

In

Proceedings IASTED Computer Graphics and Imaging

, 2003.

Efficient Level-of-Details for Point Based Rendering

Renato Pajarola

1

Computer Graphics Lab
Information & Computer Science

University of California Irvine

Abstract

In this paper we present techniques for the efficient gener-
ation of a level-of-detail (LOD) data structure for large
scale point-based surface representation and rendering.
Our approach generates a spatial partitioning hierarchy
of irregular point samples in 3D space, and we provide an
efficient point-octree LOD generation algorithm. Using
the concept of transformation-invariant homogeneous
covariance matrices we show how bounding ellipsoid
information can efficiently be computed for all LODs. Fur-
thermore, we present an efficient data structure for the
representation of the LOD hierarchy.

Keywords:

point-based rendering, multiresolution model-
ing, level-of-detail

1. Introduction

Points as rendering primitives have been discussed first in
[12] and have only recently been rediscovered as viable
graphics rendering primitives [10]. In particular they offer
efficient level-of-detail (LOD) representations as demon-
strated in [20], [2], [19] and [16] for rendering large
point-sampled surfaces such as the digitally scanned stat-
ues of Michelangelo [11]. One of the main advantages of
point based surface representations over polygonal meshes
is that no mesh connectivity information must be generated
via surface extraction methods nor maintained during
LOD-based rendering. Recent efforts in point-based ren-
dering (PBR) have not only resulted in efficient LOD rep-
resentations but also in high-quality rendering algorithms
such as the EWA splatting method [18,24,19] or the
object-space point blending in [16].

Further research using point primitives has considered
issues such as the combination of point and triangle primi-
tives in LOD-based rendering approaches [5,3,8,4] or sim-
plification of large point sets [1,17].

The challenge of generating an efficient LOD represen-
tations lies in the efficient processing of large point sample
data sets. In this paper we address the issue of how to gen-
erate a spatial partitioning LOD hierarchy and the neces-
sary attributes associated with each LOD node in that
hierarchy. In particular, the efficient computation of
bounding volume information as well as the splat-size
determination are important in multiresolution PBR mer-
hods. Figure 1 shows an example rendering result from our
multiresolution data structure of David’s head model, at 16
pixels screen-space error threshold only one forth of the
points are rendered while providing an extremely high dis-
play quality.

FIGURE 1.

The head of Michelangelo’s David statue
rendered with

τ

 =16 pixels screen tolerance, at 1/4
of the full resolution (510827 out of 2000606 points).

2. Surface Representation

We consider the LOD generation of objects represented as
dense sets of irregularly distributed point-samples. We
assume that the discrete input point set sufficiently sam-
ples the object’s geometry and color texture (i.e. satisfies
the Nyquist sampling criteria). The input data set consists
of surface samples

s

 with coordinates

p

, normal orientation

n

 and surface color

c

. Each sample

s

 also has information
about its spatial extent in object-space which is given by
the parameters of an elliptical disk

e

 centered at

p

 and
orthogonal to

n

. An elliptical disk

e

 consists of major and
minor axis directions

e

1

 and

e

2

 and their lengths. Together
with the surface normal

n

, the axis directions

e

1

 and

e

2

define the local tangential coordinate system of that sam-
ple. The dense set of surface samples must cover the repre-
sented object without holes and thus overlap each other in
object-space as shown in Figure 2

FIGURE 2.

Elliptical surface elements covering a
smooth and curved 3D surface.

In the remainder of this paper we assume that the input
surface samples already contain information about their
elliptical splat size and we focus on the LOD hierarchy
generation. Initial splat ellipses can be derived using vari-
ous approaches (see for example [7], [8] or [17]) and can

1. 444 Computer Science, Irvine CA 92697, pajarola@acm.org

p
n

e

2

also be obtained using our presented covariance-based
method over

k

-nearest neighbors.

3. Space-partitioning hierarchy

The multiresolution point representations considered in
this paper are hierarchical space-partitioning data struc-
tures [13,22]. Each cell or node

c

 of such a hierarchy

H

,
containing a set of

k

 point surface samples

S

c

 = {

s

1

…

s

k

}
has a representative sample

s

c

 with average coordinates
, as well as average normal

 and color information.
Furthermore, for efficient view-frustum and back-face
culling each cell also includes the sphere radius

r

c

and normal-cone [23] semi-angle

θ

c

 parameters bounding
all points in

S

c

. Several conforming space-partitioning
multiresolution hierarchies have been proposed for
point-based rendering [20,2,17]. In our work we want to
focus on a

point-octree

 [21,22] hierarchy which partitions
the space adaptively to the sample distribution
(data-driven) rather than regularly in space (space-driven)
like

region-octrees

 [21,22] which have been used more
commonly.

Point-Octree Generation:

Given

N

 input point samples

s

1

…

s

N

, a point-octree data structure can efficiently be gen-
erated by a single depth-first traversal in O(

N

 log

N

) time.
Starting with the root, at each node

c

 of the current hierar-
chy

H

 its corresponding input points have to be distributed
among the eight child nodes. In point-octrees, the
one-to-eight subdivision is determined by the average of
the points in each node. Therefore, given the

k

 point sam-
ples

S

c

 = {

s

1

…

s

k

} of a node and the average posi-
tion

p

c

 of the samples

S

c

, the set

S

c

 is partitioned into sets

S

1

 to

S

8

 according to the eight octants with respect to the
split coordinate

p

c

.
As shown in Figure 3, during the recursive top-down

construction of the octree we assume that the input data to
each node not only consists of the set of points

S

c

 but also
includes its average coordinate

p

c

, normal

n

c

, and color

c

c

.
Thus these average values are computed in the parent
node. In one linear traversal of the samples the
current node

c

 does the following:

1.

divide

S

c

 into the subsets

S

i

 with in octant

i

with respect to split coordinate

p

c

,

2.

accumulate averages

p

i

,

n

i

, and

c

i

,

3.

compute bounding sphere radius

r

c

 of points

p

i

 with
respect to center

p

c

, and

4.

compute bounding normal cone semi angle

θ

c

 of
normals

n

i

 with respect to center normal

n

c

.
This process is repeated recursively passing the infor-

mation (

S

i

,

p

i

,

n

i

,

c

i

) to the eight child nodes

c

i

.

FIGURE 3.

Top-down point-octree data flow.

As outlined in the previous section, each LOD node

c

in the point-octree hierarchy needs to store its spatial
extent in form of an elliptical disk

e

c

. To compute these

elliptical disks efficiently, we use a novel technique based
on the

generic homogeneous covariance matrix

 concept
outlined in the following section. This allows us to propa-
gate covariance information in form of a homogeneous
4

x

4 matrix efficiently bottom-up in the LOD hierarchy as
illustrated in Figure 4. To compute the elliptical disk

ec,
the child nodes of c return their generic homogeneous
covariance matrices to calculate . The following
section explains in more detail the concept of a generic
homogeneous covariance matrix, how it can efficiently be
applied during the construction of a multiresolution hierar-
chy, and how to compute a bounding elliptical disk of a set
of points.

FIGURE 4. Bottom-up point-octree data flow.

4. Generic homogeneous covariance
Since the smallest bounding ellipsoid of a set of points is
hard to compute, covariance analysis – basically a singular
value decomposition approach – is often used to determine
an elliptical Gaussian distribution fitting the given point
set [9].

The covariance matrix of a set of n points
 and their average is

defined by

. (EQ 1)

The mean p denotes the center of the ellipsoid, and the
unit-length eigenvectors v1, v2 and v3 of the covariance
matrix M denote the axis of the ellipsoid. The ratios of the
axis lengths are given by the eigenvalues λ1, λ2 and λ3. In
the local coordinate system with center p, and x-, y- and
z-axis aligned with eigenvectors v1, v2 and v3, the ellipsoid
distribution is then given by
with a = λ1, b = λ2 and c = λ3. To scale the ellipsoid such
that it encloses exactly all points, we have to find fmax over
all pi and scale the ellipsoid parameters to a’ = fmaxa,
b’ = fmaxb and c’ = fmaxc. The so defined ellipsoid is a
close approximation of the smallest bounding ellipsoid of
the given point set, feasible to compute and widely used in
practice.

The main problem with this formulation is the depen-
dency of Equation 1 on the mean p. Therefore, if the cova-
riance matrices MO and MQ of two point sets

 and as well as the
covariance of their union has to be calculated,
Equation 1 has to be computed for point sets O and Q, as
well as for their union . Therefore, the outer product

 in Equation 1 is evaluated
 times. In a multiresolu-

tion hierarchy over N points this leads to a cost of
O(N log N) outer product calculations. Despite the fact that
the cost of generating a multiresolution hierarchy is in the
order of O(N log N), see also Section 3, it is desired to
avoid excess numerical calculations such as the expensive
outer product of two vectors.

pc k 1– pii 1=
k

∑⋅=
nc k 1– nii 1=

k
∑= cc k 1– cii 1=

k
∑=

c H∈

c H∈

si Sc∈

s Si∈

node c

input (Sc, pc, nc, cc)

output (Si, pi, ni, ci)

node i

Mi Mc

node c

return (M’c = ΣΣΣΣi=1..k M’i)

node i

return (M’i)

p1 … pn, , R3∈ p n 1– pii 1=
n

∑=

M n 1– pi p–() pi p–()
T

⋅
i 1=
n

∑=

x2 a2⁄ y2 b2⁄ z2 c2⁄+ + f2=

O o1 … on, ,{ }= Q q1 … qm, ,{ }=
MO Q∪

O Q∪
pi p–() pi p–()T⋅
O Q O Q∪+ + 2 n m+()⋅=

3

Homogeneous Covariance: In a homogeneous coordinate
system with points we can rewrite the outer
product to with the
transformation matrix T denoting the translation by the
mean –p. Thus we can revise Equation 1 to

(EQ 2)

with denoting the new generic
homogeneous covariance matrix of points p1…pn. This
matrix expresses the non-normalized1 covariance of a
point set with respect to the origin of the coordinate sys-
tem. Therefore, we can now express the homogeneous
covariance of a set of points with respect to any arbi-
trary center o given by a translation T with parameters
(–ox, –oy, –oz) by . The correspond-
ing covariance matrix M in Cartesian space is given by the
upper-left 3x3 sub-matrix of .

In fact, we can now transform the covariance into any
coordinate system, thus not only including a translation T
to a new center of origin but also involving a rotation R of
the coordinate axis. Therefore, the homogeneous covari-
ance matrix in any local coordinate system is given by

. (EQ 3)

From the 4D homogeneous covariance matrix the
3D Cartesian-space covariance matrix M is given by drop-
ping the fourth row and column. This corresponds to an
orthogonal projection from 4D into 3D along the homoge-
neous axis. Similarly we can express the covariance in any
lower-dimensional sub-space by orthogonal projection.
Therefore, we get the covariance Mx,y of the points pro-
jected into the x,y-plane by dropping the homogeneous and
z-axis rows and columns from .

Since the introduced generic homogeneous covariance
matrix is invariant to transformations, the union of
two point sets O and Q can efficiently be handled: Given
their generic homogeneous covariances
and , the combined generic covariance
matrix of the union is then given by

. (EQ 4)

Therefore, in a multiresolution hierarchy the expensive
outer product sums of points only have to be calculated
once on the leaf-level of the hierarchy, thus only O(N)
outer products are computed. All non-leaf nodes in the
hierarchy can compute their generic homogeneous covari-
ance matrix from their child nodes by simple addition as in
Equation 4.

Splat-Size Determination: To determine the splat size of
an elliptical disks ec of a node in the LOD hierarchy
H we must compute a tangential bounding ellipse of the
points associated with c. The basic principle is to project
the set of points p1…pk of a node c into the tangent plane
κc given by the equation which is

defined by the node location pc and normal orientation nc.
The bounding ellipse ec is then computed in the tangent
plane κc as illustrated in Figure 5.

FIGURE 5. Projection of points onto tangent plane κc
at position pc and with normal nc.

Using the generic homogeneous covariance matrix
of node c we first express the covariance in the 2D
sub-space of the tangent plane κc, then compute the ellipti-
cal distribution of points in κc and lastly we adjust the
ellipse to bound all projected points in κc.

Let us first outline how we get the ellipse axis and its
axis-ratio within the tangent plane κc. For a node c and its
matrix denoting the covariance of all points pi repre-
sented by c, we apply a coordinate system transformation
RT according to Equation 3 to a local tangential coordinate
system of c. Thus the translation matrix T has the last col-
umn being (–px, –py, –pz, 1)T from the node’s location pc
and the rotation matrix R has the row vectors Rx = Ry x Rz,
Ry = (0, –nz, ny, 0) and Rz = (nx, ny, nz, 0) given by nc. This
transforms the covariance into given in the local tan-
gent-space coordinate system. Moreover, the covariance of
the points projected into the 2D tangent sub-space κc is
given by the upper-left 2x2 sub-matrix of , denoted by

. The axis-ratio of the elliptical distribution in κc is
then given by the eigenvalue decomposition of , and
we obtain the eigenvalues λ1 and λ2 from solving the qua-
dratic equation

. (EQ 5)

Furthermore, we obtain the major and minor axis direc-
tions of the bounding ellipse in the tangent plane κc by
solving

(EQ 6)

for the eigenvectors v1 and v2. Note that v1 and v2 are in
R2, given in the tangent plane κc. However, with respect to
the local tangential coordinate system with z-axis perpen-
dicular to κc we get their 3D vectors by .
The world-coordinate system ellipse axis e1 and e2 are
then obtained by applying the inverse rotation R-1 of the
coordinate system transform and normalization to unit
length . Now we have defined a planar
elliptical disk ec in the world coordinate system with cen-
ter pc, axis directions e1, e2 perpendicular to nc as well as
major axis length a’ = λ1 and minor axis length b’ = λ2.2

The so defined elliptical disk does not yet exactly
bound all points pi projected onto plane κc and its size
must be scaled to a = fa’ and b = fb’. We obtain the neces-
sary maximal scale factor f by evaluating the ellipse equa-
tion in the tangent plane κc spanned

1. no division by n

p'i
T pi

T 1,()=
pi p–() pi p–()T⋅ T p⋅ 'i() T p⋅ 'i()T⋅

Mh n 1– T p⋅ 'i() T p⋅ 'i()T⋅
i 1=
n

∑

n 1– T p⋅ 'i p'i
T TT⋅ ⋅()

i 1=
n

∑

n 1– T p'i p'i
T⋅

i 1=
n

∑() TT⋅ ⋅ n 1– T Mh TT⋅ ⋅

=

=

= =

Mh p'i p'i
T⋅

i 1=
n

∑=

Mh

Mh

Mh n 1– T Mh TT⋅ ⋅=

Mh

Mh n 1– R T Mh TT RT⋅ ⋅ ⋅ ⋅=

Mh

Mh

O Q∪

MO o'i o'i
T⋅∑=

MQ q'i q'i
T⋅∑=

MO Q∪ O Q∪

MO Q∪ MO MQ+=

c H∈

nc x pc–()• 0=

2. assuming λ1 bigger than λ2

pc

pi

nc

tangent plane κc

elliptical disk ec

projected point

Mc

Mc

Mc

Mc
Mκc

Mκc

λ2 trace Mκc
() λ det Mκc

()+⋅+ 0=

Mκc
vi⋅ λi vi⋅=

v'iT vi
T 0,()=

ei R 1– v'i⋅ v'i⁄=

f2 x2 a2⁄ y2 b2⁄+=

4

by e1 and e2 for all points pi, with and
. However, since every surface element

si represents an elliptical disk ei and not just a single point
pi we generate bounding ellipses that not only include pi
but cover the entire disks ei, approximated by oriented
bounding boxes as illustrated in Figure 6. The bounding
boxes are derived by the major and minor axis of ei. With-
out this conservative measure a coarse LOD would not
cover the surface without holes. For non-leaf nodes the
bounding ellipse covers its child node ellipses.

FIGURE 6. a) Ellipse ec bounding only the points pi
and b) conservatively bounding the disks ei.

The outlined generation of elliptical disks cannot only
be used to compute bounding elliptical disks of nodes c of
the multiresolution hierarchy H, but could also be applied
in a similar way to obtain elliptical disks of the initial input
point set. For this, one would compute the k-nearest neigh-
bors of each point, calculate the average normal if neces-
sary, compute the covariance matrix of this neighborhood
and get a bounding ellipse of the k-nearest neighbors as
outlined above.

5. Data structure
The data structure of our point-octree LOD hierarchy is
fairly simple. As shown in Figure 7 each octree node has a
counter denoting how many data points this node refer-
ences (zero for non-leaf nodes), contains a point data struc-
ture to hold the split point information, and includes an
array of pointers to child nodes (for non-leaf nodes) or
sample data points (for leaf nodes).

struct Octree {
unsigned char np; // number of points
MyPoint split; // split point

// pointers to child nodes (np==0)
// or if leaf (np>0) to sample points
union {

Octree *(*child)[8];
MyPoint *points;

 };
};

FIGURE 7. Octree node data structure.

The data structure for sample points is given in
Figure 8 and basically includes the information outlined in
Sections 2 and 3 to specify a sample splat point. Note that
for storage efficiency the normal information is not
encoded as a three-dimensional vector but is represented
by an index into a pre-computed table of quantized nor-
mals as illustrated in Figure 9.

struct MyPoint {
Vector3f p; // coordinates
Color3u c; // color

float size; // bounding sphere size
float theta; // normal cone semi-angle

float ell; // major axis length
float ratio; // minor/major axis ratio

NIndex nIndex; // normal
NIndex e1Index;// major ellipse axis
NIndex e2Index;// minor ellipse axis

};

FIGURE 8. Point sample data structure.

As shown in Figure 9, the normal-space is quantized to
q bits and a discrete number 2q of normal directions is
maintained in a look-up table similar to [6]. Three bits are
required to denote the octant of the normal and the remain-
ing q-3 bits can be used to uniformly subdivide the unit
sphere in the first octant. The first octant is subdivided as
shown on the right in Figure 9, the index i starts at the
z-axis pole and the latitude is subdivided into k values. The
longitude subdivision j varies according to the latitude at
latitude i, the longitude is subdivided into i segments. Thus
the table stores (k2+k)/2 quantized normals. Section 7 pro-
vides results on the efficiency of this data structure and
examples of the normal table.

FIGURE 9. Quantized normal representation.

6. Rendering
In this paper we will briefly outline the LOD rendering
aspects of our point blending and splatting algorithm pro-
posed in [16]. The overall rendering process includes
view-dependent LOD selection of points which is
explained in this section, followed by a visibility splatting,
blending and rendering step that is explained in [16].

View-Dependent LOD Selection: The LOD selection
takes three view-dependent selection criteria into account:
view-frustum culling, back-face culling and screen projec-
tion tolerance. These criteria allow efficient back-tracking
during the recursive traversal of the point-octree hierarchy
H. If for a node the bounding sphere with radius rc
does not intersect the view frustum (approximated by a
viewing cone) or if the bounding normal-cone [23] with
semi-angle θc indicates a completely back-facing surface
region, recursive LOD selection can be stopped. Only a
few floating-point operations are used to compute the
view-frustum and back-face culling criteria as proposed in
[14, 15]. We assume that the viewpoint e, the viewing
direction w and semi-angle ω (as well as its sine, cosine
and tangens values) of the viewing cone are given for each
frame.

As shown in Figure 10, view-frustum culling is per-
formed if and back-face culling is done if

xi pi pc–() e1•=
yi pi pc–() e2•=

pc

a) b)

pcec ec

pi
ei pi

x

y

z quantized
normal

i =
 1

..k

j = 1..i

c H∈

γ α– ω>

5

. Both criteria can be computed without any
expensive trigonometric functions as shown in [14, 15].

FIGURE 10. a) View-frustum culling if and
b) back-face culling if .

Additionally, a screen projection error tolerance is used
for LOD selection. A node c is selected if its elliptical disk
ec projected on screen is less than a threshold τ. Given the
area of the ellipse ec, the normalized viewing direction
w and the focal length d of the viewing plane as shown in
Figure 11, the projected area on screen that is compared to
τ for LOD selection is

. The factor
 takes the tilting of the ellipse with

respect to the normal-cone into account, see also Figure 11
and [14]. With respect to a given viewpoint e, the visible
area is maximal if , and minimal if

. However, due to the normal varia-
tion bounded by θc, the maximal visible area can already
occur when is 1.

FIGURE 11. Screen projection of elliptical disk.

7. Experimental results
The data-driven space-partitioning point-octree hierarchy
is illustrated in Figure 12 by transparent boxes. In compar-
ison to more widely used region-octree hierarchies (i.e. in
[20,2]), the point-octree is more adaptive to the spatial dis-
tribution of the points. This can also be seen from Table 1
which reports much fewer nodes for the octree hierarchy
than reported in [20] for a region-octree (i.e. for the David
head model).

In Table 1 we report LOD hierarchy construction times
for several models performed on a 1.4GHz Pentium4 CPU.
Reported are the number of point samples of each object,
the number of nodes generated in the point-octree hierar-
chy and the CPU time cost that not only includes the spa-
tial partitioning of the points but also the covariance matrix
calculations and determination of elliptical splat sizes for
all points. We can see that our multiresolution model and

splat size generation achieves a performance of processing
about 100,000 input points per second. Even multi-million
point models can efficiently be processed by our approach,
and the splat size generation using the homogeneous cova-
riance computation is very efficient.

FIGURE 12. Point-octree space partitioning levels.

Table 2 shows the memory cost of our multiresolution
point-octree data structure. The PLY file size shows a ref-
erence indexed triangle mesh file of the same data set. Our
point-octree data structure requires about 46 bytes per
input vertex, including all the LOD hierarchy information
and per-point attributes (coordinates, normal, color, ellipse
information). This compares favorably also with highly
optimized multiresolution triangle mesh formats such as
[14] which reported about 60 bytes/vertex on disk and 106
bytes/vertex in main memory to perform similar
view-dependent LOD rendering.

The efficiency of the normal-space quantization is
shown in Figure 13. Already a low quantization of subdi-
viding the latitude into 31 discrete angles (and the longi-
tude accordingly, see Section 5) that results in only
(312+31)/2 = 496 normals that can be indexed by 9 bits
only (thus q = 9+3 = 12 bits) shows a very dense distribu-
tion of normals and corresponding oriented triangles in
Figure 13. Going to q = 16 bits leads to an extremely well
sampled normal space in practice.

β θ+ 90°<

θc

e

nc

c

β

ω

w
e

c γ

α

rc

w

a) b)

γ α– ω>
β θ+ 90°<

Aec

Ascreen f Aec
d2⋅ c e–() w⋅ 2⁄()=

f γ θc–()cos=

γ 0°= γcos⇒ 1=
γ 90°= γcos⇒ 0=

γ θ–()cos

θc

viewpoint e

normal nc

c

normal cone
semi-angle

γ vector ec

θθ

focal length d

w

Model #Points #Nodes Time
David 2000606 802371 20.6s

Female 302948 121439 2.97s
Balljoint 137062 54992 1.37s

TABLE 1. Multiresolution point hierarchy construction and
splat generation times.

Model #Points #Triangles PLY File #Points & Nodes Octree File
David 2000606 2000606 165MB 2802977 89MB

Female 302948 302948 24MB 424387 13MB
Balljoint 137062 137062 11MB 192054 6MB

TABLE 2. Multiresolution point hierarchy file sizes.

6

FIGURE 13. Quantization of normal-space into 9
bits.

Example renderings of some test models are given in
Figure 14 to show the efficiency of our point-octree LOD
hierarchy. Despite a very high screen-space error tolerance
of 0.02%=246pixesl, the quality of the rendering is
extremely good. The point-octree hierarchy allows very
fast LOD-based point selection and rendering as reported
in [16].

FIGURE 14. Balljoint (left, rendered 42076 out of
137062 points), Female (right, rendered 77227 out
of 302948 points) at τ=0.02%. (screen-space
tolerance τ given in percentage of viewport size)

8. Conclusions
We have presented efficient LOD generation techniques
for point-based surface representations based on a
data-driven point-octree LOD hierarchy and efficient
covariance matrix computation. The experiments show the
efficiency of our approach for multiresolution representa-
tion of large point data sets.

While not optimized on the bit-level for storage cost,
our approach achieves excellent results compared to opti-
mized multiresolution triangle mesh formats. Future work
includes optimizing bit-level storage efficiency for octree
nodes and point representations comparable to [20] and
[2].

Acknowledgements
We would like to thank the Stanford 3D Scanning Reposi-
tory and Digital Michelangelo projects as well as Cyber-
ware for freely providing geometric models to the research
community.

References
[1] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T. Silva.

Point set surfaces. In Proceedings IEEE Visualization 2001, pages
21–28. Computer Society Press, 2001.

[2] M. Botsch, A. Wiratanaya, and L. Kobbelt. Efficient high quality render-
ing of point sampled geometry. In Proceedings Eurographics Workshop
on Rendering, pages –, 2002.

[3] B. Chen and M. X. Nguyen. POP: A hybrid point and polygon rendering
system for large data. In Proceedings IEEE Visualization 2001, pages
45–52, 2001.

[4] L. Coconu and H.-C. Hege. Hardware-oriented point-based rendering of
complex scenes. In Proceedings Eurographics Workshop on Rendering,
pages 43–52, 2002.

[5] J. D. Cohen, D. G. Aliaga, and W. Zhang. Hybrid simplification: Com-
bining multi-resolution polygon and point rendering. In Proceedings
IEEE Visualization 2001, pages 37–44, 2001.

[6] M. Deering. Geometry compression. In Proceedings SIGGRAPH 95,
pages 13–20. ACM SIGGRAPH, 1995.

[7] T. K. Dey, J. Giesen, and J. Hudson. A delaunay based shape reconstruc-
tion from larga data. In Proceedings IEEE Symposium in Parallel and
Large Data Visualization and Graphics, pages 19–27, 2001.

[8] T. K. Dey and J. Hudson. PMR: Point to mesh rendeering, a fea-
ture-based approach. In Proceedings IEEE Visualization 2002, pages
155–162. Computer Society Press, 2002.

[9] D. H. Eberly. 3D Game Engine Design. Morgan Kaufmann Publishers,
San Francisco, California, 2001.

[10] J. Grossman and W. J. Dally. Point sample rendering. In Proceedings
Eurographics Rendering Workshop 98, pages 181–192. Eurographics,
1998.

[11] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira,
M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk.
The digital Michelangelo project: 3D scanning of large statues. In Pro-
ceedings SIGGRAPH 2000, pages 131–144. ACM SIGGRAPH, 2000.

[12] M. Levoy and T. Whitted. The use of points as display primitives. Tech-
nical Report TR 85-022, Department of Computer Science, University of
North Carolina at Chapel Hill, 1985.

[13] J. Nievergelt. 7±2 criteria for assessing and comparing spatial data struc-
tures. In Proceedings of the 1st Symposium on the Design and Implemen-
tation of Large Spatial Databases, volume 409 of Lecture Notes in
Computer Science, pages 3–27. Springer-Verlag, 1989.

[14] R. Pajarola. Fastmesh: Efficient view-dependent meshing. In Proceed-
ings Pacific Graphics 2001, pages 22–30. IEEE, Computer Society
Press, 2001.

[15] R. Pajarola, M. Antonijuan, and R. Lario. QuadTIN: Quadtree based tri-
angulated irregular networks. In Proceedings IEEE Visualization 2002,
pages 395–402. Computer Society Press, 2002.

[16] R. Pajarola, M. Sainz, and P. Guidotti. Object-space blending and splat-
ting of points. Technical Report UCI-ICS-03-01, The School of Informa-
tion and Computer Science, University of California Irvine, 2003.
submitted for publication.

[17] M. Pauly, M. Gross, and L. P. Kobbelt. Efficient simplification of
point-sampled surfaces. In Proceedings IEEE Visualization 2002, pages
163–170. Computer Society Press, 2002.

[18] H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Surfels: Surface ele-
ments as rendering primitives. In Proceedings SIGGRAPH 2000, pages
335–342. ACM SIGGRAPH, 2000.

[19] L. Ren, H. Pfister, and M. Zwicker. Object space EWA surface splat-
ting: A hardware accelerated approach to high quality point rendering. In
Proceedings EUROGRAPHICS 2002, pages –, 2002. also in Computer
Graphics Forum 21(3).

[20] S. Rusinkiewicz and M. Levoy. Qsplat: A multiresolution point render-
ing system for large meshes. In Proceedings SIGGRAPH 2000, pages
343–352. ACM SIGGRAPH, 2000.

[21] H. Samet. The quadtree and related hierarchical data structures. Comput-
ing Surveys, 16(2):187–260, June 1984.

[22] H. Samet. The Design and Analysis of Spatial Data Structures. Addison
Wesley, Reading, Massachusetts, 1989.

[23] L. A. Shirman and S. S. Abi-Ezzi. The cone of normals technique for
fast processing of curved patches. In Proceedings EUROGRAPHICS 93,
pages 261–272, 1993. also in Computer Graphics Forum 12(3).

[24] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Surface splatting. In
Proceedings SIGGRAPH 2001, pages 371–378. ACM SIGGRAPH,
2001.

