8. Polymorphism and Inheritance

Harald Gall, Prof. Dr.
Institut fir Informatik
Universitat Zurich
http://seal.ifi.uzh.ch/info1

\/7\\ tvaersny of Zurich s.e.a.l.
L Deparmentofrfomats et

Objectives

Describe polymorphism and inheritance in general
Define interfaces to specify methods

Describe dynamic binding

Define and use derived classes in Java

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 2

Inheritance Basics

Derived Classes

Overriding Method Definitions
Overriding Versus Overloading
The £inal Modifier

Private Instance Variables and Private Methods of
a Base Class

UML Inheritance Diagrams

© 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 3

Introduction to Inheritance

Inheritance allows us to define a general class
and then more specialized classes simply by
adding new details to the more general class
definition.

A more specialized class inherits the properties of
the more general class, so that only new features
need to be programmed.

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Introduction to Inheritance, cont.

Example
General class Vehicle might have instance variables
for weight and maximum occupancy.
More specialized class Automobile might add
instance variables for wheels, engine size, and license
plate number.
General class Vehicle might also be used to define
more specialized classes Boat and Airplane

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 5

Derived Classes

Consider a university record-keeping system with
records about students, faculty and (non teaching)
staff.

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 6

Inheritance Basics

Inheritance allows programmer to define a general
class

Later you define a more specific class

» Adds new details to general definition

= New class inherits all properties of initial, general
class

View example class, listing 8.4

class Person

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 7

Example: A Base Class

public class Person

{

private String name;

public Person()
name = "No name yet.";

public Person(String initialName)

{

 mame = initialNane;
}

public void setName(String newName)

nane = newNane;

public String getName()
return nane;
ublic void writeOutput()
Systen.out.printin("Name: " + name);
ublic boolean sameName(Person otherPerson)

return (this.nane. equalsignoreCase (otherPerson.nane)) ;

Display 7.1
A Base Class

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 8

Derived Classes

= Class Person used as a base class
= Also called superclass
= Now we declare derived class Student
= Also called subclass
= Inherits methods from the superclass
= View derived class, listing 8.5
class Student extends Person

View demo program, listing 8.6

class InheritanceDemo name: warren peace
Student Number: 1234

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 9

Derived Classes

= A class hierarchy

Student

Employee

‘ Undergraduate ‘ ‘ Graduate ‘ ‘ Faculty ‘ ‘ Staff

[[owon][v]

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano o

Overriding Method Definitions

= Note method writeOutput in class Student
= Class Person also has method with that name

= Method in subclass with same signature overrides
method from base class

= Overriding method is the one used for objects of the
derived class

= Overriding method must return same type of value

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano "

Overriding Versus Overloading

= Do not confuse overriding with overloading

= Overriding takes place in subclass — new method with
same signature

= Overloading
« New method in same class with different signature

© 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 12

The £inal Modifier

= Possible to specify that a method cannot be
overridden in subclass
= Add modifier final to the heading
public final void specialMethod ()
= An entire class may be declared £inal
= Thus cannot be used as a base class to derive any
other class

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Private Instance Variables, Methods

= Consider private instance variable in a base class
= Itis not inherited in subclass
= It can be manipulated only by public accessor, modifier
methods
= Similarly, private methods in a superclass are not
inherited by subclass

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

UML Inheritance Diagrams

Person

= Aclass
hierarchy in 4
. hence the arrows point up.
UML notation / AN o
Stud;nt Employee
\
/ \\ / \
/ / \
/ \ / \

/ \ /

Undergraduate Graduate Faculty staff

© 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

UML Inheritance Diagrams

Person

= Some details | - nane: string
Of UML CIaSS + setName(String newName): void
hierarchy + getName(): String

+ writeOutput(): void
+ hasSameName(Person otherPerson)): boolean

|

Student

- studentNumber: int

+ reset(String newName, int newStudentNumber): void
+ getStudentNumber(): int

+ setStudentNumber(int newStudentNumber): void

+ writeOutput(): void

+ equals(Student otherStudent): boolean

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 16

Programming with Inheritance: Outline

= Constructors in Derived Classes
= The this Method — Again

= Calling an Overidden Method

= Derived Class of a Derived Class
= Type Compatibility

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano ”

Programming with Inheritance: Outline

= The class Object

= A Better equals Method

= Case Study: Character Graphics
= Abstract Classes

= Dynamic Binding and Inheritance

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 18

Constructors in Derived Classes

= A derived class does not inherit constructors
from base class

= Constructor in a subclass must invoke constructor
from base class

= Use the reserved word super

public Student(String initialName, int initialStudentNumber)

super(initialName);
nedenthumbe fmitialStudentNumber;

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 19

The this Method — Again

= Also possible to use the this keyword
= Use to call any constructor in the class

public Person()

this("No name yet");

= When used in a constructor, this calls constructor
in same class

= Contrast use of super which invokes constructor of
base class

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 20

Calling an Overridden Method

= Reserved word super can also be used to call
method in overridden method

public void writeOutput()

isplay the name

super.writeOutput(); /.
e printlacstudent Number: " + studentNumber);

}

= Calls method by same name in base class

© 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 21

Programming Example

= A derived class of a derived class

= View sample class, listing 8.7
class Undergraduate

= Has all public members of both
= Person

= Student
= This reuses the code in superclasses

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Programming Example
)

Student

- studentNumber: int

= More details
C i i id ber) : d
of the UML T e e e e BIEREER)

+ tStudentNumber (int): void
class e e Gl
hierarchy T

Undergraduate

- level: int

+ reset(String newName, int newStudentNumber,
int newlevel): void
+ getlevel(): int
+ setlevel(int newLevel): void
+ writeOutput(): void
+ equals(Undergraduate otherUndergraduate): boolean

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 2

Type Compatibility

= In the class hierarchy
« Each Undergraduateisalsoa Student
= Each Student is also a Person

= An object of a derived class can serve as an
object of the base class
= Note this is not typecasting

= An object of a class can be referenced by a
variable of an ancestor type

© 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Type Compatibility

Be aware of the "is-a" relationship
A StudentisaPerson

Another relationship is the "has-a"

A class can contain (as an instance variable) an object
of another type

If we specify a date of birth variable for Person — it
"has-a" Date object

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 2

The Class Object

Java has a class that is the ultimate ancestor of
every class

The class Object
Thus possible to write a method with parameter of
type Object

Actual parameter in the call can be object of any type
Example: method
println (Object theObject)

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 2

The Class Object

Class Object has some methods that every Java
class inherits

Examples
Method equals
Method toString

Method toString called when println
(theObject) invoked
Best to define your own toString to handle this

© 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 27

A Better equals Method

= Programmer of a class should override method
equals from Object
= View code of sample override, listing 8.8
public boolean equals
(Object theObject)

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Case Study

= Character Graphics
= View interface for simple shapes,
listing 8.9 interface ShapeInterface
= If we wish to create classes that draw rectangles
and triangles
= We could create interfaces that extend
ShapelInterface
= View interfaces, listing 8.10

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Case Study

= Now view base class, listing 8.11 which uses
(implements) previous interfaces
class ShapeBasics

= Note
« Method drawAt calls drawHere
« Derived classes must override drawHere

= Modifier extends comes before implements

© 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

10

Case Study

= Figure 8.5 A sample rectangle and triangle

| | Asbys
| rectangle

Offser

Trianglewhosesiceis
determined by its base

~
S Base of size 15

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 3

Case Study

= Note algorithm used by method drawHere to
draw a rectangle
1. Draw the top line
2. Draw the side lines
3. Draw the bottom lines

» Subtasks of drawHere are realized as private
methods

= View class definition, listing 8.12
class Rectangle

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 32

Case Study

= View next class to be defined (and tested),
listing 8.13 class Triangle

= Itis a good practice to test the classes as we go
= View demo program, listing 8.14

class TreeDemo

© 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 3

11

Case Study

Save the Redwoods! |

Sample
screen
output

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Abstract Classes

= Class ShapeBasics is designed to be a base
class for other classes
= Method drawHere will be redefined for each subclass
= It should be declared abstract — a method that has no

body

= This makes the class abstract

= You cannot create an object of an abstract class —
thus its role as base class

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Abstract Classes

= Not all methods of an abstract class are abstract
methods

= Abstract class makes it easier to define a base
class

= Specifies the obligation of designer to override the
abstract methods for each subclass

© 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 36

12

Abstract Classes

Cannot have an instance of an abstract class
But OK to have a parameter of that type

View abstract version, listing 8.15

abstract class ShapeBase

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 7

Dynamic Binding and Inheritance

Note how drawAt (in ShapeBasics) makes a
call to drawHere

Class Rectangle overrides method drawHere
How does drawAt know where to find the correct
drawHere?

Happens with dynamic or late binding

Address of correct code to be executed determined at
run time

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 38

Dynamic Binding and Inheritance

When an overridden method invoked

Action matches method defined in class used to create

object using new

Not determined by type of variable naming the object
Variable of any ancestor class can reference
object of descendant class

Object always remembers which method actions to use
for each method name

© 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 39

13

Interfaces

Class Interfaces

Java Interfaces
Implementing an Interface
An Interface as a Type
Extending an Interface

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 40

Class Interfaces

Consider a set of behaviors for pets

Be named

Eat

Respond to a command
We could specify method headings for these
behaviors

These method headings can form a class
interface

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano “

Class Interfaces

Now consider different classes that implement this
interface

They will each have the same behaviors
Nature of the behaviors will be different

Each of the classes implements the behaviors/
methods differently

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 42

Java Interfaces

A program component that contains headings for
a number of public methods

Will include comments that describe the methods
Interface can also define public named constants

View example interface, listing 8.1
interface Measurable

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 43

Java Interfaces

Interface name begins with uppercase letter
Stored in a file with suffix . java
Interface does not include

Declarations of constructors

Instance variables

Method bodies

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano a4

Implementing an Interface

To implement a method, a class must

Include the phrase

implements Interface name

Define each specified method
View sample class, listing 8.2
class Rectangle implements Measurable
View another class, listing 8.3 which also
implements Measurable
class Circle

© 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 45

15

An Inheritance as a Type

Possible to write a method that has a parameter
as an interface type

An interface is a reference type
Program invokes the method passing it an object
of any class which implements that interface

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

An Inheritance as a Type

The method can substitute one object for another
Called polymorphism

This is made possible by mechanism
Dynamic binding
Also known as /late binding

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Extending an Interface

Possible to define a new interface which builds on
an existing interface

It is said to extend the existing interface
A class that implements the new interface must
implement all the methods of both interfaces

© 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

16

