
More About Objects and Methods

Harald Gall, Prof. Dr.
Institut für Informatik
Universität Zürich
http://seal.ifi.uzh.ch/info1

2

Objectives

!  learn more techniques for programming with
classes and objects

!  learn about static methods and static variables
!  learn to define constructor methods
!  learn about packages and import statements

© 2005 W. Savitch, Pearson Prentice Hall

3

Outline

!  Programming with methods
!  Static methods and static variables
!  Overloading
!  Constructors
!  Packages

© 2005 W. Savitch, Pearson Prentice Hall

4

Programming with Methods -
Methods Calling Methods

!  A method body may contain an invocation of
another method.
!  Methods invoked from method main typically involve

a calling object.
!  Invocation of a method in the same class typically

does not involve a calling object.

© 2005 W. Savitch, Pearson Prentice Hall

5

Methods Calling Methods

© 2005 W. Savitch, Pearson Prentice Hall

6

Methods Calling Methods

!  Method main invokes method dialog in the class
Oracle using object delphi

!  Within the same class, the name of the calling object
is omitted.
!  Method dialog invokes method answerOne in

the same class.
!  Method answerOne invokes method
seekAdvice and method update in the same
class.

© 2005 W. Savitch, Pearson Prentice Hall

7

Methods Calling Methods, cont.

!  Omission of the calling object and the dot
applies only when the calling object can be
expressed with the this parameter.

© 2005 W. Savitch, Pearson Prentice Hall

8

The null Constant

!  When the compiler requires an object reference to be
initialized, set it to null

 String line = null;
!  null is not an object, but a constant that indicates that

an object variable references no object
!  == and != (rather than method equals) are used to

determine if an object variable has the value null
!  An object reference initialized to null cannot be used

to invoke methods in the object’s class
!  An attempt results in a null pointer exception!

© 2005 W. Savitch, Pearson Prentice Hall

Static Methods and Static
Variables: Outline

Static Methods
Static Variables
The Math Class
Integer, Double, and Other Wrapper
Classes

10

Static Methods and Static
Variables
!  Static methods and static variables belong to a

class and do not require any object.

© 2005 W. Savitch, Pearson Prentice Hall

11

Static Methods

!  Some methods have no meaningful connection
to an object.

!  For example,
!  finding the maximum of two integers
!  computing a square root
!  converting a letter from lowercase to uppercase
!  generating a random number

!  Such methods can be defined as static.

© 2005 W. Savitch, Pearson Prentice Hall

12

Static Methods, cont.

!  A static method is still defined as a member of a
class

!  But, the method is invoked using the class name
rather than an object name

!  Nothing can refer to a calling object; no instance
variables can be accessed.

!  Syntax
 return_Type Variable_Name =
 Class_Name.Static_Method_Name (Parameters);

© 2005 W. Savitch, Pearson Prentice Hall

13

Class Circle with static methods

© 2005 W. Savitch, Pearson Prentice Hall

14

Class CircleDemo

© 2005 W. Savitch, Pearson Prentice Hall

15

Mixing Static and Nonstatic
Methods

© 2005 W. Savitch, Pearson Prentice Hall

16

Mixing Static and Nonstatic
Methods

© 2005 W. Savitch, Pearson Prentice Hall

17

Putting main in a class

!  A class, which contains a method main serves
two purposes:
!  It can be run as a program
!  It can be used to create objects for other classes

!  A program’s main method must be static.
!  In general, don’t provide a method main in a

class definition if the class will be used only to
create objects.

© 2005 W. Savitch, Pearson Prentice Hall

18

Putting main in Any Class

© 2005 W. Savitch, Pearson Prentice Hall

19

Static variables

!  A class can have static variables and constants

public static final double PI = 3.14159;
public static int numberOfInvocations = 0;

!  The value of a static variable can be changed by any
method that can access the variable.

!  Static variables generally are declared private.
!  They should be read/changed only by accessor/mutator methods.

!  Every object of the class has access to the static
variables via the (public) accessor and mutator methods.

© 2005 W. Savitch, Pearson Prentice Hall

20

Static variables, cont.

!  Static variables are also called class variables
!  The primary purpose of static variables (class

variables) is to store information that relates to
the class as a whole.

!  Example:
!  Car, numberOfRegisteredCars
!  Invoice, numberOfInvoices

© 2005 W. Savitch, Pearson Prentice Hall

21

Class StaticDemo

© 2005 W. Savitch, Pearson Prentice Hall

22

The Math Class

!  The predefined class Math provides several standard
mathematical methods.
!  All of these methods are static methods.
!  You do not need to create an object to call the

methods of the Math class.
!  These methods are called by using the class

name (Math) followed by a dot and a method
name.
 Return_Value =
 Math.Method_Name(Parameters);

© 2005 W. Savitch, Pearson Prentice Hall

23

The Math Class, cont.

© 2005 W. Savitch, Pearson Prentice Hall

24

Circle using Math

© 2005 W. Savitch, Pearson Prentice Hall

25

Integer, Double, and Other
Wrapper Classes

!  Sometimes a primitive value needs to be passed as an
argument, but the method definition creates an object
as the corresponding formal parameter.

!  Java‘s wrapper classes convert a value of a primitive
type to a corresponding class type.

Integer n = new Integer(42);

!  The instance variable of the object n has the value
42.

© 2005 W. Savitch, Pearson Prentice Hall

26

Integer, Double, and Other
Wrapper Classes, cont.

!  To retrieve the integer value
int i = n.intValue();

primitive wrapper extraction

!  type class method
int Integer intValue
long Long longValue
float Float floatValue
double Double doubleValue
char Character charValue

© 2005 W. Savitch, Pearson Prentice Hall

27

Shorthand in Java

!  Wrapping is done automatically in Java
Integer n = 42;
which is equivalent to
Integer n = new Integer(42);

!  Similarly
int i = n;
is equivalent to
int i = n.intValue;

© 2005 W. Savitch, Pearson Prentice Hall

28

Automatic Boxing and Unboxing

!  Converting a value of a primitive type to an object of its
corresponding wrapper class is called boxing.
Integer n = new Integer(42);

!  Java boxes automatically.
Integer n = 42;

© 2005 W. Savitch, Pearson Prentice Hall

29

Automatic Boxing and Unboxing..

!  Converting an object of a wrapper class to a value of
the corresponding primitive type is called unboxing.
int i = n.intValue;

!  Java unboxes automatically.
int i = n;

© 2005 W. Savitch, Pearson Prentice Hall

30

Automatic Boxing and Unboxing..

!  Automatic boxing and unboxing also apply to
parameters.
!  A primitive argument can be provided for a

corresponding formal parameter of the associated
wrapper class.

!  A wrapper class argument can be provided for a
corresponding formal parameter of the associated
primitive type.

© 2005 W. Savitch, Pearson Prentice Hall

31

Useful Constants

!  Wrapper classes contain several useful constants and
static methods such as
Integer.MAX_VALUE
Integer.MIN_VALUE
Double.MAX_VALUE
Double.MIN_VALUE

© 2005 W. Savitch, Pearson Prentice Hall

32

Type Conversions

!  Static methods in the wrapper classes can be used to
convert a string to the corresponding number of type int,
long, float, or double.
String theString = “199.98”;
double doubleSample =
 Double.parseDouble(theString);

or
Double.parseDouble(theString.trim());

if the string has leading or trailing whitespace.

© 2005 W. Savitch, Pearson Prentice Hall

33

Converting Strings to Numbers

!  Methods for converting strings to the corresponding
numbers
Integer.parseInt(“42”)
Long.parseLong(“42”)
Float.parseFloat(“199.98”)
Double.parseDouble(“199.98”)

© 2005 W. Savitch, Pearson Prentice Hall

34

Converting Numbers to Strings

!  Methods for converting strings to the corresponding
numbers
Integer.toString(42)
Long.toString(42)
Float.toString(199.98)
Double.toString(199.98)

© 2005 W. Savitch, Pearson Prentice Hall

35

Designing Methods: Outline

!  Formatting Output
!  Top-Down Design
!  Testing Methods

© 2005 W. Savitch, Pearson Prentice Hall

36

Case Study: Formatting Output

!  System.out.println with a parameter of type double
might print
Your cost is $19.981123576432
when what you really want is
Your cost is $19.98

!  Java provides classes for formatting output, but it is
instructive, and perhaps even easier, to program them
ourselves.

© 2005 W. Savitch, Pearson Prentice Hall

37

DollarsFirstTry

© 2005 W. Savitch, Pearson Prentice Hall

38

DollarsFirstTryDriver

© 2005 W. Savitch, Pearson Prentice Hall

39

Testing Methods

!  A driver program is useful for testing one method or
class under development.
!  Its job is to invoke and test one developing method

or class.
!  After the method or class is tested adequately, the

driver program can be discarded.

© 2005 W. Savitch, Pearson Prentice Hall

40

Bottom-Up Testing & Stubs

!  If method A uses method B, then method B should be
tested fully before testing method A.

!  Testing all the “lower level” methods invoked by an
“upper level” method before the “upper level” method
is tested is called bottom-up testing.

!  A stub is a simplified version of a method that is good
enough for testing purposes, even though it is not good
enough for the final class definition.

© 2005 W. Savitch, Pearson Prentice Hall

41

Overloading

!  Different classes can have methods with the same
names.

!  Two or more methods in the same class class can be
defined with the same name
!  if the parameter list can be used to determine which method is

being invoked.
!  This useful ability is called overloading.

© 2005 W. Savitch, Pearson Prentice Hall

42

Overloading, cont.

© 2005 W. Savitch, Pearson Prentice Hall

43

Overloading, cont.

•  The number of arguments and the types of the
arguments determine, which method average is
invoked.

–  if there is no match, Java attempts simple
type conversions

–  if there is still no match, an error message is
produced.

© 2005 W. Savitch, Pearson Prentice Hall

44

Overloading, cont.

!  Overloading can be applied to all kinds of methods:
!  void methods,
!  methods that return a value,
!  static methods
!  non-static methods, or any combination

!  Examples
!  method max (from the Math class)
!  method println
!  the / operator

© 2005 W. Savitch, Pearson Prentice Hall

45

Programming Example

© 2005 W. Savitch, Pearson Prentice Hall

46

Programming Example, cont.

© 2005 W. Savitch, Pearson Prentice Hall

47

Programming Example, cont.

© 2005 W. Savitch, Pearson Prentice Hall

48

Overloading and Automatic Type
Conversion
!  Example:

set(int i){ … }
set(double i) { … }

 set(10);
 set(10.0);

!  set(int i, double d) { … }
 set(10,20);

 set(10.0,20);

© 2005 W. Savitch, Pearson Prentice Hall

49

Overloading and Automatic Type
Conversion, cont.
!  Example

public static void oops(double n1, int n2);
…
public static void oops(int n1, double n2);

!  This will compile, but the invocation
sample.oops(5,10);

will produce an error message.

!  You cannot overload a method by providing two
definitions with headings that differ only in the return
type.
 © 2005 W. Savitch, Pearson Prentice Hall

50

Class Money

© 2005 W. Savitch, Pearson Prentice Hall

51

Class Money

© 2005 W. Savitch, Pearson Prentice Hall

52

Constructors

!  Creating objects with parameters and/or initializations
!  When you create an object of a class, often you want

certain initializing actions performed such as giving
values to the instance variables.

!  A constructor is a special method that performs
initializations.

© 2005 W. Savitch, Pearson Prentice Hall

53

Defining Constructors
!  New objects are created using

Class_Name Object_Name =
 new Class_Name (Parameter(s));

!  A constructor is called automatically when a new
object is created.
!  Class_Name (Parameter(s)calls the constructor and

returns a reference.
!  It performs any actions written into its definition

including initializing the values of (usually all)
instance variables.

© 2005 W. Savitch, Pearson Prentice Hall

54

Defining Constructors, cont.

!  Each constructor has the same name as its class.
!  A constructor does not have a return type, not even
void

!  Constructors often are overloaded, each with a different
number of parameters or different types of parameters.

!  Typically, at least one constructor, the default
constructor, has no parameters.

© 2005 W. Savitch, Pearson Prentice Hall

55

Defining Constructors, cont.

© 2005 W. Savitch, Pearson Prentice Hall

56 © 2005 W. Savitch, Pearson Prentice Hall

Defining Constructors, cont.
•  class PetRecord, contd.

57 © 2005 W. Savitch, Pearson Prentice Hall

Defining Constructors, cont.
•  class PetRecordDemo

58

Defining Constructors, cont.

!  When a class definition does not have a constructor,
Java creates a default constructor automatically.

!  Once you define at least one constructor for the class,
no additional constructor is created automatically.

!  A constructor can be called only when you create a new
object.
newborn.PetRecord(“Fang”, 1, 150.0); // invalid

!  After an object is created, a set method is needed to
change the value(s) of one or more instance variables.
newBorn.set(“Fang”, 1, 150.0); // valid

© 2005 W. Savitch, Pearson Prentice Hall

59

Returning a Reference

© 2005 W. Savitch, Pearson Prentice Hall

60

Using Methods in a Constructor

!  Other methods in the same class can be used in the
definition of a constructor.

!  Calls to one or more set methods are common.
public Class_Name(parameter(s));
{
 set(…)
}

© 2005 W. Savitch, Pearson Prentice Hall

61

Wrapper Classes with No Default
Constructor
!  The wrapper classes

Byte Float
Short Double
Integer Character
Long Boolean

have no default constructors.
!  When creating a new object of one of these classes, an

argument is needed.
Character myMark = new Character(‘Z);

© 2005 W. Savitch, Pearson Prentice Hall

62

Packages: Outline

!  Packages and Importing
!  Package Names and Directories
!  Name Clashes

© 2005 W. Savitch, Pearson Prentice Hall

63

Packages

!  A package groups and names a collection of related
classes.
!  It can serve as a library of classes for any program.
!  The collection of classes need not reside in the

same directory as a program that uses them.
!  The classes are grouped together in a directory and are

given a package name.
!  Each file contains the following at the start of the file:
Package general.utilities;

© 2005 W. Savitch, Pearson Prentice Hall

64

Importing

!  A program or class definition can use all the classes in
a package by placing a suitable import statement at
the start of the file containing the program or class
definition.
import Package_Name;

!  This is sufficient even if the program or class definition is not in
the same directory as the classes in the package.

© 2005 W. Savitch, Pearson Prentice Hall

65

Package Names and Directories

!  The package name must tell the compiler the path
name for the directory containing the classes and the
name of the package

!  The value of the class path variable tells Java where to
begin its search for the package.
!  The class path variable is part of the operating system, not part

of Java.
!  It contains path names and a list of directories, called the class

path base directories

© 2005 W. Savitch, Pearson Prentice Hall

66

Package Names and Directories..

!  The package name is a relative path name that
assumes you start in a class path base directory and
follow the path of subdirectories given by the package
name.
!  example class path base directory:
\javastuff\libraries
!  example package classes
\javastuff\libraries\general\utilities

© 2005 W. Savitch, Pearson Prentice Hall

67

Package Names and Directories!

© 2005 W. Savitch, Pearson Prentice Hall

68

Package Names and Directories!

!  The class path variable allows you to list more than one
base directory, separating them with a semicolon.
!  Example: \javastuff\libraries;f:\morejavastuff

!  When you set or change the class path variable, include
the current directory (where your program or other class
is located) e
!  Example: \javastuff\libraries;f:\morejavastuff;.

!  Omitting the dot limits the locations you can use for packages
and can interfere with programs that do not use packages.

© 2005 W. Savitch, Pearson Prentice Hall

69

Name Clashes

!  Packages can help deal with name clashes, which are
situations in which two classes have the same name.
!  Ambiguities can be resolved by using the package

name.
!  Examples:

 mypackage.CoolClass object1;
 yourpackage.CoolClass object2;

© 2005 W. Savitch, Pearson Prentice Hall

70

Summary

!  You have learned more techniques for programming
with classes and objects.

!  You have learned about static methods and static
variables.

!  You have learned to define constructor methods.
!  You have learned about packages and import

statements.

© 2005 W. Savitch, Pearson Prentice Hall

