
1

Introduction to Computers and Java

Harald Gall, Prof. Dr.
Institut für Informatik
Universität Zürich
http://seal.ifi.uzh.ch

© 2008 W. Savitch, F.M. Carrano, Pearson
Prentice Hall

2 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Objectives

!  Overview computer hardware and software
!  Introduce program design and object-oriented

programming
!  Overview the Java programming language
!  Applets and graphics basics

3 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Outline

!  Computer Basics
!  Designing Programs
!  A Sip of Java

2

Computer Basics: Outline

Hardware and Memory
Programs
Programming Languages and Compilers
Java Byte-Code
(optional) Graphics Supplement

© 2008 W. Savitch, F.M. Carrano, Pearson
Prentice Hall

5

Hardware and Software

!  Computer systems consist of hardware and software.
!  Hardware includes the tangible parts of computer systems.
!  Software includes programs - sets of instructions for the

computer to follow.

!  Familiarity with hardware basics helps us understand
software.

© 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

6 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Hardware and Memory

!  Most modern computers have similar
components including
!  input devices: keyboard, mouse, etc.
!  output devices: display screen, printer, etc.
!  processor
!  two kinds of memory

!  main memory and auxiliary memory

3

7 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Processor

!  also called the CPU (central processing unit) or
the chip (e.g. Pentium processor)

!  The processor processes a program’s
instructions.

!  It can process only very simple instructions.
!  The power of computing comes from speed and

program intricacy.

8 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Memory

!  Memory holds
!  programs
!  data for the computer to process
!  the results of intermediate processing.

!  two kinds of memory
!  main memory
!  auxiliary memory

9

Main memory

!  working memory used to store
!  the current program
!  the data the program is using
!  the results of intermediate calculations

!  usually measured in megabytes
!  e.g. 256 megabytes of RAM
!  RAM is short for random access memory
!  a byte is a quantity of memory

© 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

4

10

Auxiliary Memory

!  also called secondary memory
!  disk drives, diskettes, CDs, DVDs, etc.
!  more or less permanent (nonvolatile)
!  usually measured in gigabytes

!  e.g. 50 gigabyte hard drive

© 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

11 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Bits, Bytes, and Addresses

!  A bit is a digit with a value of either 0 or 1.
!  A byte consists of 8 bits.
!  Each byte in main memory resides at a numbered

location called its address.

12 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Addresses

5

13 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Storing Data

!  Data of all kinds (numbers, letters, strings of characters,
audio, video, even programs) are encoded and stored
using 1s and 0s.

!  When more than a single byte is needed, several
adjacent bytes are used.
!  The address of the first byte is the address of the unit of bytes.

14 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Files

!  Large groups of bytes in auxiliary memory are
called files

!  Files have names
!  Files are organized into groups called

directories or folders
!  Java programs are stored in files
!  Programs files are copied from auxiliary

memory to main memory in order to be run

15 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

0 and 1

!  Machines with only 2 stable states are easy to
make, but programming using only 0s and 1s is
difficult.

!  Fortunately, the conversion of numbers, letters,
strings of characters, audio, video, and
programs is done automatically.

6

16 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Programs

!  A program is a set of instructions for a computer to
follow.

!  We use programs almost daily (email, word processors,
video games, bankomat, etc.).

!  Following the instructions is called running or executing
the program.

17 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Input and Output

!  Normally, a computer received two kinds of input:
!  the program
!  the data needed by the program.

!  The output is the result(s) produced by following the
instructions in the program.

18 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Running a Program

!  Sometimes the computer and the program
are considered to be one unit.
!  Programmers typically find this view to be more

convenient.

7

19 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

The Operating System

!  The operating system is a supervisory program that
oversees the operation of the computer.

!  The operating system retrieves and starts program for
you.

!  Well-known operating systems include DOS, Microsoft
Windows, Apple’s Mac OS X, Linux, or UNIX.

20 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Programming Languages

!  High-level languages are relatively intuitive to write and
to understand.
!  Java, Pascal, FORTRAN, C, C++, C#, BASIC, Visual Basic,

etc.
!  Unfortunately, computer hardware does not understand

high-level languages.
!  Therefore, a high-level language program must be translated

into a low-level language.

21 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Compilers

!  A compiler translates a program from a high-
level language to a low-level language the
computer can run.

!  You compile a program by running the
compiler on the high-level-language version of
the program called the source program

!  Compilers produce machine- or assembly-
language programs called object programs.

8

22 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Compilers, cont.

!  Most high-level languages need a different
compiler for each type of computer and for each
operating system.

!  Most compilers are very large programs that
are expensive to produce.

23 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Java Byte-Code

!  The Java compiler does not translate a Java
program into assembly language or machine
language for a particular computer.

!  Instead, it translates a Java program into byte-
code
!  Byte-code is the machine language for a

hypothetical computer (or interpreter) called the Java
Virtual Machine

24 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Java Byte-Code, cont.

!  A byte-code program is easy to translate into
machine language for any particular computer.

!  A program called an interpreter translates each
byte-code instruction, executing the resulting
machine-language instructions on the particular
computer before translating the next byte-code
instruction.

9

25 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Compiling, Interpreting, Running

!  Use the compiler to translate the Java program
into byte-code (done using the compile
command).

!  Use the byte-code interpreter for your computer
to translate each byte-code instruction into
machine language and to run the resulting
machine-language instructions (done using the
run command).

26 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Portability

!  After compiling a Java program into byte-code,
that byte-code can be used on any computer
with a byte-code interpreter and without a need
to recompile.

!  Byte-code can be sent over the Internet and
used anywhere in the world.

!  This makes Java suitable for Internet
applications.

27 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

10

28 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Class Loader

!  A Java program typically consists of several pieces
called classes.

!  Each class may have a separate author and each is
compiled (translated into byte-code) separately.

!  A class loader (called a linker in other programming
languages) automatically connects the classes
together.

A Sip of Java: Outline

History of the Java Language
Applications and Applets
A First Java Application Program
Writing, Compiling, and Running a Java Program

© 2008 W. Savitch, F.M. Carrano,
Pearson Prentice Hall

30

History of Java

!  In 1991, James Gosling and Sun Microsystems
began designing a language for home
appliances (toasters, TVs, etc.).
!  Challenging, because home appliances are

controlled by many different chips (processors)
!  Programs were translated first into an intermediate

language common to all appliance processors.

© 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

11

31

History of Java

!  Then the intermediate language was translated into
the machine language for a particular appliance’s
processor.

!  Appliance manufacturers weren’t impressed.

!  In 1994, Gosling realized that his language
would be ideal for a Web browser that could run
programs over the Internet.
!  Sun produced the browser known today as HotJava.

© 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

32

Applications and Applets

!  Two kinds of java programs: applications and
applets

!  Applications
!  Regular programs
!  Meant to be run on your computer

!  Applets
!  Little applications
!  Meant to be sent to another location on the internet

and run there

© 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

33

A First Java Application

!  View sample program Listing 1.1
!  class FirstProgram

Sample
screen
output

© 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

12

34

FirstProgram

© 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

import java.util.Scanner;	

public class FirstProgram	
{	
 public static void main(String[] args)	
 {	
 System.out.println("Hello out there.");	
 System.out.println("I will add two numbers for you.");	
 System.out.println("Enter two whole numbers on a line:");	

 int n1, n2;	

 Scanner keyboard = new Scanner(System.in);	
 n1 = keyboard.nextInt();	
 n2 = keyboard.nextInt();	

 System.out.println("The sum of those two numbers is");	
 System.out.println(n1 + n2);	
 }	
}

35

Some Terminology

!  The person who writes a program is called the
programmer.

!  The person who interacts with the program is
called the user.

!  A package is a library of classes that have been
defined already.
!  import java.util.Scanner;	

© 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

36

Some Terminology

!  The item(s) inside parentheses are called
argument(s) and provide the information
needed by methods.

!  A variable is something that can store data.
!  An instruction to the computer is called a

statement; it ends with a semicolon.
!  The grammar rules for a programming

language are called the syntax of the language.

© 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

13

37

Printing to the Screen

!  System.out.println (“Whatever you want to print”);	
!  System.out is an object for sending output to the

screen.
!  println is a method to print whatever is in

parentheses to the screen.

© 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

38

Printing to the Screen

!  The object performs an action when you invoke
or call one of its methods

objectName.methodName(argumentsTheMethodNeeds);	

© 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

39

Compiling a Java Program or Class

!  A Java program consists of one or more classes,
which must be compiled before running the
program

!  You need not compile classes that accompany
Java (e.g. System and Scanner)

!  Each class should be in a separate file
!  The name of the file should be the same as the

name of the class

© 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

14

40

Compiling and Running

!  Use an IDE (integrated development
environment) which combines a text editor with
commands for compiling and running Java
programs

!  When a Java program is compiled, the byte-
code version of the program has the same
name, but the ending is changed from .java
to .class

© 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

41

Compiling and Running

!  A Java program can involve any number of
classes.

!  The class to run will contain the words

 public static void main(String[] args)	

somewhere in the file

© 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Designing Programs: Outline

Object-Oriented Programming
Encapsulation
Polymorphism
Inheritance
Algorithms
Components
Testing and Debugging

© 2008 W. Savitch, F.M. Carrano,
Pearson Prentice Hall

15

43 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Programming

!  Programming is a creative process
!  Programming can be learned by discovering the

techniques used by experienced programmers
!  These techniques are applicable to almost

every programming language, including Java

44 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Object-Oriented Programming

!  Our world consists of objects (people, trees,
cars, cities, airline reservations, etc.).

!  Objects can perform actions which effect
themselves and other objects in the world.

!  Object-oriented programming (OOP) treats a
program as a collection of objects that interact
by means of actions.

45 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

OOP Terminology

!  Objects, appropriately, are called objects.
!  Actions are called methods.
!  Objects of the same kind have the same type

and belong to the same class.
!  Objects within a class have a common set of

methods and the same kinds of data
!  but each object can have it’s own data values.

16

46 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

OOP Design Principles

!  OOP adheres to three primary design
principles:
!  encapsulation
!  polymorphism
!  inheritance

47 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Introduction to Encapsulation

!  The data and methods associated with any
particular class are encapsulated (“put together
in a capsule”), but only part of the contents is
made accessible.
!  Encapsulation provides a means of using the class,

but it omits the details of how the class works.
!  Encapsulation often is called information hiding.

48 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Accessibility Example

!  An automobile consists of several parts and
pieces and is capable of doing many useful
things.
!  Awareness of the accelerator pedal, the brake pedal,

and the steering wheel is important to the driver.
!  Awareness of the fuel injectors, the automatic

braking control system, and the power steering
pump is not important to the driver.

17

49 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Introduction to Polymorphism

!  from the Greek meaning “many forms”
!  The same program instruction adapts to

mean different things in different contexts.
!  A method name, used as an instruction, produces

results that depend on the class of the object that
used the method.

!  everyday analogy: “take time to recreate” causes
different people to do different activities

!  more about polymorphism in Chapter 7

50 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Introduction to Inheritance

!  Classes can be organized using inheritance.

51 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Introduction to Inheritance, cont.

!  A class at lower levels inherits all the
characteristics of classes above it in the
hierarchy.

!  At each level, classifications become more
specialized by adding other characteristics.

!  Higher classes are more inclusive; lower
classes are less inclusive.

18

52 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Inheritance in Java

!  used to organize classes
!  “Inherited” characteristics do not need to be

repeated
!  New characteristics are added
!  more about inheritance in Chapter 7

53 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Algorithms

!  By designing methods, programmers provide
actions for objects to perform.

!  An algorithm describes a means of performing
an action.

!  Once an algorithm is defined, expressing it in
Java (or in another programming language)
usually is easy.

54 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Algorithms, cont.

!  An algorithm is a set of instructions for solving a
problem.

!  An algorithm must be expressed completely
and precisely.

!  Algorithms usually are expressed in English or
in pseudo code.

19

55 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Example: Total Cost of All Items

!  Write the number 0 on the whiteboard
!  For each item on the list

!  add the cost of the item to the number on the
whiteboard

!  replace the number on the whiteboard with the result
of this addition

!  Announce that the answer is the number written
on the whiteboard

56 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Reusable Components

!  Most programs are created by combining
components that exist already.

!  Reusing components saves time and money.
!  Reused components are likely to be better

developed, and more reliable.
!  New components should designed to be

reusable by other applications.

57 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Making Components Reusable

!  Specify exactly how objects of the class interact
with other objects.

!  Design a class so that objects are general,
rather than unique to a particular application.

20

58 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Testing and Debugging

!  Eliminate errors by avoiding them in the first
place
!  Carefully design classes, algorithms and methods
!  Carefully code everything into Java

!  Test your program with appropriate test cases
(some where the answer is known), discover
and fix any errors, then retest

59 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Errors

!  An error in a program is called a bug.
!  Eliminating errors is called debugging.
!  three kinds or errors

!  syntax errors
!  runtime errors
!  logic errors

60 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Syntax Errors

!  grammatical mistakes in a program
!  the grammatical rules for writing a program are very

strict
!  The compiler catches syntax errors and prints

an error message.
!  example: using a period where a program

expects a comma

21

61 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Runtime Errors

!  errors that are detected when your program is
running, but not during compilation

!  When the computer detects an error, it
terminates the program and prints an error
message.

!  example: attempting to divide by 0

62 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Logic Errors

!  errors that are not detected during compilation
or while running, but which cause the program
to produce incorrect results

!  example: an attempt to calculate a Fahrenheit
temperature from a Celsius temperature by
multiplying by 9/5 and adding 23 instead of 32

63 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Summary

!  You have completed an overview of computer
hardware and software.

!  You have been introduced to program design
and object-oriented programming.

!  You have completed an overview of the Java
programming language.

!  You have been introduced to applets and
graphics basics.

