
Software Engineering

Lecture: Modular Design

Thomas Fritz

Many thanks to Philippe Beaudoin, Gail

Murphy, David Shepherd, Neil Ernst and

Meghan Allen

Reading!

For next lecture: (all required)

 Composite Design Pattern
http://sourcemaking.com/design_patterns/composite

 Mediator Design Pattern

http://sourcemaking.com/design_patterns/mediator

 Façade Design Pattern

http://sourcemaking.com/design_patterns/facade

2

http://sourcemaking.com/design_patterns/composite
http://sourcemaking.com/design_patterns/composite
http://sourcemaking.com/design_patterns/mediator
http://sourcemaking.com/design_patterns/mediator
http://www.agiledata.org/essays/tdd.html
http://sourcemaking.com/design_patterns/facade
http://sourcemaking.com/design_patterns/facade

3

Modular Design Overview

 Introduction to Modularity

 Principles and Heuristics for good Modularity
 High Cohesion

 Loose Coupling

 Information Hiding

 Open/Closed Principle

 Liskov Substitution Principle

 Law of Demeter

By the end of this unit you will be able to:

 Critique a UML diagram and provide concrete

suggestions of how to improve the design

 Explain the goal of a good modular design and why it is

important

 Apply the following design-principles appropriately: high

cohesion, loose coupling, principle of least knowledge,

Liskov substitution principle, information hiding,

open/closed principle

Learning Goals

4

 Web site slow or error-prone / crashes ?

Recap: Bad Design Activity

5

Software Design – Modularity

6

The goal of all software design techniques is to

break a complicated problem into simple pieces.

Modular Design

7

8

Why Modularity?

9

 Minimize Complexity

 Reusability

 Extensibility

 Portability

 Maintainability

 …

Why Modularity?

10

 There is no “right answer” with design

 Applying heuristics/principles can provide

insights and lead to a good design

What is a good modular Design?

11

12

Principles & Heuristics for modular

Design

 High Cohesion

 Loose Coupling

 Information Hiding

 Open/Closed Principle

 Liskov Substitution Principle

 Law of Demeter

 ….

13

Discussion question

 Which of these two designs is better?

A.public class AddressBook {

 private LinkedList<Address> theAddresses;
 public void add (Address a)
 {theAddresses.add(a);}
 // ... etc. ...
 }

B. public class AddressBook
 extends LinkedList<Address> {
 // no need to write an add method, we inherit it
}

14

Design
Principles

15

High Cohesion

 Cohesion refers to how closely the functions in a

module are related

 Modules should contain functions that logically

belong together

 Group functions that work on the same data

 Classes should have a single responsibility

(no schizophrenic classes)

High or low cohesion?

public class EmailMessage {

 …

 public void sendMessage() {…}

 public void setSubject(String subj) {…}

 public void setSender(Sender sender) {…}

 public void login(String user, String passw) {…}

 ….

}

16

17

Loose Coupling

 Coupling assesses how tightly a module is

related to other modules

 Goal is loose coupling:

 modules should depend on as few modules

 as possible

 Changes in modules should not impact other

modules; easier to work with them separately

Tightly or loosely coupled?

18 from Alverson (UW)

Tightly or loosely coupled?

19 from Alverson (UW)

Information Hiding

20 from CodeComplete by Steve McConnell

A good class is a lot
like an iceberg: seven-
eights is under water,
and you can see only
the one-eight that’s
above the surface.

21

Information Hiding

 Only expose necessary

functions

 Abstraction hides complexity

by emphasizing on essential

characteristics and

suppressing detail

 Caller should not assume

anything about how the

interface is implemented

 Effects of internal changes

are localized

22

Information Hiding: Example 1

The chief scientist of the elementary particle research
lab asks the new intern about his latest results: “So
what is the average momentum of these neutral
particles?”

a) 42

b) Hmmm. Take this pile of sheet with my
observations, here is the textbook that explains how to
calculate momentum, also you will need to search
online for the latest reference tables. Oh, and don’t
forget to correct for multiplicity!

Which answer is the most likely to get the intern fired?

23

Information Hiding: Example 2

 Class DentistScheduler has

 A public method automaticallySchedule()

 Private methods:

 whoToScheduleNext()

 whoToGiveBadHour()

 isHourBad()

 To use DentistScheduler, just call

automaticallySchedule()

 Don’t have to know how it’s done internally

 Could use a different scheduling technique: no

problem!

24

Open/Closed Principle

 Classes should be open for extensions

 It is often desirable to modify the behavior of a class

while reusing most of it

 Classes should be closed for change

 Modifying the source code of a class risks breaking

every other class that relies on it

 Achieved through inheritance and

dynamic binding

25

Open/Closed and Information Hiding

 Modifying the source code of a class risks

breaking every other class that relies on it

 However, information hiding says that we should

not assume anything about implementation

 So is there a need to keep classes closed for

change?

 Yes because the implied behavior should never

change!

 Inherit to reuse an interface while changing the

behavior

class Drawing {

 public void drawAllShapes(List<IShape> shapes) {

 for (IShape shape : shapes) {

 if (shape instanceof Square()) {

 drawSquare((Square) shape);

 } else if (shape instanceof Circle) {

 drawCircle((Circle) shape));

 } } }

 private void drawSquare(Square square) { …// draw the square… }

 private void drawCircle(Circle square) { …// draw the circle… }

}

26

Open/Closed Example

27

Open/Closed Example

class Drawing {

 public void drawAllShapes(List<IShape> shapes) {

 for (IShape shape : shapes) {

 shape.draw();

} } }

interface IShape {

 public void draw();

}

class Square implements IShape {

 public void draw() { // draw the square }

}

28

Open/Closed Caveat

 nice in theory, but in practice deriving a class to
modify its behavior is not always best thing to do

 however, it becomes increasingly important to
adhere to the open/closed principle as classes
mature and are more and more relied upon

 some classes are not meant to be reusable, so
the Open/Closed principle doesn’t apply

29

Liskov Substitution Principle

 An object of a superclass should always be

substitutable by an object of a subclass

 Subclass has same or weaker preconditions

 Subclass has same or stronger postconditions

 Derived methods should not assume more or

deliver less

30

Liskov Substitution Principle
Example

Reasonable to derive a square from a rectangle?

Rectangle

Square

see http://www.objectmentor.com/resources/articles/lsp.pdf

LSP Example – Rectangle & Square

class Rectangle {

 private double fWidth, fHeight;

 public void setWidth(double w) { fWidth = w; }

 public void setHeight(double h) { fHeight = h; }

 public double getWidth() { return fWidth; }

 public double getHeight() { return fHeight; }

}

31

LSP Example – Rectangle & Square

class Square extends Rectangle {

 public void setWidth(double w) {

 super.setWidth(w);

 super.setHeight(w);

 }

 public void setHeight(double h) {

 super.setHeight(h);

 super.setWidth(h);

 }

}

32

LSP Example – Rectangle & Square

33

// somewhere else

public void calculate(Rectangle r) {

 r.setWidth(5);

 r.setHeight(6);

 assert(r.getWidth() * r.getHeight() == 30);

}

// somewhere else

Rectangle r = new Square(…);

calculate(r);

34

 Postcondition for Rectangle setWidth(…) method

 assert((fWidth == w) && (fHeight == old.fHeight));

 Square setWidth(…) has weaker postcondition

 does not conform to (fHeight == old.fHeight)

 Square has stronger preconditions

 Square assumes fWidth == fHeight

 In other words

 Derived methods assume more and deliver less.

LSP Example – Rectangle & Square

35

LSP Continued

LSP shows that a design can be structurally consistent

(A Square ISA Rectangle)

But behaviourally inconsistent

So, we must verify whether the pre and postconditions in

properties will hold when a subclass is used.

“It is only when derived types are completely substitutable

for their base types that functions which use those base

types can be reused with impunity, and the derived types

can be changed with impunity.”

36

Law of Demeter
(a.k.a. Principle of Least Knowledge)

 Assume as little as possible about

other modules

 Restrict method calls to your

immediate friends

 “Only talk to your friends”

37

Law of Demeter for classes

 Method M of object O should only call methods
of:
 O itself

 M’s parameters

 Any object created in M

 O’s direct component objects

 “Single dot rule”
 “a.b.method(…)” breaks LoD

 “a.method(…)” does not

38

Class Activity
Which principle is violated?
a) 52 different “import …” statements at the top of a Java file

b) public final class Bird { … }

c) Point x = body.getCenterOfMassPos();

 Vec s = body.getCenterOfMassSpeed();

 Vec a = body.getCenterOfMassAcceleration();

 a = a + force * body.getMass();

 s = s + a * dt;

 x = x + s * dt;

 body.setCenterOfMassPos(x);

 body.setCenterOfMassSpeed(s);

 body.setCenterOfMassAcceleration(a);

39

Which principle is violated?

d) public class Road extends Highway { … }

e) rect.setHeight(52);

 // Following line is not needed because setHeight updates maximum
height

 // rect.setMaxHeight(52);

f) public class System {

 public void changeCarSpeed();

 public void changeCarColor();

 public void changeHighwayMaxSpeed();

 public void updatePoliceCarPosition();

 };

g) public class Kid extends Person {

 // Inherited from parent class. Does nothing because kids

 // do not know how to “Reason”

 public void Reason() {} }

Class Activity – Revisiting Your Design

 Examine your class diagrams and check for the

design principles in your design

 Did you violate any

 Did you use any, which ones and why

 Be able to articulate which principles you used

and why!

40

41

Modular Design Summary

 Goal of design is to manage complexity by
decomposing problem into simple pieces

 Many principles/heuristics for modular design
 Strong cohesion, loose coupling

 Call only your friends

 Information Hiding
 Hide details, do not assume implementation

 Open/Closed Principle
 Open for extension, closed for modification

 Liskov Substitution Principle
 Subclass should be able to replace superclass

