

Department of Informatics

Martin Glinz

Software Quality

Chapter 2

Model Checking

2.1 Motivation

- 2.2 Temporal Logic
- 2.3 Principles of Model Checking with LTL
- 2.4 Model Checking in Practice

Proving programs and properties

When developing critical software, we are interested in formally proving that

- A program is correct (i.e., it satisfies its specification)
- A model actually has certain required properties
- First case: Classical program proofs, i.e. proving P ⊢ S
 for a program P and its specification S
- O Second case: This kind of proof is called Model Checking: Let M be a model and Φ a required property (typically specified as a formula in temporal logic). We have to prove that $M \models \Phi$, i.e., M satisfies Φ .

[Clarke and Emerson 1981, Queille and Sifakis 1982]

Ways of using Model Checking

Model Checking is typically used in two ways:

- Partial verification of programs:
 - Let M be a program and Φ some critical part of its specification. $M \models \Phi$ means proving the correctness of program M with respect to the part Φ of its specification
- Proving properties of a specification:
 - Let M be a specification and Φ a property that this specification is required to have. $M \models \Phi$ means proving that the property Φ actually holds for this specification

Classes of properties to be proven

- There are two classes of required properties
- Safety properties: unwanted/forbidden/dangerous states shall never be reached
- Liveness properties: desired states shall always be reached sometimes

[Lamport 1977; Owicki and Lamport 1982]

- Typical safety properties: impossibility of deadlock, guaranteed mutual exclusion
- Typical liveness properties: eventual termination of a program, impossibility of starvation or livelock

2.1 Motivation

2.2 Temporal Logic

- 2.3 Principles of Model Checking with LTL
- 2.4 Model Checking in Practice

[Pnueli 1977]

- Safety and liveness properties imply a notion of time
- However: no notion of state or time in propositional logic and predicate logic
- Extension needed for state or time dependent statements
- Various potential forms of temporal and modal logic
- We use Linear temporal logic (LTL) here

Linear time logic (LTL)

- Time is modeled as an ordered sequence of discrete states
- The existential and universal quantifiers of predicate logic are generalized to four temporal quantifiers:
 - S holds forever from now
 - S will hold sometimes in the future
 - S will hold in the next state
 - S holds until T becomes true
- LTL formulae are interpreted over so-called Kripke structures

Let S be a finite set of states and P a finite set of atomic propositions

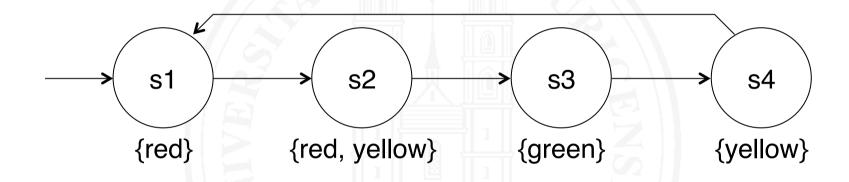
A System (S, I, R, L) consisting of

- the set S of states,
- a set I of initial states, $I \subseteq S$
- a transition relation $R \subseteq S \times S$, such that there is no terminal state in S
- a labeling function $L: S \to IP(S)$, mapping every state $s \in S$ to a subset of propositions which are true in state s

is called a Kripke structure (or Kripke transition system)

Example: a traffic light

Let P = {off, red, yellow, green}



Exercise: Modify the given Kripke structure such that it also models a yellow flashing light.

Formulae in LTL

- Formulae in LTL are constructed from
 - atomic propositions
 - the Boolean operators ¬, ∧, ∨, →
 - the temporal quantifiers
 - X (next)

 Alternate Notation:
 f for X f

 F (finally)

 f for G f

 U (until)
- Interpretation: always on a path in a Kripke structure
- Example: For any path $s2 \rightarrow s3 \rightarrow s4 \rightarrow ...$ in our traffic light model, we have: X green, G ¬off, F (red \land ¬yellow)

- 2.1 Motivation
- 2.2 Temporal Logic
- 2.3 Principles of Model Checking with LTL
- 2.4 Model Checking in Practice

Model Checking with LTL

- A Kripke structure M satisfies the LTL formula Φ , formally speaking $M \models \Phi$, iff Φ is true for all paths in M.
- Now we can precisely define Model Checking with LTL as follows:
 - Let M be a model, expressed as a Kripke structure and Φ a formula in LTL that we want to prove
 - Model Checking is an algorithmic procedure for proving $M \models \Phi$
 - If the proof fails, i.e., $M \models \neg \Phi$, holds, the procedure yields a counter example: a concrete path in M for which Φ is false

Example: mutual exclusion

We consider the problem of two processes p_1 and p_2 and a critical region c which must not be used by more than one process at every point in time.

Let $c_i = p_i$ uses the critical region c $t_i = p_i$ tries to enter the critical region c $n_i = p_i$ does something else

Now we can state the mutual exclusion problem formally as

(1)
$$G \neg (c_1 \land c_2)$$

Further, we want the following property to hold:

(2)
$$G((t_1 \rightarrow Fc_1) \land (t_2 \rightarrow Fc_2))$$

Explain why we state property (2). What kind of property is this?

Example: mutual exclusion – 2

Now we model a simple mutual exclusion protocol as a Kripke

structure: S_1 $\{n_1, n_2\}$ S_2 S_3 $\{t_1,n_2\}$ $\{n_1,t_2\}$ S_5 $\{t_1,t_2\}$ $\{c_1, n_2\}$ $\{n_1,c_2\}$ Sa

Model Checking proves:

- G \neg ($c_1 \land c_2$) holds
- G $((t_1 \rightarrow F c_1) \land (t_2 \rightarrow F c_2))$ does not hold

Software Quality

2. Model Checking

© 2014 Martin Glinz

 $\{t_1, c_2\}$

Example: mutual exclusion – 3

Exercise:

Give a counter example showing that

(2) G
$$((t_1 \rightarrow F c_1) \land (t_2 \rightarrow F c_2))$$
 does not hold.

Modify the model such that property (2) holds on all paths.

A simple Model Checking algorithm

Given a model M as a Kripke structure and a LTL formula Φ

Parse the formula Φ

WHILE not done, traverse the parse tree in *post-order* sequence

Take the sub-formula ρ represented by the currently visited node of the parse tree

Label all nodes of M for which ρ is true¹⁾ with ρ

ENDWHILE

IF all nodes of *M* have been labeled with Φ^{2}

THEN success

ELSE fail

ENDIF

- Due to the order of traversal, all terms needed for evaluating ρ are already present as labels
- The root of the parse tree represents the full formula Φ

Tractability of Model Checking

- \bigcirc The computational complexity of efficient model checking algorithms is O(n), with n being the number of states
- However, the number of states grows exponentially with the number of variables in the model:
 - n binary variables: 2ⁿ states
 - n variables of m Bit each: 2^{nm} states
- Even with the fastest algorithms, Model Checking is intractable for programs / models of real-world size
- ⇒ Simplification required

Lossless simplification of Model Checking

Representing models and formulae with so-called ordered binary decision diagrams

- allows significantly faster algorithms
- is called symbolic Model Checking
- Still proves $M \models \Phi$ or $M \models \neg \Phi$

Simplification by abstracting the state space

Deliberate simplification of the model (to be performed manually)

- The full domain of a variable is replaced by a few representative values
 (for example, an Integer with 2³² states is replaced by a small set of representative values, e.g., {-4, 0, 1, 13}
- A successful Model Checking run is no longer a proof of $M \models \Phi$. It only provides strong evidence for $M \models \Phi$.
- A failing run still proves $M \models \neg \Phi$
- Model Checking a simplified state space constitutes a systematic automated test

- 2.1 Motivation
- 2.2 Temporal Logic
- 2.3 Principles of Model Checking with LTL
- 2.4 Model Checking in Practice

Practical application

- Regularly used in industry for verifying
 - electronic circuit designs
 - safety-critical components of software systems, particularly in avionics
 - security-critical software components, particularly in communication systems
- Models can be created in a notation resembling a programming language; no need to build actual Kripke structures

Tools

Two well-known tools in the public domain

- SPIN [Holzmann 1991, 1997, 2003]
 - Available at: http://spinroot.com
 - Uses LTL
 - Models are written in the Promela language
- SMV [McMillan 1993]
 - Available at: http://www.cs.cmu.edu/~modelcheck/
 - Uses CTL (computation tree logic)

Many other model checking tools available

References

- E.M. Clarke, E.A. Emerson (1981). Design and Synthesis of Synchronization Skeletons Using Branching Time Temporal Logic. In: D. Kozen (ed.), *Logics of Programs, Workshop*, Yorktown Heights, NY. Lecture Notes in Computer Science Volume 131. Berlin-Heidelberg: Springer. 52–71.
- E.M. Clarke, E.A. Emerson and A.P. Sistla (1986). Automatic Verification of Finite-State Concurrent Systems Using Temporal Logic Specifications. *ACM Transactions on Programming Languages and Systems* **8**(2):244–263.
- G.J. Holzmann (1991). *Design and Validation of Computer Protocols*. Englewood Cliffs, N.J.: Prentice Hall.
- G.J. Holzmann (1997). The Model Checker SPIN. *IEEE Transactions on Software Engineering* **23**(5):279–295.
- G.J. Holzmann (2003). The Spin Model Checker: Primer and Reference Manual. Addison-Wesley.
- M.R.A. Huth, M.D. Ryan (2000). *Logic in Computer Science: Modelling and Reasoning about Systems*. Cambridge: Cambridge University Press.
- S.A. Kripke (1963). Semantic Considerations on Modal Logic. *Acta Philosphica Fennica* **16**:83-94.
- L. Lamport (1977). Proving the Correctness of Multiprocess Programs. *IEEE Transactions on Software Engineering* **SE-3**(2):125–143.
- K.L. McMillan (1993). Symbolic Model Checking. Kluwer Academic Publishers.

References – 2

S. Owicki, L. Lamport (1982). Proving Liveness Properties of Concurrent Programs. *ACM Transactions on Programming Languages and Systems* **4**(3):455–495.

A. Pnueli (1977). The Temporal Logic of Programs. *Proc. 18th IEEE Symposium on the Foundations of Computer Science*, Providence, R.I. 46–57.

J.P. Queille, J. Sifakis (1982). Specification and Verification of Concurrent Systems in CESAR. In: M. Dezani-Ciancaglini, U. Montanari (eds.), *International Symposium on Programming, 5th Colloquium, Turin, April 6-8, 1982. Proceedings.* Lecture Notes in Computer Science vol. 137. Berlin-Heidelberg: Springer. 337–351.