More About Objects and Methods

Harald Gall, Prof. Dr.

Institut fur Informatik
Universitat Zurich

http://seal.ifi.uzh.ch/info1

“L0) University of Zurich S. €. aA IA
\‘/Dprt nt of Informatics y

Objectives

learn more techniques for programming with
classes and objects

earn about static methods and static variables
earn to define constructor methods
earn about packages and import statements

|\ University of Zurich
X3/ Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall 2

Outline

Programming with methods

Static methods and static variables
Overloading

Constructors

Packages

SN . . .
,/ %) University of Zurich
\& 2/ Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall

Programming with Methods -
Methods Calling Methods

A method body may contain an invocation of
another method.

Methods invoked from method main typically involve
a calling object.

Invocation of a method in the same class typically
does not involve a calling object.

(’\ University of Zurich
\&'5%7 Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall 4

Methods Calling Methods

import java.util.*;

public class Oracle

{
private String oldAnswer = "The answer 1is in your heart.";
private String newAnswer;

private String question;
seekAdvice();

public void dialog() System.out.println("You asked the question:");

{ . System.out.printin(question);
SLring ans; System.out.printin("Now, here is my answer:");
Scanner keyboard = new Scanner(System.in); System.out.printin(oldAnswer);
do update();
{ }
answerOne(); ; : :
System.out.printin("Do you wish to ask another question?"); PRISARS: YHhd: SeeRAGVICaL)
ans = keyboard.next(); { i
. il Caiiis. SqUATSTHGRATASEL yEE") § System.out.println("Hmm, I need some help on that.");
System.out.printin("Please give me one Tine of advice.");
System.out.printin("The oracle will now rest."); Scanner keyboard = new Scanner(System.in);
} newAnswer = keyboard.nextLine();
i Rl A) System.out.println("Thank you. That helped a lot.");
{ }
System.out.println("I am the oracle."); private void update()
System.out.printin("I will answer any one-Tline question."); {
System.out.printin("What is your question?"); oldAnswer = newAnswer;
Scanner keyboard = new Scanner(System.in); }
question = keyboard.nextLine(); }
Display 5.1

Methods Calling Other Methods

University of Zurich
Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall 5

Methods Calling Methods

Method main invokes method dialog in the class
Oracle using object delphi

Within the same class, the name of the calling object
IS omitted.
Method dialog invokes method answerOne In
the same class.

Method answerOne invokes method
seekAdvice and method update in the same

class.

(’\ University of Zurich
&1/ Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall

Methods Calling Methods, cont.

Omission of the calling object and the dot
applies only when the calling object can be
expressed with the this parameter.

\ University of Zurich
/ Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall

The null Constant

When the compiler requires an object reference to be
Initialized, set it to null

String line = null;

null is not an object, but a constant that indicates that
an object variable references no object

== and != (rather than method equals) are used to
determine if an object variable has the value null

An object reference initialized to null cannot be used
to invoke methods in the object’s class

An attempt results in a null pointer exception!

,/ _\ University of Zurich

\&'2-/ Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall 8

Static Methods and Static
Variables: Outline

Static Methods
Static Variables
The Math Class

Integer, Double, and Other Wrapper
Classes

(4 niversity of Zurich s.e.a.l.
‘soﬂware evolution & architecture lab

\ _ -/ Department of Informatics

Static Methods and Static
Variables

Static methods and static variables belong to a
class and do not require any object.

(740 University of Zurich
\ 1./ Department of Informatics

© 2005 W. Savitch, Pearson Prentice Hall

10

Static Methods

Some methods have no meaningful connection
to an object.

For example,
finding the maximum of two integers
computing a square root
converting a letter from lowercase to uppercase
generating a random number

Such methods can be defined as static.

,/ \ University of Zurich

X3/ Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall 1

Static Methods, cont.

A static method is still defined as a member of a
class

But, the method is invoked using the class name
rather than an object name

Nothing can refer to a calling object; no instance
variables can be accessed.

Syntax
return Type Variable Name =
Class Name.Static Method Name (Parameters):;

|f\ University of Zurich
&2/ Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall 12

Class Circle with static methods

/7': %
Class with static methods to perform calculations on circles.
:':/
public class CircleFirstTry
{
public static final double PI = 3.14159;
public static double area(double radius)
{
return (PI*radius*radius);
3
public static double circumference(double radius)
{
* - . 5 L(lf ’
return (PI*(radius + radius)); wwer.m the chaprey, 1,
¥ vers eap alterngre
} on of this ¢ lass.
Display 5.3
Static Methods

) University of Zurich
Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall 13

Class CircleDemo

import java.util.*;

public class CircleDemo

{
public static void main(String[] args)
{
double radius;
System.out.printin(
"Enter the radius of a circle 1in inches:™);
Scanner keyboard = new Scanner(System.in);
radius = keyboard.nextDouble();
System.out.printin("Acircle of radius "
+ radius + " inches™);
System.out.printin("has an area of " +
CircleFirstTry.area(radius) + " square inches,");
System.out.printin("and a circumference of " +
CircleFirstTry.circumference(radius) + " inches.");
}
}

Sample Screen Dialog

Enter the radius of a circle in inches:
2.3

A circle of radius 2.3 1inches

has an area of 16.61901 square inches,
and a circumference of 14.45131 finches.

Display 5.4

Using Static Methods
“H%) University of Zurich

'/ Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall 14

__Mixing Static and Nonstatic
Methods

import java.util.*;

public class PlayCircle A starjc varigple

{

use,
d as g Constany)

public static final double PI = 3.14159;

private double diameter; -a&—— A%insigy,, Variabl

public void setDiameter(double newDiameter)

{
diameter = newDiameter;

}

public static double area(double radius)

{
return (PI*radius*radius);

}

pubTic void showArea()

{
System.out.printin("Area is " + area(diameter/2));

}

public static void areaDialog()

{
Scanner keyboard = new Scanner(System.in);
System.out.printin("Enter diameter of circle:");
doubTe newDiameter = keyboard.nextDouble();
PlayCircle c = new PlayCircle(); You cap ;
c.setDiameter(newDiameter); - met/zo;mlz’;;l;o-ke a nonstqie
c.showArea(); method ﬁ;’l’,’“‘}” ;‘;at}'c_

as c, by y o ﬂe{vea
Display 5.5
University of Zurich : and Nonstatic Methods
Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall

15

__Mixing Static and Nonstatic
Methods

public class PlayCircleDemo

{
pubTlic static void main(String[] args)
{
PlayCircle circle = new PlayCircle();
circle.setDiameter(2);
System.out.println("If circle has diameter 2,");
circle.showArea();
System.out.println("Now you choose the diameter:");
PlayCircle.areaDialog();
}
}

Sample Screen Dialog

If circle has diameter 2,
Area 1is 3.14159

Now you choose the diameter:
Enter diameter of circle:

4

Area 1is 12.56636

Display 5.6
Using Static and Nonstatic Methods

%) University of Zurich
7 Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall

16

Putting main in a class

A class, which contains a method main serves
two purposes:

It can be run as a program
It can be used to create objects for other classes

A program’ s main method must be static.

In general, don’ t provide a method main in a
class definition if the class will be used only to
create objects.

,/ _? \ University of Zurich

227 Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall 17

Putting main in Any Class

import java.util.¥*;

public class PlayCircle

{
pubTlic static final double PI = 3.14159; public static double area(double radius)
rivate double diameter; nthe coq, {

P zsP1ayC$ﬁgfzzu?hthm return (PI*radius*radius);

public static void main(String[] args) -Java, }

{ . .
PlayCircle circle = new PlayCircle(); publie vold showireal)
circle.setDiameter(2); { : - " :
System.out.printIn("If circle has diameter 2,"); System.out.printin("Area is " + area(diameter/2));
circle.showArea(); }

System.out.printTn("Now you choose the diameter:"); public static void areaDialog()
PlayCircle.areaDialog(); t i
} “'k\\\\ Scanner keyboard = new Scanner(System.in);
6@auu¢mmv System.out.printin("Enter the diameter of a circle:");

main js ;.
AYCircle, o, o 5ide the double newDiameter = keyboard.nextDouble();

deﬁm’[ion

cunomntbkp7aYCfF%§fi;k”S , PlayCircle ¢ = new PlayCircle();
public void setDiameter(double newDiameter) R c.setDiameter(newDiameter);
{ c.showArea();
diameter = newDiameter; }
} }
Display 5.7

Placing a main Method in a Class Definition

University of Zurich
Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall 18

Static variables

A class can have static variables and constants

public static final double PI = 3.14159;
public static int numberOfInvocations = 0;

The value of a static variable can be changed by any
method that can access the variable.

Static variables generally are declared private.
They should be read/changed only by accessor/mutator methods.

Every object of the class has access to the static
variables via the (public) accessor and mutator methods.

,/\ University of Zurich
\A/ Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall 19

Static variables, cont.

Static variables are also called class variables
The primary purpose of static variables (class

variables) is to store information that relates to
the class as a whole.

Example:
Car, numberOfRegisteredCars

Invoice, numberOfInvoices

<04 University of Zurich
N1/ Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall 20

Class staticDemo

Object; an,
d d oby)
public class StaticDemo ;JJSMemquwgggz?”ﬂf Sample Screen Dialog
{ erOfInvocatiOns
private static int numberOfInvocations = 0; 1
public static void main(String[] args) 2
{ 3
1ht 97
StaticDemo objectl = new StaticDemo(); 4
for (i = 1; i <=10 ; i++) 5
objectl.outPutCountOfInvocations(); 6
StaticDemo object2 = new StaticDemo(); 7
for (i = 1; i <=10 ; i++) 8
object2.justADemoMethod(); 9
System.out.printin("Total number of invocations = " 10
+ numberSoFar()); Total number of invocations = 21
}
public void justADemoMethod()
{
numberOfInvocations++;
//In a real example, more code would go here.
}
pubTlic void outPutCountOfInvocations()
{
numberOfInvocations++;
System.out.printin(numberOfInvocations);
}
pubTlic static int numberSoFar()
{
numberOfInvocations++;
return numberOfInvocations;
}
i
Display 5.8

A Static Variable (Optional)

University of Zurich
Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall

21

The Math Class

The predefined class Math provides several standard
mathematical methods.

All of these methods are static methods.

You do not need to create an object to call the
methods of the Math class.

These methods are called by using the class
name (Math) followed by a dot and a method
name.

Return Value =
Math.Method Name (Parameters) ;

,\ University of Zurich
\A/ Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall 22

The Math Class, cont.

Name Description Type of Type of Example Value
Argument Value Returned
Returned
pow Powers double double Math.pow(2.0,3.0) 8.0
abs Absolute int, Sameasthe Math.abs(7) 7
value long, typeofthe ~ Math.abs(7) 7
float,or argument Math.abs(3.5) 3.5
doubTe
max Maximum int, Sameasthe Math.max(5, 6) 6
Tong, type of the Math.max(5.5, 5.3) 5.5
float,or arguments
doubTle
min Minimum int, Sameasthe Math.min(5, 6) 5
long, type of the MaEh N5 5585 553
float,or arguments
doubTle
round Rounding floator intor Math.round(6.2) 6
double]ong, Math.round(6.8) 7
respectively
ceil Ceiling double double Math.ceil(3.2) 4.0
Math.ceil(3.9) 4.0
floor Floor double double Math.floor(3.2) 3.0
Math.floor(3.9) 3.0
sqrt Square root double double sqrt(4.0) 2.0
Display 5.9
) University of Zu Static Methods in the Class Math

/' Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall

Circle using Math

Class with static methods to perform calculations on circles.
% /
public class Circle

{

public static double area(double radius)

{

return (Math.PI*radius*radius);

}

public static double circumference(doubTle radius)

{

return (Math.PI*(radius + radius));

Display 5.10

Predefined Constants

) University of Zurich
Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall

Integer, Double, and Other
Wrapper Classes

Sometimes a primitive value needs to be passed as an
argument, but the method definition creates an object

as the corresponding formal parameter.

Java's wrapper classes convert a value of a primitive
type to a corresponding class type.

Integer n = new Integer (42);

The instance variable of the object n has the value
42.

,\ University of Zurich
&1/ Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall 25

Integer, Double, and Other
Wrapper Classes, cont.

= To retrieve the integer value

int i = n.intValue();

primitive wrapper extraction

= type class method
int Integer intValue
long Long longValue
float Float floatValue
double Double doubleValue
char Character charValue

Z50) University of Zurich
\;/ Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall .

Shorthand in Java

Wrapping is done automatically in Java
Integer n = 42;

which is equivalent to

Integer n = new Integer (42);
Similarly

int 1 = n;

IS equivalent to

int 1 = n.intValue;

(5 University of Zurich
_/ Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall

27

Automatic Boxing and Unboxing

Converting a value of a primitive type to an object of its
corresponding wrapper class is called boxing.

Integer n = new Integer (42) ;
Java boxes automatically.
Integer n = 42;

(1) University of Zurich
N2/ Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall 28

Automatic Boxing and Unboxing..

Converting an object of a wrapper class to a value of
the corresponding primitive type is called unboxing.

int 1 = n.intValue;
Java unboxes automatically.

int 1 = n;

|r\ University of Zurich
K&27 Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall

29

Automatic Boxing and Unboxing..

,/ _\ University of Zurich

Automatic boxing and unboxing also apply to
parameters.

A primitive argument can be provided for a

corresponding formal parameter of the associated
wrapper class.

A wrapper class argument can be provided for a
corresponding formal parameter of the associated
primitive type.

&2/ Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall

30

Useful Constants

Wrapper classes contain several useful constants and
static methods such as

Integer .MAX VALUE

Integer .MIN VALUE

Double.MAX VALUE

Double.MIN VALUE

<04 University of Zurich
\ / Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall 31

Type Conversions

Static methods in the wrapper classes can be used to
convert a string to the corresponding number of type int,
long, float, or double.

String theString = “199.98";

double doubleSample =
Double.parseDouble (theString) ;

or
Double.parseDouble (theString. trim()) ;

if the string has leading or trailing whitespace.

|f\ University of Zurich
&2/ Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall 32

Converting Strings to Numbers

= Methods for converting strings to the corresponding
numbers
Integer.parseInt (“42"7)
Long.parselLong (“42”)
Float.parseFloat(“199.98")
Double.parseDouble (“199.98")

“10) University of Zurich
_/ Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall

33

Converting Numbers to Strings

= Methods for converting strings to the corresponding
numbers
Integer.toString(42)
Long.toString(42)
Float.toString(199.98)
Double. toString (199.98)

“10) University of Zurich
_/ Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall

34

Designing Methods: Outline

Formatting Output
Top-Down Design
Testing Methods

(1) University of Zurich
\ /' Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall

Case Study: Formatting Output

system.out.println With a parameter of type double
might print
Your cost is $19.981123576432

when what you really want is
Your cost is $19.98

Java provides classes for formatting output, but it is
Instructive, and perhaps even easier, to program them
ourselves.

|\ University of Zurich
X3/ Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall 36

DollarsFirstTry

public class DollarsFirstTry

{

/7‘: *

Outputs amount in dolTlars and cents notation.
Rounds after two decimal points.

Does not advance to the next Tine after output.
:':/
pubTlic static void write(double amount)

{

int allCents = (int) (Math.round(amount*100));

int dollars = allCents/100;

int cents = allCents%100;

System.out.print('$'); }
System.out.print(dollars);

System.out.print('.");

if (cents < 10)

{
System.out.print('0");
System.out.print(cents);

}

else
System.out.print(cents);

Display 5.12
The DollarsFirstTry

2 University of Zurich

i

Outputs amount in dolTlars and cents notation.
Rounds after two decimal points.
Advances to the next line after output.

7':/

public static void writeln(double amount)

{

write(amount) ;
System.out.printin();

Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall 37

DollarsFirstTryDriver

import java.util.*; ;”Ukmdofwnw@

3 . . "08ram iy’ .
public class DollarsFirstTryDriver ﬂdﬁprn%SZ;ahbd
{ .

public static void main(String[] args)
{
doubTle amount;
String ans;
Scanner keyboard = new Scanner(System.in);

System.out.println("Testing DollarsFirstTry.write:");
do

{

Sample Screen Dialog

Testing DollarsFirstTry.write:
Enter a value of type double:

1.2345

$1.23

Test again?

yes

Enter a value of type double:

1:.285

$1.24

Test again?

System.out.printin("Enter a value of type double:"); yes

amount = keyboard.nextDouble();
DollarsFirstTry.write(amount);
System.out.printin();
System.out.println("Test again?");
ans = keyboard.next();
}while (ans.equalsIgnoreCase("yes"));
System.out.printin("End of test.");

University of Zurich

z / Department of Informatics

Enter a value of type double:

9.02

$9.02

Test again?

yes

Enter a value of type double:

—1..20

$-1.0 20 - — OOPS. There's
Test again? aproblem here,
no

Display 5.13
Testing a Method

© 2005 W. Savitch, Pearson Prentice Hall

38

Testing Methods

A driver program is useful for testing one method or
class under development.

Its job is to invoke and test one developing method
or class.

After the method or class is tested adequately, the
driver program can be discarded.

\ University of Zurich
&2/ Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall 39

Bottom-Up Testing & Stubs

If method A uses method B, then method B should be
tested fully before testing method A.

Testing all the “lower level” methods invoked by an
“upper level” method before the “upper level” method
IS tested is called bottom-up testing.

A stub is a simplified version of a method that is good
enough for testing purposes, even though it is not good
enough for the final class definition.

\ University of Zurich
57/ Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall 40

Overloading

Different classes can have methods with the same
names.

Two or more methods in the same class class can be

defined with the same name
if the parameter list can be used to determine which method is
being invoked.
This useful ability is called overloading.

<R D . . .
,/ %) University of Zurich
227 Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall 41

Overloading, cont.

Jk pubTlic static double average(double first,

This is just a toy class to illustrate overloading. double second, double third)

*/ .

14 1 TR
?Ub 18 A STaLsr e return ((first + second + third)/3.0);
public static void main(String[] args) ¥
{ . . ;
double averagel = Statistician.average(40.0, 50.0); public static char average(char first, char second)
double average2 = Statistician.average(1.0, 2.0, 3.0); {)))
char average3 = Statistician.average('a', 'c'); return (char) ((Gint)first + (int)second)/2);
}
System.out.println("averagel = " + averagel); }
System.out.println("average2 = " + average2);
System.out.printin("average3 = " + average3); Sample Screen Dialog
}
averagel = 45.0
public static double average(double first, double second) average2 = 2.0
{ . average3 = b
return ((first + second)/2.0);
}
Display 5.15
Overloading

University of Zurich
Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall 42

Overloading, cont.

The number of arguments and the types of the
arguments determine, which method average IS
iInvoked.

If there is no match, Java attempts simple
type conversions

If there is still no match, an error message is
produced.

/ Un|ver5|ty of Zurich
\ £/ Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall 43

Overloading, cont.

Overloading can be applied to all kinds of methods:
void methods,

methods that return a value,
static methods

non-static methods, or any combination

Examples

method max (from the Math class)
method println
the / operator

\ University of Zurich
N1 Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall

44

Programming Example

Pet

name: String
age: 1int
weight: double

+ + 4+ + 4+ + + +

writeOutput(): void

set(String newName): void

set(int newAge): void

set(double newWeight): void

set(String newName, int newAge, double newWeight): void
getName(): String

getAge(): 1int

getWeight(): double

/ Department of Informatics

Display 5.16

Class Diagram for Pet Class

%) University of Zurich

© 2005 W. Savitch, Pearson Prentice Hall

45

Programming Example, cont.

/%

Class for basic pet records: name, age, and weight.

*/

public class Pet pubTic void set(String newName)
{ {

private String name;

name = newName;
private int age; //in years

//age and weight are unchanged.

private double weight; //in pounds }
/** pubTlic void set(int newAge)
This main is just a demonstration program. {

*/ if (newAge <= 0)

public static void main(String[] args) {

{ Bt mybog = BRReLES s System.ouF.print]n("Error: invalid age.");
myDog.set("Fido", 2, 5.5); System.exit(0);
myDog.writeOutput(); ¥
System.out.println("Changing name."); else
myDog.set("Rex"); age = newAge;
myDog.writeOutput(); //name and weight are unchanged.
System.out.println("Changing weight."); }
myDog.set(6.5);
myDog .writeOutput () ; pubTlic void set(double newWeight)
System.out.println("Changing age."); {
myDog.set(3); if (newWeight <= 0)
myDog.writeOutput(); {

} System.out.printin("Error: invalid weight.");

public void writeOutput() System.exit(0);

{ }

System.out.printin("Name: " + name); else
System.out.printin("Age: " + age + " years"); weight = newWeight;
System.out.printin("Weight: " + weight + " pounds"); //name and age are unchanged.
3
Display 5.17
Pet Class
University of Zurich
Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall

46

Programming Example, cont.

public void set(String newName, int newAge, double newWeight) Sample Screen Dialog
{
name = newName; Name: Fido
if ((newAge <= 0) || (newWeight <= 0)) Age: 2 years
{ Weight: 5.5 pounds
System.out.printin("Error: invalid age or weight."); Changing name.
System.exit(0); Name: Rex
} Age: 2 years
s Weight: 5.5 pounds
{ Changing weight.
age = newAge; Name: Rex
weight = newWeight; Age: 2 years
} Weight: 6.5 pounds
} Changing age.
public String getName() Name: Rex
{ Age: 3 years
return name; Weight: 6.5 pounds
}
public int getAge()
{
return age;
}
public double getWeight()
{
return weight;
}

Display 5.17
Pet Class

%) University of Zurich
127/ Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall

Overloading and Automatic Type
Conversion

= Example:

set(int 1){ .. }
set (double i) { .. }

set (10) ;
set (10.0) ;

= set(int 1, double d) { .. }
set (10,20);
set(10.0,20) ;

“10) University of Zurich
17 Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall

48

Overloading and Automatic Type
Conversion, cont.

Example
public static void oops(double nl, int n2);

public static void oops(int nl, double n2);

This will compile, but the invocation
sample.oops (5,10) ;

will produce an error message.

You cannot overload a method by providing two
definitions with headings that differ only in the return

type.

4% University of Zurich
&5 Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall

49

Class Money

import java.util.*;

/**
Objects represent nonnegative amounts of money,
such as $100, $41.99, $0.05.

public class Money

1

private long dollars;
private long cents;

public void set(long newDollars)

{
if (newDollars < 0)
{
System.out.printin(
"Error: Negative amounts of money are not allowed.");
System.exit(0);
}
else
dollars = newDollars;
cents = 0;
}
}
public void set(double amount)
{
if (amount < 0)
{
System.out.println(
"Error: Negative amounts of money are not allowed.™);
System.exit(0);
}
else
{
Tong allCents = Math.round(amount*100) ;
dollars = allCents/100;
cents = allCents%100;
}
Display 5.18
Money Class

10 University of Zurich

Department of Informatics

£
7

}

public void set(Money otherObject)

{
this.dollars = otherObject.dollars;
this.cents = otherObject.cents;

}

Vs
Precondition: The argument is an ordinary representation
of an amount of money, with or without a dollar sign.
Fractions of a cent are not allowed.
*/
public void set(String amountString)
{
String dollarsString;
String centsString;

//Delete '$' if any:

if (amountString.charAt(0) == '$")
amountString = amountString.substring(l);

amountString = amountString.trim();

//Locate decimal point:
int pointLocation = amountString.indexOf(".");

if (pointLocation < 0) //If no decimal point
{

cents = 0;

dollars = Long.parseLong(amountString);

© 2005 W. Savitch, Pearson Prentice Hall

50

Class Money

else //String has a decimal point. ?ub1ic void writeOutput()
{ : System.out.print("$" + dollars);
dollarsString = if (cents < 10)
amountString.substring(0, pointLocation); System.out.print(".0" + cents);
centsString = else
amountString.substring(pointLocation + 1); System.out.print("." + cents);
if (centsString.length() <= 1) }
//if one digit meaning tenths of a dollar [

centsString = centsString + "0"; Returns n times the calling object.

W

dollars = Long.parseLong(dollarsString); public Money times(int n)

cents = Long.parselLong(centsString); {
if ((dollars < 0) || (cents < 0) || (cents > 99)) Money product = new Money();
{ product.cents = n*cents;
System.out.printin(long carryDollars = product.cents/100;
"Error: I1legal representation of money."); product.cents = product.cents%100;

product.dollars = n*dollars + carryDollars;

System.exit(0); return product;

¥ }
}
1 sk ' '
public void readInput() Returns the sum of the calling object and the argument.
%/
{ !
System.out.println("Enter amount on a line by itself:"); ?Ub]1c MonEyddd@loncyRe BhensotE)
Scanner keyboard = new Scanner(System.in); R T o B)
String amount = keyboard.nextLine(); Y B : yes .
GG b "\\\\\\ sum.cents = this.cents + otherAmount.cents;
} We used nextLine instead of next long carryDollars = sym.cents/lOO;
because there may be a space between sum.cents = sum.cents%100;
[the dollar sign and the number. sum.dollars = this.dollars
Does not go to the next 1ine after outputting money. + otherAmount.dollars + carryDollars;
%/ return sum;
3
3
Display 5.18
Money Class

University of Zurich
Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall

Constructors

Creating objects with parameters and/or initializations

When you create an object of a class, often you want
certain initializing actions performed such as giving
values to the instance variables.

A constructor is a special method that performs
Initializations.

¢ \ University of Zurich

227 Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall 52

Defining Constructors

New objects are created using

Class Name Object Name =

new Class_Name (Parameter(s)) ;

A constructor is called automatically when a new
object is created.

Class Name (Parameter (s)Calls the constructor and
returns a reference.

It performs any actions written into its definition
including initializing the values of (usually all)
iInstance variables.

<R D . . .
,/ %) University of Zurich
227 Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall 53

Defining Constructors, cont.

Each constructor has the same name as its class.

A constructor does not have a return type, not even
void

Constructors often are overloaded, each with a different
number of parameters or different types of parameters.

Typically, at least one constructor, the default
constructor, has no parameters.

\ University of Zurich
&2/ Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall o4

Defining Constructors, cont.

Class for basic pet records: name, age, and weight.

public class PetRecord

{

private String name;
private int age;//in years
private double weight;//in pounds

public void writeOutput()

{
System.out.printin("Name: " + name);
System.out.printin("Age: " + age + " years");
System.out.printin("Weight: " + weight + " pounds");
}

public PetRecord(String initialName, int initialAge,
double initialWeight)
{
name = initialName;
if ((GinitialAge < 0) || (initialWeight < 0))
{

System.out.printIin("Error: Negative age or weight.");

System.exit(0);

}
Cor,
- Whell.zflructorx are calleq /
: o i\;au Create gy, objecr”g' '
o W. Chan /51 4
age = initialAge; ;/Zmyo "5227§n””w
We-ight iR a.IWe.ight; Cthods [jf, thexesettjfn;’;;;r)ea'
0ds,

}
: /
public void set(String newName, int newAge, double newWeight)

{

name = newName;
if ((newAge < 0) || (newWeight < 0))

Display 5.20

}

{
System.out.printin("Error: Negative age or weight.");
System.exit(0);
}
else
{
age = newAge;
weight = newWeight;
}

public PetRecord(String initialName)

{

name = initialName;
age = 0;
weight = 0;

public void set(String newName)

{

name = newName; //age and weight are unchanged.

public PetRecord(int initialAge)

{

name = "No name yet.";
weight = 0;

if (initialAge < 0)

{

System.out.printin("Error: Negative age.");
System.exit(0);

PetRecord Class with Constructors

University of Zurich

Department of Informatics

© 2005 W. Savitch, Pearson Prentice Hall

55

Defining Constructors, cont.

e class PetRecord,

contd.

else public void set(double newWeight)
age = initialAge; {

} if (newWeight < 0)

- - : {

public void set(int newAge) System.out.printin("Error: Negative weight.");
{ System.exit(0);

if (newAge < 0) }

{ else
System.out.printIn("Error: Negative age.");) weight = newWeight; //name and age are unchanged.
System.exit(0); D,

} public PetRecord() —-&— efa”llc()n.rlrucmr

else { " "

. name = "No name yet.";
age = newAge; age = 0;
//name and weight are unchanged. weight = 0;
} }
public PetRecord(double initialWeight) public String getName()
{ {

name = "No name yet"; return name;

age = 0; }

j{f (initialWeight < 0) public int getAge()

{
System.ouF.prinﬂn("Error‘: Negative weight."); return age;
System.exit(0); }

}

else pubTlic double getWeight()
weight = initialWeight; {

1 return weight;
}
}
Display 5.20

) University of Zurich

:l
z / Department of Informatics

PetRecord Class with Constructors

© 2005 W. Savitch, Pearson Prentice Hall

56

Defining Constructors, cont.

e class PetRecordDemo

import java.util.*;

pubTlic class PetRecordDemo

{ <

public static void main(String[] args) Sample Screen Dialog

{
PetRecord usersPet = new PetRecord("Jane Doe™); My reFords on your pet are 1inaccurate.
System.out.printIn("My records on your pet are inaccurate."); Here is what they currently say:
System.out.printin("Here is what they currently say:"); Name: Jane Doe
usersPet.writeOutput(); Age: 0
Scanner keyboard = new Scanner(System.in); Weight: 0.0 pounds

. % " Please enter the correct pet name:
System.out.printin("Please enter the correct pet name:"); Moon Child
String correctName = keyboard.nextLine();
PTease enter the correct pet age:

System.out.printin("Please enter the correct pet age:"); 5
int correctAge = keyboard.nextInt(); Please enter the correct pet weight:
System.out.printin("Please enter the correct pet weight:"); 24.5
double correctWeight = keyboard.nextDouble(); My updated records now say:
usersPet.set(correctName, correctAge, correctWeight); Name: Moon Child
System.out.printin("My updated records now say:"); Age: 5
usersPet.writeOutput(); Weight: 24.5 pounds

}

}

Display 5.21

Using Constructors and set Methods

University of Zurich
1/ Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall 57

Defining Constructors, cont.

When a class definition does not have a constructor,
Java creates a default constructor automatically.

Once you define at least one constructor for the class,
no additional constructor is created automatically.

A constructor can be called only when you create a new
object.
newborn.PetRecord(“Fang”, 1, 150.0); // inwvalid
After an object is created, a set method is needed to
change the value(s) of one or more instance variables.
newBorn.set(“Fang , 1, 150.0); // valid

,\ University of Zurich
K57 Department of Informaics © 2005 W. Savitch, Pearson Prentice Hall 58

Returning a Reference

PetRecord pet;
Assigns a memory location to pet.

Memory |

/ assigne

pet

MAA

University of Zurich

Department of Informatics

Ocaﬂon
d to pet:

pet

5432

pet = new PetRecord(); assignsa
chunk of memory for an object of the class
PetRecord—that is, memory for a name, an
age, and a weight—and places the address of
this memory chunk in the memory location
assigned to pet.

3

5432
oned 10
01y a551g11 d /
Chunkof "{"’:"per_ . agﬁ' 3:&16
et.
%ddress 5432

Display 5.22

Constuctor Returning a Reference

© 2005 W. Savitch, Pearson Prentice Hall

Using Methods in a Constructor

Other methods in the same class can be used in the
definition of a constructor.

Calls to one or more set methods are common.

public Class Name (parameter(s)) ;

{
set(..)

<04 University of Zurich
\ / Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall

60

Wrapper Classes with No Default
Constructor

The wrapper classes

Byte Float
Short Double
Integer Character
Long Boolean

have no default constructors.

When creating a new object of one of these classes, an
argument is needed.

Character myMark = new Character('Z);

<04 University of Zurich
\ / Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall 61

Packages: Outline

Packages and Importing
Package Names and Directories
Name Clashes

|f\ University of Zurich
&2/ Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall

62

Packages

Vi

\ University of Zurich

/ Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall 63

A package groups and names a collection of related
classes.

It can serve as a library of classes for any program.

The collection of classes need not reside in the
same directory as a program that uses them.

The classes are grouped together in a directory and are
given a package name.

Each file contains the following at the start of the file:
Package general.utilities;

Importing

A program or class definition can use all the classes in

a package by placing a suitable import statement at

the start of the file containing the program or class
definition.

import Package Name,

This is sufficient even if the program or class definition is not in
the same directory as the classes in the package.

|\ University of Zurich
NZ27 Department of Informatis © 2005 W. Savitch, Pearson Prentice Hall 64

Package Names and Directories

The package name must tell the compiler the path
name for the directory containing the classes and the
name of the package

The value of the class path variable tells Java where to
begin its search for the package.

The class path variable is part of the operating system, not part
of Java.

It contains path names and a list of directories, called the class
path base directories

,\ University of Zurich
K57 Department of Informaics © 2005 W. Savitch, Pearson Prentice Hall 65

Package Names and Directories..

The package name is a relative path name that
assumes you start in a class path base directory and

follow the path of subdirectories given by the package
name.

example class path base directory:
\javastuffllibraries
example package classes

\javastuff\libraries\general\utilities

|f\ University of Zurich
&2/ Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall 66

_Package Names and Directories...

\myjavastuff\libraries
is a class path base directory (is on the class path).

/ myjavastuff

V74

Y / Tibraries
general.utilities
is the package name.

general

] utilities

—D AClass.java
\—D AnotherClass. java

Display 5.25

e

Classes in the package.

A Package Name

University of Zurich
/' Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall 67

Package Names and Directories...

The class path variable allows you to list more than one
base directory, separating them with a semicolon.

Example: \javastuff\libraries;f:\morejavastuff

When you set or change the class path variable, include
the current directory (where your program or other class

is located) e
Example: \javastuff\libraries;f:\morejavastuff;.

Omitting the dot limits the locations you can use for packages
and can interfere with programs that do not use packages.

,\ University of Zurich
\A/ Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall 68

Name Clashes

Packages can help deal with name clashes, which are
situations in which two classes have the same name.

Ambiguities can be resolved by using the package
name.

Examples:
mypackage.CoolClass objectl;
yourpackage.CoolClass object2;

|f\ University of Zurich
&2/ Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall 69

Summary

You have learned more techniques for programming
with classes and objects.

You have learned about static methods and static
variables.

You have learned to define constructor methods.

You have learned about packages and import
statements.

,/ \ University of Zurich

X3/ Department of Informatics © 2005 W. Savitch, Pearson Prentice Hall 70

