
Multi-View Point Splatting

Thomas Ḧubner∗ Yanci Zhang† Renato Pajarola‡

Visualization and MultiMedia Lab
Department of Informatics

University of Zürich

a) 18 fps (10) b) 15 fps (6) c) 10 fps (2)

Figure 1: Different point data sets rendered with our multi-view splatting algorithm. Performance results compared to the standard multi-pass
approach are shown for5122 window and N=8 views. a) Balljoint 137k points. b) Female 303k points. c) Dragon 1,100k points.

Abstract

The fundamental drawback of current stereo and multi-view visual-
ization is the necessity to perform multi pass rendering (one pass for
each view) and subsequent image composition + masking for gen-
erating multiple stereo views. Thus the rendering time increases in
general linearly with the number of views.
In this paper we introduce a new method for multi-view splatting
based on deferred blending. Our method exploits the programma-
bility of modern graphic processing units (GPUs) for rendering
multiple stereo views in a single rendering pass. The views are
calculated directly on the GPU including sub-pixel wavelength se-
lective views. We describe our algorithm precisely and provide de-
tails about its implementation. Experimental results demonstrate
the performance advantage of our multi-view point splatting algo-
rithm compared to the standard multi-pass approach.

CR Categories: I.3.m [Computer Graphics]: Miscellaneous—
Multi-View Splatting Algorithm I.3.1 [Computer Graphics]: Hard-
ware Architecture—Three-Dimensional Displays I.3.3 [Computer
Graphics]: Picture/Image Generation—Display, Viewing Algo-
rithms

Keywords: point based rendering, auto-stereoscopic visualization,
multi-view rendering, hardware acceleration, GPU processing

∗e-mail: huebner@ifi.unizh.ch
†e-mail: zhang@ifi.unizh.ch
‡e-mail:pajarola@acm.org

1 Introduction

Multi-view auto-stereoscopic display systems [Dodgson 2005] pro-
vide greatly enhanced spatial understanding of 3D data through
perceptual cues for stereo- and motion-parallax. However, de-
spite that auto-stereoscopic displays are becoming a common tech-
nology, spatial visualization has received far less attention in the
field. In multi-view display systems, performance is generally a
significantly increased bottleneck, as compared to single-view dis-
plays multiple images have to be rendered simultaneously for ev-
ery frame. An extremely high computation and graphics power is
required to do so with conventional approaches. Without the ex-
ploitation of similarities, rendering two views (for stereo) can re-
quire already twice the rendering timet of a mono-view rendering
algorithm [He and Kaufman 1996; Ebert et al. 1996; Koo et al.
1999; Portoni et al. 2000; Miniel et al. 2004; Wan et al. 2004]. Cor-
respondingly, anN -view display requires a rendering time of up to
N · t. Even exploiting modern graphics hardware (GPU) accelera-
tion, this overhead prohibits effective multi-view rendering of large
geometric data sets.

Point-based rendering (PBR) has shown to be a powerful alterna-
tive to polygon based graphics [Levoy and Whitted 1985; Gross
2001; Pfister and Gross 2004]. Research in point-based graph-
ics has mostly concentrated on efficient rendering algorithms, see
also surveys [Sainz et al. 2004a; Kobbelt and Botsch 2004; Sainz
and Pajarola 2004], modeling with points (e.g. [Alexa et al. 2001;
Zwicker et al. 2002; Pauly et al. 2003; Adams and Dutre 2004;
Botsch and Kobbelt 2005]) as well as capturing and processing of
point data (e.g. [Liu et al. 2002; Rusinkiewicz et al. 2002; Mitra and

Nguyen 2003; Sainz et al. 2004b; Weyrich et al. 2004; Sadlo et al.
2005; Pajarola 2005]). Efficient rendering of points in the context
of immersive, auto-stereoscopic multi-view display systems has not
been addressed in the past.

In this paper we address the problem of efficiently generatingN
views simultaneously in the context of interactive PBR, and we
present a solution that exploits the programmability of modern
GPUs to calculate the multiple views directly on a per-fragment
basis. Since our new approach renders the geometry only once per
frame, our solution renders the point samples inK · t time inde-
pendent of the display resolution and the numberN of views. The
constantK indicates a commonly used sub-pixel resolution, i.e.
different views for RGB withK = 3.

After related work in Section 2, in Section 3 we first provide a the-
oretical framework for multi-view auto-stereoscopic displays to-
gether with the standard approach used for generating spatial im-
ages for such displays. This is followed by an in-depth description
of our new point splatting implementation in Section 4. Section 5
reports experimental performance results for different standard data
sets and implementations. Our paper is concluded in Section 6.

2 Related Work

The point splatting technique as described in [Pfister et al. 2000;
Zwicker et al. 2001] is the most common approach to point-based
rendering and allows for efficient hardware (GPU) accelerated
high-quality rendering. A wide range of GPU-accelerated point
splatting algorithms such as [Ren et al. 2002; Botsch and Kobbelt
2003; Zwicker et al. 2004; Botsch et al. 2004; Pajarola et al. 2004;
Botsch et al. 2005] have been proposed in the past and are surveyed
in [Sainz et al. 2004a; Kobbelt and Botsch 2004; Sainz and Pajarola
2004]. Our multi-view point-splatting algorithm is based on the
same concepts of rasterizing and blending projected disks in image
space. In addition to conventional point splatting methods, how-
ever, our algorithm generates fragments for multiple views within
one and the same rendering pass.

Specific rendering algorithms for multi-view auto-stereoscopic dis-
plays have not been proposed so far, however, methods used for
two-view stereo rendering [Hodges and McAllister 1993; Hill and
Jacobs 2006] can be multiplied and applied toN -view auto-stereo
rendering. In stereo rendering environments, generally the dis-
played 3D data set is rendered twice, once for each left/right eye
view. Consequently, as done to date theN views need to be ren-
dered individually, and combined and masked for a multi-view
auto-stereoscopic display [Portoni et al. 2000].

SGI Japan recently introduced theinteractive stereo library(ISL)
[SGI]. ISL is a thin layer on top of OpenGL supporting a wide
variety of auto-stereoscopic displays. This library provides auto-
matic rendering ofN views, together with compositing and mask-
ing for final display. Except for shielding the user from implemen-
tation details of the specific display, the underlying methods are un-
changed. HenceN views are rendered atN ·t cost individually into
N full-resolution frame buffers, despite the fact that most pixels are
masked out later in the compositing and masking step. In ISL ad-
ditional memory is required to storeN frame buffers together with
N compositing masks, but as it is not yet shader based, an acceler-
ation for multi-view compositing through fragment shaders can be
expected.

3 Multi-View Rendering

3.1 Auto-Stereoscopic Displays

Multi-view auto-stereoscopic displays provide aspatial image
without requiring the user to use any special device [Dodgson
2005]. A spatial image is a 3D image that appears to have ”real”
depth, that is, cues are provided to the human visual system to de-
rive the depth of the displayed 3D data. To avoid confusion, we
will use the terminology spatial if we refer to these images. A spa-
tial image can be created by presenting different views of the 3D
data independently to each eye and thereby simulating stereopsis.
Spatial images can dramatically improve the spatial understanding
and interpretation of complex three-dimensional structures. A gen-
eral introduction to auto-stereoscopic 3D display types and tech-
nologies is given in [Dodgson 2005]. Here we focus on passive
auto-stereoscopic 3D displays which generate multiple views for
multiple possible observers and view positions, in contrast to active
systems which track the user and generate exactly two views for
each tracked observer position.

Multi-view auto-stereoscopic displays generally incorporate stereo
as well as horizontal motion parallax. As shown in Figure 2, the
infinite number of views a observer can see in the real world is
partitioned into a finite number of available viewing zones. An
auto-stereoscopic display emits the different views directionally-
dependent into the viewing space in front of the display system.
Each view is constant, or at least dominant, for a given zone of the
viewing space. The observer perceives a spatial image as long as
both eyes are in the viewing space, and observe the image from dif-
ferent view zones respectively. Changes in the observer’s position
result in different spatial depth perceptions. A feature of multi-view
auto-stereoscopic displays is that multiple observers can be accom-
modated simultaneously, each having a different spatial perception
according to his point of view in the viewing space.

Scene

Infinite number of views

Observer

Scene

View zones

Observer

Figure 2: Multi-view auto-stereoscopic display principle: Dis-
cretization of an infinite view space into a finite number of view
zones.

Modern auto-stereoscopic displays are mostly based on conven-
tional flat-panel LCDs. With the help of optical filter elements,
barriers and lenses, RGB-pixels are restricted and emitted into dif-
ferent zones in the viewing space [Dodgson 2002; Schmidt and
Grasnick 2002; Dodgson 2005]. Two major optical filter elements
are used today: lenticular sheets and wavelength-selective filter ar-
rays. A lenticular sheet consists of long cylindrical lenses. They
focus on the underlaying image plane and are aligned so that each
viewing zone sees different sets of pixels from the underlaying im-
age plane. Lenticular sheets provide a different view for each pixel
for a given eye position [Hodges and McAllister 1993; Dodgson
2005]. Wavelength-selective filter arrays are based on the same
principle, except that the lenses are diagonally oriented and each
of the three color channels of a RGB-pixel corresponds to a differ-
ent view zone. Therefore, wavelength-selective filter arrays provide

a sub-pixel resolution of view zones [Schmidt and Grasnick 2002;
Lee and Ra 2005].

As illustrated in Figure 3, the lens arrays distort the optics of the
LCD panel such that each element – a pixel or sub-pixel RGB com-
ponent in lenticular sheets or wavelength-selective filters respec-
tively – corresponds to a certain view zone. Generally, the lens
optics is calibrated such that at a given eye distance the different
zones line up adjacently without mutual interference. The separa-
tion between views at this distance is matched to an average eye
separation. Hence the observer can move his head sideways at this
distance, within limits of the covered viewing space, and experi-
ences stereo and motion parallax as each eye sees a different image
view accordingly.

Screen

View zones

Figure 3: Viewing zones converge at a given observer distance.

For a given horizontal pixel resolutionm of the LCD panel, mul-
tiple views can only be generated at the expense of reduced spatial
screen resolution usingspatial multiplexing. In principle, for gener-
atingN different views, the horizontal display resolution is split by
the numberN of views. Pixels are interleaved horizontally in such
a way that pixelx basically corresponds to view zonex mod N .
However, using wavelength-selective filters, the reduction in hori-
zontal resolution is limited to

XRes =
m

N
· 3, (1)

because each pixel’s RGB components correspond to three different
view zones. Equation 1 demonstrates the advantage of wavelength-
selective filter arrays. The use of sub-pixel view directions causes
less degradation of the horizontal resolution for multiple views.

In this paper we explain our multi-view point splatting algo-
rithm in the context of auto-stereoscopic displays featuring such
wavelength-selective filter arrays. Though the presented method
can easily be adopted for different filter arrays. In fact, without sub-
pixel view resolution, the performance of our algorithms increases
by up to a factor of three compared to conventional multi-view ren-
dering.

3.2 View Geometry

In Figure 4 the viewing configuration of a single-view setup is il-
lustrated with a standard view frustum capped by the near and far
clipping planes. The corresponding 2D image resulting from per-
spective projection is not considered a spatial image in the sense
as introduced earlier. Nevertheless, this ’flat’ image can contain
important basic depth cues such as perspective distortion, visibility
occlusion and distance attenuation. In contrast, a multi-view con-
figuration as shown in Figure 5 provides additional depth cues such

as stereo and motion parallax. The visible object space is defined
by the intersection of the mono-view frusta of all individual views.
This multi-view frustum is defined by the numberN of views and
the usedintraocular distance. The focal plane where all views con-
verge defines the perceived spatial distance of the multi-view dis-
play.

View frustum

FoV

View direction

Far clipping
plane

Near clipping
plane

Viewpoint

near

far

Figure 4: Single-view frustum with near and far clipping planes.

As shown in Figure 5, each perspective view is generated from a
translational offset virtual camera placement which corresponds to
different off-axis asymmetric sheared view frusta with parallel view
directions. A spatial image captures the perspective projection of
all N views, hence contains multiple perspective images. As also
indicated in Figure 3, the focal plane of an auto-stereoscopic dis-
play device is well defined by the distance where the viewing zones
converge. To match a multi-view rendering configuration to the
physical display for optimal parallax effects, and for simplicity of
the discussion, we set thefocal distanceof the viewing configura-
tion in Figure 5 to the convergence distance indicated by the display
device.

Far clipping
plane

Near clipping
plane

Viewpoints

focal
distance

Focal
planeView frustum

Intraocular distance

View directions

Figure 5: Visible multi-view frustum as intersection of individual
off-axis asymmetric sheared view frusta.

A spatial image provides stereo parallax depth cues in that for a
given pixel on the screen it presents a color originating from dif-
ferent spatial positions to the left and right eye-view respectively,
see also Figure 6. The difference of the image presented to the left
and right eye depends on the distance of the visible object from the
focal plane and is resolved per pixel. If the spatial image contains

information from more than two views then motion parallax depth
cues are supported in addition to stereo parallax. Motion parallax
refers to the observation that small movements of the eye position
reveal small changes in visibility occlusion (see also [McAllister
2002]).

Let us call the plane in which the virtual cameras of theN different
views are placed the camera plane since an observer can experience
the best stereo effect from views on this plane. Given the camera
plane at a focal distancefd from the focal plane, the pointqi of the
splat visible in a viewvi depends on the normaln and the center
positionp of the splat as illustrated in Figure 6. The contributing
pixel values of each view originate hence from different positions
on the splat. Furthermore, for multiple viewpoints the projections
of the same pixel may not necessarily all be located on the (same)
surface element.

Center
View

fd

Focal
plane

vdi View i

Pixel

Camera
plane

Splat

qi

qj
q

n

p

View j

Figure 6: Multi-view splat parallax geometry.

Our multi-view point splatting algorithm detailed in Section 4 is
built on the observations outlined in this section and in Figure 6.
On a per-pixel basis, an intersection with a point splat is generated
for each view. For wavelength-selective filter arrays, 3 such inter-
sections are taken into account per fragment, one for each RGB
component. The view assignment to pixels, or RGB channels, is
further explained below.

3.3 Image Generation Method

As we assume a passive auto-stereoscopic 3D display system, the
number of observers and positions are not known. Hence each
viewing zone may equally likely be visible to the observer and we
need to generate allN views simultaneously for each frame. For
each view we need to render a separate perspective image of the 3D
data set. Eventually, the spatial image is generated by combining
the perspective images fromN different camera angles.

The conventional approach of a multi-view rendering system, e.g.
such as [SGI], [Portoni et al. 2000], [Schmidt and Grasnick 2002]
and [Miniel et al. 2004] is to render the 3D data inN passes using
N different perspective (off-axis asymmetric sheared) view frus-
tum configurations according to the multi-view setup as indicated
in Figure 5. The resultingN images must then be combined into
a spatial image conforming to the auto-stereoscopic display de-
vice. For lenticular sheets and wavelength-selective filter arrays,
this combination is achieved by masking the (sub-)pixels of each
view according to the multi-view mask as shown in Figure 7. This
mask is initialized once for the usedN views during the render

setup phase. After rendering theN views toN target imagesIi,
the final spatial image is combined by

I(x, y) = IMask(x,y)(x, y). (2)

For lenticular sheet displays the function Mask(x, y) is given by
x mod N . For wavelength-selective filter arrays the masking func-
tion is only slightly more complex as it incorporates masking of
individual RGB color components per pixel and includes a diago-
nal shift of the views as illustrated in Figure 7.

7
7

7
7
7

0

0
R G B

21 3
0 21 3
0 21 3
0 21 3
0 21 3
0 21 3
0 21 3
0 21 3
0 21 3
0 21 3
0 21 3
0 21 3

0
1

R G B R G B R G

1
2

2

3
3

1 3 4 5 6 7
2 3 4 5 6 7 0
2 3 4 5 6 7 0
3 4 5 6 7
4 5 6 7 0
4 5 6 7 0

4 5 6 7 0
5 6 0
5 6 0

1 2
1 2

1 2 3
1 2 3 4
1 2 3 4

6 0 1 2 3 4
0 1 2 3 4
0 1 2 3 4

5
5

6
6

5

1

4
4
4
4
4
4
4
4
4
4
4
4

0
1
1
2

2

3
3

1
2 3
2 3
3 4
4 5
4 5

4 5 6
5 6 7
5 6 7
6 7 0
7 0 1
7 0 1

B R G

Lenticular Sheet Wavelength-selective Filter Array

Interleaved Multi-View Selection Masks
R G B R G B R G B R G B R G B R G B R G B

5
5
5
5
5
5
5
5
5
5
5
5

7
7
7
7
7
7
7
7
7
7
7
7

6
6
6
6
6
6
6
6
6
6
6
6

Figure 7: Multi-view masks for lenticular sheets and wavelength-
selective filter arrays (N = 8).

It is clear that the conventional multi-view rendering solution re-
quires rendering ofN perspective images followed byN -fold im-
age masking and compositing into the final spatial image. This
leads basically to aN times cost increase compared to single-view
rendering. If pixel-fill rate is a limiting factor either during render-
ing (e.g. complex light shaders) or during multi-view image com-
positing and masking (e.g. compositing 81900 × 1600 images
requires transferring 70MB/frame), the intermediate target images
can optionally be rendered at sub-resolution. During compositing
and masking the full-resolution can be restored by up-sampling at
the expense of blurring artifacts. However, geometry processing
cost overhead remains atN − 1 times, which will be the major
limiting factor for large data sets.

In the following section we present our multi-view point splatting
algorithm which requires rendering the point samples only once,
and no subsequent image masking, in contrast toN times as for
conventional multi-view display. Since the geometry is rendered
only once, the full resolution can be supported and sub-resolution
rendering is not necessary.

4 Multi-View Point Splatting

4.1 Point Splatting

A set of overlapping point samplesS covering a surface is rendered
by smoothly interpolating the projected splats in image space, that
is for each fragment the contribution of multiple overlapping splats
are weighted and blended together. This is achieved by rasteriza-
tion of a (perspectively projected) disk and usingα-blending. As
splats from occluded surface layers must not contribute to this in-
terpolation, a fuzzy visibility occlusion test, commonly referred to
asε-z-buffering, is applied.

The prevalent implementation solution is to apply a2+1-pass ren-
dering algorithm. First, all splats are rasterized at anε offset to ini-
tialize the depth buffer. Then, using this depth buffer read-only, the
splats are rendered again and per-fragmentα-blending is applied

for the weighted interpolation. Third, in an image normalization
post-process the final fragment color is generated. Further detailed
information on this basic point splatting technique is beyond the
scope of this paper and can be found in [Sainz et al. 2004a; Kobbelt
and Botsch 2004; Sainz and Pajarola 2004] and its surveyed ar-
ticles. Some more details of our multi-view implementation are
given in Section 4.4.

4.2 Splat Intersection

A perspective accurate projection of an object-space disk to image-
space can be achieved via projective mapping [Zwicker et al. 2004],
a parametrized distance function or by per-pixel ray-disk intersec-
tion tests. We opt for the latter two which can be implemented
more efficiently for multi-view rendering using vertex and fragment
shaders. We first outline the parametrized perspective splat inter-
section, which conceptually has an elegant solution supported by
hardware accelerated interpolation of texture coordinates, followed
by a simple but efficient per-pixel ray-intersection approach.

Parametrized Splat Intersection Given a point samplep and
its normaln as in Figure 8, the splat plane can be parametrized by

P (r, s) = p + r · u + s · v (3)

givenu = ‖(0,−nz, ny)‖ andv = n × u. The splat disk with
radiusR is then defined by points with

√
r2 + s2 ≤ R.

With all coordinates specified in the camera coordinate system,
given the viewpointvp and a pixel in image-space with coordi-
natesx = (x, y, fd) its corresponding projectionbx on the splat
plane (see also Figure 8) is implicitly determined byn·(bx−p) = 0
andbx = vp + l · (x− vp), hence

bx = vp +
n · (p− vp)

n · (x− vp)
· (x− vp), (4)

and its plane parametrization with respect to Equation 3 is the map-
pingM : bx → (r, s)

r = (bx− p) · u
s = (bx− p) · v. (5)

As indicated in Figure 8, the point splat disk can now efficiently
be projected by drawing a quadQ = (qA,qB ,qC ,qD) in image-
space, projecting and parametrizing its corners according to Equa-
tions 4 and 5, and for each rasterized pixel testing its parame-
tersr, s, which can be interpolated across the quad. The distance
w =

√
r2 + s2 is used to test against the splat radiusR, and if

w ≤ R used to calculate a blending weight factor that indicates the
contribution of that pixel for splat interpolation.

The parametersM(bx) are a linear combination of the parameters
M(bq[A,B,C,D]) on the point splat plane. Thus we can implement
the direct image-plane to plane-parameters mappingx → (r, s)
by linear interpolation from the quad corners using depth-corrected
texture coordinates. This is achieved by drawing the image-space
quadQ, specifying(r, s, 0, bq.z) as the texture coordinates for each
cornerq, with bq.z being the distance of the corner’s projection on
the splat plane along thez-axis from the viewpoint.

Viewpoint

n
u

p

q̂A

q̂B

q̂C

q̂D
x̂

x
qA

qB
qC

qD

Image Plane

r

s

Splat Plane

z

x

v

vp

Figure 8: Parametrization of disk on splat plane.

Per-Pixel Ray-Splat Intersection The second method we
considered for calculating the accurate projection of a point splat to
image-space is a per-pixel ray-disk intersection test. That is the ray
x− vp from a viewpointvp through an image-plane pixelx is in-
tersected directly with the splat plane according to Equation 4. The
splat plane intersectionbx then defines the distance asw = |bx−p|.

In contrast to the parametrized intersection, where the splat plane
intersection is computed for the quad corners and then their param-
etersr, s are interpolated and tested across the quad, the ray-plane
intersection computes the image to plane projection and its distance
to the splat center individually for each pixel.

4.3 Multi-View Splat Projection

In the context of a general multi-view configuration, i.e. the ge-
ometry is not coinciding with the focal plane (see also Figure 6),
a point splat projects differently for the different viewpoints as il-
lustrated in Figure 9. Therefore, the splat projections, with respect
to Figure 8, for multiple views must be covered by an extended
quadrilateral in image-space. As the views are only horizontally
separated (Section 3), a wide quad covering all possible projections
is drawn as shown in Figure 9.

The enlarged multi-view splat covering quad can be computed as
follows, given the maximal view eccentricityvd, see also Figure 10.
We consider the worst-case orientation of a splatp with its normal
n oriented towards the viewer orthogonal to the focal and camera
planes. We can see that the relationvd : off = d : (d − fd)
holds, and thus we have the offsetoff = vd(d− fd) · d−1 that has
to be added horizontally to the projected splat radiusr. Vertically,
the quad only has to cover the height of the perspectively projected
point splat. Therefore, we have the quad corners given by:

q.x = (p.x± (r + vd · (p.z · fd−1 − 1))) · fd/p.z

q.y = (p.y ± r) · fd/p.z

q.z = fd (6)

To benefit from the hardware supported rasterization and interpo-
lation of the splat plane parametrization as outlined previously in

Viewpoints

n

p

qA

qB qC

qD

Im
ag

e
Pl

an
e

Figure 9: Multi-view dependent splat projection.

Center View

d

fd

Focal
plane

vd

off

Camera
plane

n

p r

q

Figure 10: Multi-view offset.

Section 4.2, we can generate multiple parameter sets for the image-
plane aligned quadQ = (qA,qB ,qC ,qD), one for each of theN
views. Hence for each quad cornerq in image-space, we compute
the image-plane to plane-parameters mappingq → (ri, si) and its
z-distancebqi.z for each viewi.

Labeling the corners byL = A . . . D and the views byi =
0 . . . N−1, we basically draw an image-plane aligned quadQ with
N texture coordinate sets(rL

i , sL
i , 0, bqi

L.z) for each corner. The
corner attributes(rL

i , sL
i) and depthbqi

L.z are computed according
to Equations 4 and 5 during the vertex processing stage, while the
per fragment inside-disk test,r2 + s2 ≤ R2, is performed during
fragment processing. For each pixel, or even sub-pixel color com-
ponent separation, the appropriate view and texture coordinates are
selected for the corresponding view to be displayed. More detail is
given in the following section.

In the case of per-pixel ray-splat intersection tests as described in
Section 4.2, we limit the vertex processing stage to the drawing of
an image-plane aligned quadQ. Ray-splat intersection tests and
the inside-disk test are solely performed per-pixel or sub-pixel in
the fragment stage.

4.4 Implementation

Our multi-view point rendering implementation follows the con-
ceptual principle of rendering point splats using anε-z-buffer visi-
bility test combined withα-blending based interpolation of overlap-
ping splats in image-space as basically introduced in [Pfister et al.
2000; Zwicker et al. 2001]. The basic GPU acceleration follows the
principles of [Ren et al. 2002; Botsch and Kobbelt 2003; Pajarola
et al. 2004] which render some geometry (quad, triangle, sprite)
that covers the point splat disk in image-space. Rasterization of a
projected disk is achieved through transparentα-masking of frag-
ments outside the disk, and weightedα-blending (accumulation)
of fragments inside the disk. The accumulated weighted color is
normalized eventually, dividing by the sum of weights, to form the
final image.

4.4.1 1+1 Pass PBR Algorithm

To avoid the commonly used 2+1 pass rendering process, which
first initializes anε-offset depth-buffer and is followed by theα-
blending of the front-most visible point splats, we employ a re-
cently introduced approach which processes the geometry in one
rendering pass [Zhang and Pajarola 2006b; Zhang and Pajarola
2006a]. The basic idea is adeferred blendingconcept that delays
the ε-z-buffer visibility test as well as smooth point interpolation
to an image post-processing pass. As illustrated in Figure 11, if a
given point setS is sufficiently partitioned into multiple non self-
overlapping groupsSk, with S =

S
k Sk, overlapping splats in

image-space can be avoided. For each groupSk a partial imageIk

can be formed with fragment colorscrgb(f)k =
P

si∈Sk
wi(fi)·ci

and fragment weightscα(f)k =
P

si∈Sk
wi(fi) whereci andwi

are color and weight values respectively contributed to a fragment
from a point splati. The final complete rendering result can then
be formed by an image compositing step over all partial imagesIk.
In order to create the non self-overlapping point groups, aminimal
graph coloringalgorithm is employed in the preprocessing stage.
For more details on this algorithm the reader is referred to [Zhang
and Pajarola 2006b; Zhang and Pajarola 2006a].

4.4.2 Multi-View Splatting Algorithm

The multi-view splatting algorithm follows the main steps of 1+1
pass PBR algorithm: dividing the points into multiple groups in a
preprocessing stage, and then 1) rendering groupsSk to different
textures to form partial imagesIk in the geometry pass, followed
by 2) eventually combining partial images together to achieve the
final result in the image compositing pass.

The outline of our multi-view PBR algorithm is listed in Figures 12
and 13 and corresponds to a wavelength-selective sub-pixel resolu-
tion multi-view display system as described in Section 3.

Comparing to the original 1+1 pass PBR algorithm [Zhang and Pa-
jarola 2006b; Zhang and Pajarola 2006a], our multi-view splatting
algorithm is more complex due to the fact we have to handle mul-
tiple views simultaneously instead of just one single view. The fea-
tures of our multi-view PBR algorithm are:

Drawing Splats: In the case of single-view splatting, there are
many options to draw splats, such as point sprites, triangles, quads.
But in the context of multi-view splatting, the splat projections of
different views cover slightly different areas in the image plane.
As introduced in section 4.3, an enlarged quad covering splat pro-
jections of all views is rendered. One solution to render such an
enlarged quad is to use a point sprite which is sized big enough to

point set S S1 S2 S3 S4group group group group

Figure 11: Separation of the input point setS into non-overlapping sub-setsSk.

Geometry Pass:
1 turn onz-test andz-update;
2 foreachgroupSk

3 clearz-depth and color of textureIk;
4 render groupSk to textureIk;
5 foreachsi ∈ Sk do
6 calculate the corresponding corners of the quad according to Equation 6;
7 if useParametrized Splat Intersection
8 calculate set of parametric coordinates for theN views;
9 endif
10 transform and project the corners of the quad;
11 foreachgenerated fragmentf ∈ Ik do
12 determine sub-pixel views corresponding to current fragment;
13 if useParametrized Splat Intersection
14 test ray-splat intersection according to parametric coordinates;
15 else
16 perform full ray-splat intersection calculations;
17 endif
18 calculate colors, kernel weights and depth values;
19 output averagedz-depthcd(f)k;
20 pack colors and kernel weights, and output them to textureIk;
21 endforeach
22 endforeach
23endforeach

Figure 12: Geometry pass of our multi-view PBR algorithm.

cover the enlarged quad. But according to Equation 6, the width of
the enlarged splat is much bigger than its height, while point sprites
are limited to square shapes which do not provide a sufficient tight
bounding quad around the multi-view projected splat.

Therefore, we choose to actually draw an image-aligned quad. Note
that Equation 6 is view-dependent, which means we can not calcu-
late the quad vertices in a preprocessing stage. Now we choose to
calculate the quad corners in a vertex shader according to Equa-
tion 6. In order to do that, we input the center of a splat 4 times to
the vertex shader, including its position, radius, normal and color.
Moreover, an index indicating the corner to be processed is attached
to the point. In the vertex shader, we use this index and Equation 6
to calculate the corners of the extended quad, as indicated on the
line 6 of Figure 12.

Employing Mask Map: According to the multi-view masks il-
lustrated in Figure 7, there is one viewv = Mask(x, y) or three
viewsvR,G,B = MaskR,G,B(x, y) to consider for each fragment
(x, y) for lenticular sheets or wavelength-adaptive filter arrays re-
spectively. We consider the more complex sub-pixel wavelength-
selective filter mask situation here. Hence before deciding on the
contribution of a viewvi to a fragment we need to determine the
needed views for the fragment position(x, y). The wavelength-
selective filter mask in Figure 7 has a reoccurring pattern of size
8 × 12. Depending on the fragment(x, y) we can calculate the

Image Compositing Pass:
1 foreachf ∈ I do
2 crgb(f) = 0;
3 wrgb(f) = 0;
4 d = mink(cd(f)k);
5 for k = 0 to K − 1 do
6 if cd(f)k ≤ d + ε then
7 unpack color values tocrgb(f)k;
8 unpack weight values towrgb(f)k;
9 crgb(f) = crgb(f) + crgb(f)k;
10 wrgb(f) = wrgb(f) + wrgb(f)k;
11 endif
12 endfor

13 crgb(f) =
crgb(f)
wrgb(f) ;

14endforeach

Figure 13: Compositing pass of our multi-view PBR algorithm.

xoffset andyoffset inside this mask by Equations 7 and 8, which
refer to the mask index of the first sub-pixel component (R). Frag-
ment coordinates(x, y) in window space are available in the frag-
ment shader throughWPOS.

xoffset = (3 · x) % 8 (7)

yoffset = (screenHeight − y) % 12 (8)

The first viewvR of a fragment is computed by Equation 9 which
considers the diagonal shifts of the wavelength-selective filter mask
from Figure 7. The others arevG = (vR + 1) % 8 andvB =
(vR + 2) % 8.

vR = (b
1 + yoffset + b yoffset

3
c

2
c+ xoffset) % 8 (9)

Complex Output: Comparing to single-view rendering algo-
rithms, we have to keep the information from three different views
simultaneously in a single fragment. For each view, we need to
save:

• Color information (only one channel is required depending on
the mask map in Figure 7);

• Weight value from the splatting kernel;

• Depth value which will be used in compositing pass;

For depth values, actually an averaged depth value for three views
is employed in our implementation because theε-z operation in
composting pass render a high precision depth value unnecessary.
But even with the averaged depth value used, we still need to save
three different color and weight values for a single fragment. There
are two methods to enable such complex image output during the
geometry processing pass. The first one is to use a 32-bit floating

point texture to store the output. The high precision texture allows
us to use packing operations to pack four unsigned bytes or two
half floating values into a single 32-bit floating value and then to
unpack it in the image compositing pass. Note that packing and
unpacking operations are up to date only supported in hardware by
NVidia in combination with there own shading language Cg, and
have to be implemented if other hardware or shading languages are
employed. The second solution is to use multiple render targets
which enable us to output the color and weight values to different
textures. The drawback here is that even more texture lookup opera-
tions are required in the image compositing pass which may reduce
the rendering performance. In our implementation, we adopt the
first solution. Our strategy is:

• R channel: The averaged depth value.

• G channel: Packing color values of three different views as
unsigned bytes to one 32-bit floating value.

• B channel: Packing weight values of the first two views as
half floating values to one 32-bit floating value.

• W channel: Weight value of the third view.

Vertex Shader vs. Fragment ShaderIn our algorithm, we pro-
posed two methods to fulfill the multi-view splatting, parametrized
splat intersection and per-pixel ray-disk intersection. The basic dif-
ference between the two methods is the place where they do the
ray-splat intersection.

For parametrized splat intersection, we calculate the parameteriza-
tions for all N views in the vertex shader and pass theN sets of
parametric coordinates to the fragment shader, There we only have
to do a simple testr2 + s2 ≤ R2 to decide whether the current
fragment is inside the splat or not for the corresponding view.

For per-pixel ray-disk intersection, we mainly enlarge the quad to
generate sufficient fragments in the vertex shader. No other calcu-
lation is done here so that we achieve a much simpler vertex shader
than the first method at the cost of doing the full ray-splat inter-
section calculation for up to three viewsvR,G,B in the fragment
shader.

5 Results

We have implemented our multi-view splatting methods in OpenGL
using NVidia’s Cg shading language. The presented results were
generated on a 2.8Ghz CPU with NVidia GeForce 7800GTX GPU
supported by 256 MB. The targeted multi-view auto-stereoscopic
display uses a wavelength-selective filter array providing 8 views
and has a resolution of 1900x1200.

In order to test our algorithm, we implemented the following four
rendering algorithms forN = 8 views and compared their results:

• Standard multi-pass implementation (8 MV) which renders
eight views in eight different passes. In each rendering pass,
we use the render-to-texture technique to render one view to a
texture and then composite the eight views to the final spatial
image according to the wavelength-selective filter array;

• Single-pass vertex-based implementation (GPU VS) which
calculates the parametric coordinates for all eight views in the
vertex shader and only needs a simple test in the fragment
shader to achieve the ray-splat intersection;

• Single-pass fragment-based implementation (GPU FS) which
does the full calculation of ray-splat intersection in fragment
shader for three views;

• Single-pass single-view implementation (SV) which renders
only one view with the single geometry pass PBR algorithm.

Chart 1 shows the frame rates for generating 8-view spatial images
using different window resolutions from 256 up to 1024. As ex-
pected the multi-pass implementation suffers significantly from 8
separate rendering passes. Depending on the window resolution
the performance decreases by a factor up to≈ 8, representing an
immense performance decrease. OurGPU FSimplementation im-
proves over the multi-pass rendering by an average factor of 3 hav-
ing at least1

3
of the single-view performance. This corresponds

to the theoretical performance expected for rendering three views
instead of one per-fragment. In most cases ourGPU FS imple-
mentation even surpasses this result, performing with≥ 1

2
of the

single-view performance. Independent of the window resolution
our fragment based multi-view implementation is always at least
twice as fast as the standard multi-pass approach.

0

10

20

30

40

50

60

256! 512! 1024!

SV 8 MV GPU VS GPU FS

Chart 1: Performance comparison (fps) of single-view and multi-
view PBR at different window resolutions (N=8 views, female
dataset).

Pre-computing 8 views in the vertex stage and selecting the appro-
priate result in the fragment stage is an elegant conceptual solution,
however, our currentGPU VSimplementation shows, that it can not
keep up with the fragment based solutionGPU FS. There are two
possible reasons for this result:

• Optimized fragment processing: Graphics hardware manufac-
turers optimize graphics cards with focus on fragment pro-
cessing. For example, the used GeForce 7800GTX has only
8 vertex shaders but provides 24 fragment shaders. Meaning
that at least three times more fragments as vertices can be pro-
cessed at a time.

• Handling of condition processing and arrays: We have to use
extensive branching in the fragment stage because of the lack
of variable array indices. Those indices need to be currently
resolved at compile time and conditions require several com-
putation cycles, thus adding to the reduced performance.

The performance comparison for different data sets is shown in
Chart 2. Our multi-view implementations perform better with in-
creasing data set sizes (see also Chart 3). Single-view PBR shows
a strong dependance on the data set size while the multi-view per-
formance reduces much less. It is important to note, that the perfor-
mance of our multi-view implementations also depends on the user
defined focal plane. The farther away an object is placed from the
focal plane the more fragments will be generated by the multi-view
covering quad. As one can see in Chart 2 for the balljoint model,
the performance difference of ourGPU FScompared to the single-
view rendering is so large mainly because the model was placed

0

10

20

30

40

50

60

70

Balljoint Female Dragon

SV 8 MV GPU VS GPU FS

Chart 2: Performance comparison (fps) of single-view and multi-
view PBR on different data sets (N=8 views,5122 window,
Balljoint 137k points, Female 303k points, Dragon 1,100k points).

very close to the camera plane and far away from the focal plane in
this test. This results in big disparity values, generating more frag-
ments after the vertex stage and decreasing the overall performance.
Nevertheless, the number of generated fragments for objects placed
far away from the focal- and camera plane is limited by the max-
imum view eccentricityvd and the splat projection according to
Equation 6.

As can be seen in Chart 3, our multi-view rendering gets better rel-
atively to single-view rendering with increasing data set sizes. This
is because with an increasing size of the data set, the point splats
get smaller, and hence our multi-view methods perform increas-
ingly better due to less overhead of fragment generation. In other
terms, with high-resolution point data the overhead for multi-view
rasterization of the enlarged quad disappears. OurGPU FSmulti-
view splatting algorithm achieves almost 70% of the performance
of single-view rendering as shown in Chart 3, notably generating 8
different views simultaneously.

0

10

20

30

40

50

60

70

Balljoint Female Dragon

8 MV GPU VS GPU FS

Chart 3: Performance comparison of multi-view PBR in percent-
age of single-view PBR for different data sets (N=8 views,5122

window, Balljoint 137k points, Female 303k points, Dragon 1,100k
points).

Figure 14 finally shows an unaltered raster image of a spatial im-
age rendered with ourGPU FSmulti-view splatting algorithm. The
blurry appearance results from the wavelength-selective filter struc-
ture which causes the diagonal periodical shifts in pixels and RGB
channels in accordance with Section 3.3.

Figure 14: Spatial image, revealing the structure of the wavelength-
selective filter array

6 Conclusion

In this paper we present a novel multi-view splatting algorithm
based on deferred blending. We exploit the programability of mod-
ern GPUs to calculate multiple views directly on the GPU, in a sin-
gle geometry rendering-pass. Two different implementation meth-
ods are proposed, one vertex-based and one which is fragment
based. Both methods are compared with the performance of a stan-
dard multi-view and single-view visualization. The experimental
results show, that both methods have a significant performance ad-
vantage compared to the standard multi-view multi-pass rendering.
In particular, our fragment based multi-view implementation can
renderN -views with more than1

3
of the single-view performance

compared to approximately1
N

for the standard multi-view solu-
tion. This is true for employing wavelength-selective filter arrays
which use three views per fragment, and in fact approaches single-
view performance for larger point data sets. For single-stereo we
expect that our implementation reaches nearly the speed of single-
view rendering. Future GPUs will reduce the gap between single-
and multi-view visualization rendering even further by providing
additional or more advanced fragment and vertex shaders. Further-
more, our vertex-based multi-view rendering method will dramati-
cally benefit from these advanced shaders.

Acknowledgements

We would like to thank Newsight technology for their technical sup-
port for the 3D display device as well as the Stanford 3D Scanning
Repository and Cyberware for providing the 3D geometry test data
sets. We would also like to thank the Swiss National Science Foun-
dation which partly supported this work by grant 200021-111746/1.

References

ADAMS, B., AND DUTRE, P. 2004. Boolean operations on surfel-bounded
solids using programmable graphics hardware. InProceedings Sympo-
sium on Point-Based Graphics, Eurographics, 19–24.

ALEXA , M., BEHR, J., COHEN-OR, D., FLEISHMAN , S., LEVIN , D.,
AND SILVA , C. T. 2001. Point set surfaces. InProceedings IEEE
Visualization, Computer Society Press, 21–28.

BOTSCH, M., AND KOBBELT, L. 2003. High-quality point-based render-
ing on modern GPUs. InProceedings Pacific Graphics 2003, Computer
Society Press, IEEE, 335–343.

BOTSCH, M., AND KOBBELT, L. 2005. Real-time shape editing using
radial basis functions.Computer Graphics Forum 24, 3, 611–621. Euro-
graphics 2005 Proceedings.

BOTSCH, M., SPERNAT, M., AND KOBBELT, L. 2004. Phong splatting. In
Proceedings Symposium on Point-Based Graphics, Eurographics, 25–32.

BOTSCH, M., HORNUNG, A., ZWICKER, M., AND KOBBELT, L. 2005.
High-quality surface splatting on today’s GPUs. InProceedings Sympo-
sium on Point-Based Graphics, Eurographics Association, –.

DODGSON, N. A. 2002. Analysis of the viewing zone of multi-view au-
tosterescopic displays. InProceedings of SPIE, vol. 4660, The Interna-
tional Society for Optical Engineering, 254–265.

DODGSON, N. A. 2005. Autostereoscopic 3D displays.IEEE Computer
38, 8 (August), 31–36.

EBERT, D. S., SHAW, C. D., ZWA , A., AND STARR, C. 1996. Two-handed
interactive stereoscopic visualization. InProceedings IEEE Visualiza-
tion, Computer Society Press, 205–210, 486.

GROSS, M. H., 2001. Are points the better graphics primitives? Computer
Graphics Forum 20(3). Plenary Talk Eurographics 2001.

HE, T., AND KAUFMAN , A. 1996. Fast stereo volume rendering. In
Proceedings IEEE Visualization, 49–56.

HILL , L., AND JACOBS, A. 2006. 3-D liquid crystal displays and their
applications. InProceedings IEEE, 575–590.

HODGES, L., AND MCALLISTER, D. F. 1993.Stereo Computer Graphics
and other True 3D Technologies. Princeton University Press.

KOBBELT, L., AND BOTSCH, M. 2004. A survey of point-based techniques
in computer graphics.Computers & Graphics 28, 6, 801–814.

KOO, Y.-M., LEE, C.-H.,AND SHIN , Y.-G. 1999. Object-order template-
based approach for stereoscopic volume rendering.Journal of Visualiza-
tion and Computer Animation 10, 3 (July-September), 133–142.

LEE, Y.-G., AND RA , J. B. 2005. Reduction of the distortion due to
non-ideal lens alignment. InProceedings of SPIE, vol. 5664, The Inter-
national Society for Optical Engineering, 506–516.

LEVOY, M., AND WHITTED, T. 1985. The use of points as display primi-
tives. Tech. Rep. TR 85-022, Department of Computer Science, Univer-
sity of North Carolina at Chapel Hill.

L IU , G. H., WONG, Y. S., ZHANG, Y. F., AND LOH, H. T. 2002. Adaptive
fairing of digitized point data with discrete curvature.Computer Aided
Design 32, 4, 309–320.

MCALLISTER, D. 2002.Ecyclopedia of Imaging Science and Technology.
John Wiley & Sons.

M INIEL , S., BRUNO, P., VATTA , F.,AND INCHINGOLO, P. 2004. 3D func-
tional and anatomical data visualization on auto-stereoscopic display. In
Proceedings EuroPACS-MIR, 375–378.

M ITRA , N. J., AND NGUYEN, A. 2003. Estimating surface normals in
noisy point cloud data. InProceedings Symposium on Computational
Geometry, ACM, 322–328.

PAJAROLA, R., SAINZ , M., AND GUIDOTTI , P. 2004. Confetti: Object-
space point blending and splatting.IEEE Transactions on Visualization
and Computer Graphics 10, 5 (September-October), 598–608.

PAJAROLA, R. 2005. Stream-processing points. InProceedings IEEE
Visualization, Computer Society Press, 239–246.

PAULY, M., KEISER, R., KOBBELT, L., AND GROSS, M. 2003. Shape
modeling with point-sampled geometry.ACM Transactions on Graphics
22, 3, 641–650.

PFISTER, H., AND GROSS, M. 2004. Point-based computer graphics.IEEE
Computer Graphics and Applications 24, 4 (July-August), 22–23.

PFISTER, H., ZWICKER, M., VAN BAAR , J.,AND GROSS, M. 2000. Sur-
fels: Surface elements as rendering primitives. InProceedings ACM
SIGGRAPH, ACM SIGGRAPH, 335–342.

PORTONI, L., PATAK , A., NOIRARD, P., GROSSETIE, J.-C., AND VAN

BERKEL, C. 2000. Real-time auto-stereoscopic visualization of 3D
medical images. InMedical Imaging 2000: Image Display and Visual-
ization, S. K. Mun, Ed., vol. 3976 ofProceedings SPIE, SPIE, 37–44.

REN, L., PFISTER, H., AND ZWICKER, M. 2002. Object space EWA
surface splatting: A hardware accelerated approach to high quality point
rendering. InProceedings EUROGRAPHICS, 461–470. also in Com-
puter Graphics Forum 21(3).

RUSINKIEWICZ, S., HALL -HOLT, O., AND LEVOY, M. 2002. Real-time
3D model acquisition.ACM Transactions on Graphics 21, 3, 438–446.

SADLO , F., WEYRICH, T., PEIKERT, R., AND GROSS, M. H. 2005. A
practical structured light acquisition system for point-based geometry
and texture. InProceedings Symposium on Point-Based Graphics, Euro-
graphics Association, 89–98.

SAINZ , M., AND PAJAROLA, R. 2004. Point-based rendering techniques.
Computers & Graphics 28, 6, 869–879.

SAINZ , M., PAJAROLA, R., AND LARIO, R. 2004. Points reloaded: Point-
based rendering revisited. InProceedings Symposium on Point-Based
Graphics, Eurographics Association, 121–128.

SAINZ , M., PAJAROLA, R., SUSIN, A., AND MERCADE, A. 2004. A
simple approach for point-based object capturing and rendering.IEEE
Computer Graphics & Applications 24, 4 (July-August), 24–33.

SCHMIDT, A., AND GRASNICK, A. 2002. Multiviewpoint autostereoscopic
dispays from 4D-Vision GmbH. InProceedings of SPIE, vol. 4660, The
International Society for Optical Engineering, 212–221.

SGI. Interactive Stereo Library (ISL).
http://www.sgi.co.jp/solutions/visualization/isl/isl.pdf.

WAN , M., ZHANG, N., QU, H., AND KAUFMAN , A. E. 2004. Interactive
stereoscopic rendering of volumetric environments.IEEE Transaction
on Visualization and Computer Graphics 10, 1 (January-February), 15–
28.

WEYRICH, T., PAULY, M., KEISER, R., HEINZLE, S., SCANDELLA , S.,
AND GROSS, M. 2004. Post-processing of scanned 3D surface data. In
Proceedings Symposium on Point-Based Graphics, Eurographics, 85–94.

ZHANG, Y., AND PAJAROLA, R. 2006. GPU-accelerated transparent point-
based rendering. InACM SIGGRAPH Sketches & Applications Cata-
logue.

ZHANG, Y., AND PAJAROLA, R. 2006. Single-pass point rendering and
transparent shading. InProceedings Symposium on Point-Based Graph-
ics, Eurographics Association.

ZWICKER, M., PFISTER, H., VAN BAAR , J.,AND GROSS, M. 2001. Sur-
face splatting. InProceedings ACM SIGGRAPH, ACM SIGGRAPH,
371–378.

ZWICKER, M., PAULY, M., KNOLL , O., AND GROSS, M. 2002. Pointshop
3D: An interactive system for point-based surface editing. InProceed-
ings ACM SIGGRAPH, ACM Press, 322–329.

ZWICKER, M., RÄSÄNEN, J., BOTSCH, M., DACHSBACHER, C., AND

PAULY, M. 2004. Perspective accurate splatting. InProceedings of
Graphics Interface, 247–254.

