Code Comparison Step!
●  Line based comparison (Assumption: Layout did not change during 

copying)!
●  Compare each line with each other line. !
●  Reduce search space by hashing:!

•   Preprocessing: Compute the hash value for each line!
•   Actual Comparison: Compare all lines in the same hash bucket!

❍  Evaluation of the Approach!
●  Advantages: Simple, language independent !
●  Disadvantages: Difficult interpretation!
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Enhanced Simple Detection Approach!

❍  Code Comparison Step!
●  Same as before + !

•   Collect consecutive matching lines into match sequences!
•  Allow holes in the match sequence!

❍  Evaluation of the Approach!
●  Advantages!

•  Identifies more real duplication, language independent!
●  Disadvantages!

•  Less simple!
•  Misses copies with (small) changes on every line!
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Visualization of Duplicated Code!

•  Visualization provides insights into the duplication situation	


•  A simple version can be implemented in three days	


•  Scalability issue	



	

	


•  Dotplots — Technique from DNA Analysis 	



•  Code is put on vertical as well as horizontal axis	


•  A match between two elements is a dot in the matrix	



Exact Copies Copies with Inserts/Deletes Repetitive

a b c d e f a b c d e f a b c d e fa b x y e f b c d e a b x y dc ea x b c x d e x f xg ha

Variations Code Elements
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Visualization of Copied Code Sequences!

All examples are made using Duploc from an industrial case study 	


(1 Mio LOC C++ System) 

Detected Problem	


File A contains two copies of a 
piece of code	


	


File B contains another copy of 
this code	



	


Possible Solution	


Extract Method	



File A

File A

File B

File B
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Visualization of Repetitive Structures!

Detected Problem	


4 Object factory clones: a switch 
statement over a type variable is 
used to call individual construction 
code	


	


Possible Solution	


Strategy Method	
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Visualization of Cloned Classes!

Class A!

Class B!

Class B!Class A!

Detected Problem	


Class A is an edited copy 	


of class B. Editing & Insertion	


	


Possible Solution	


Subclassing … 
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Visualization of Clone Families!

20 Classes implementing lists for different data types	



Detail	


Overview	
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Lightweight is sometimes not enough!

Cobol

Perl

Phyton

C/C++

Smalltalk

Java

...

Pascal

It  runs really everywhere (Smalltalk inside)  

Duploc is scalable, integrates detection and visualization	
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More Clone Detection!

Tool! Author! Supported!
Languages!

Domain! Approach!
Category!

Background!

CCFinder! T.Kamiya! C, C++, COBOL, Java, 
Emacs Lisp, Plain Text !

Clone 
Detection!

Transformation 
followed by token 
matching!

Academic!

CloneDr! I. Baxter! C, C++, COBOL, Java, 
Progress!

Clone 
Detection!

Abstract Syntax 
Tree comparison!

Commercial!

Covet! J. Bailey!
J. Mayrand!

Java! Clone 
Detection!

Comparison of 
Function Metrics!

Academic!

JPlag! G. Malpohl! C, C++, Java, Scheme! Plagiarism 
Detection!

Transformation 
followed by token 
matching!

Academic!

Moss! A. Aiken! Ada, C, C++, Java, 
Lisp, ML, Pascal, 
Scheme!

Plagiarism 
Detection!

Unpublished! Academic!

[Burd02] 
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Résumé  !

❍  Duplicated code is a real problem!
●  makes a system progressively harder to change!

❍  Detecting duplicated code is a hard problem!
●  some simple technique can help!
●  tool support is needed!

❍  Visualization of code duplication is useful!
●  some basic support are easy to build !
●  one student build a simple visualization tool in three days!

❍  Curing duplicated code is an active research area!


