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Abstract Representing a triangu-
lated two manifold using a single
triangle strip is an NP-complete
problem. By introducing a few
Steiner vertices, recent works find
such a single-strip, and hence a linear
ordering of edge-connected triangles
of the entire triangulation. In this pa-
per, we extend previous results [10]
that exploit this linear ordering in
efficient triangle-strip management
for high-performance rendering.
We present new algorithms to gen-
erate single-strip representations
that follow different user defined
constraints or preferences in the form
of edge weights. These functional
constraints are application depen-
dent. For example, normal-based
constraints can be used for efficient
rendering after visibility culling, or
spatial constraints for highly coherent

vertex-caching. We highlight the
flexibility of this approach by gener-
ating single-strips with preferences
as arbitrary as the orientation of the
edges. We also present a hierarchical
single-strip management strategy
for high-performance interactive 3D
rendering.

Keywords Single-strip · Weighted
perfect matching · Hamiltonian
cycle · Vertex cache · Visibility
culling

1 Introduction

Triangle strip representation of a model has been tradi-
tionally used for efficient rendering. Most interactive ren-
dering packages support direct rendering of alternating
triangle strips, in which vertices form triangles alterna-
tively clockwise and counterclockwise. Vertex caching
techniques to render these triangle strips improve coher-
ence in memory access and boost the performance fur-
ther. A generalized triangle strip is an edge-connected se-
quence of non-repeating triangles. In order to correctly
render such strips, nonalternating vertices might have to
be repeated, or “swap” commands have to be used if avail-

able. In the former case, the number of sent vertices in-
creases by roughly 50% on average. Recently, due to the
availability of larger vertex cache memories in the graph-
ics accelerators, remarkable performance increases were
achieved using generalized triangle strips. In this paper,
we generate and manage generalized triangle strips.

Finding a single generalized triangle strip covering
the entire model, without modifying the model, is NP-
complete. Hence, traditionally in computer graphics, mul-
tiple triangle strips are used to represent a model. On the
other hand, for some applications it is not necessary to re-
tain the original vertices and connectivity, as long as the
geometry and appearance remains the same. Along that
line, recent works [18, 19] introduce a small number of ad-
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Fig. 1a–e. Top, from left to right: a The dual degree three graph
of the triangulation of a genus 0 manifold and a perfect matching
shown by dark edges. b The set of unmatched edges create disjoint
cycles. Two such cycles are shown. These disjoint cycles are con-
nected to each other by matched edges. The algorithm constructs
a spanning tree of these disjoint cycles and hence chooses matched
edges that connect these cycles. c Edge split operation: The tri-
angle pair corresponding to chosen matched edges in the tree are
split creating two new triangles. Matching is toggled around the
new (nodal) vertices resulting in a triangulation with a Hamiltonian
cycle of unmatched edges. Bottom, from left to right: (d–e) A gen-
eralized example of the same process shown just on the dual
graph [19]

ditional triangles to find a single strip representation, and
hence a linear ordering of the triangles of the entire model.
Applications of triangle strip representations include gen-
eration of space filling curves [19] and fundamental cy-
cles [18] on triangulated manifolds, as well as unfolding of
triangle strips for origami [28].

Rendering triangle strips generally yields higher per-
formance with longer strips. However, this improvement
becomes less significant as the average strip length grows
beyond a certain value. In this paper, we show the ben-
efits of the linear ordering of the triangles provided by
the single strip representation, which go beyond obtaining
a higher frame rate by reducing the number of rendered
vertices. Some of these advantages include simplicity in
the data structure, efficiency in data management, ele-
gance of the algorithms for high performance rendering
applications and even other applications not necessarily
linked to rendering, like mesh simplification and compres-
sion [12].

Most computer graphics applications benefit from dis-
carding information that will not contribute to the final
result. For example, culling back-facing triangles can save
about half of the GPU bandwidth. Similarly, applications
further increase their performance by using triangle strips.
Here we are presenting a novel technique for efficiently
culling back-facing triangles while having the remaining
ones form strips as long as possible. We will see how the
strips are used to improve the way we do the culling and,
reciprocally, the way back-facing triangles are omitted
helps maintaining long strips that contain the front-facing
triangles.

Specifically, the following are the main contributions
of this paper:

– We introduce a constraint-based single strip generation
algorithm that can generate a single strip maximizing
a functionally specified input constraint.

– We pose the back-face culling problem as a functional
optimization problem and find a single strip that maxi-
mizes the spatial locality of similar-oriented triangles.

– We translate the patterns in the strip required for max-
imal vertex caching into a space-filling curve gener-
ation problem, and then cast it as a functional opti-
mization problem for single strip generation.

– We also present an efficient strip management tech-
nique that uses the linear ordering of triangles provided
by the single strip for interactive 3D rendering.

– We illustrate the generality of the method in terms of
its ability to work with any arbitrary constraints, by
combining the above constraints to achieve a strip that
is designed both for smaller vertex cache-miss ratios
and faster back-face culling.

– Finally, we discuss under what circumstances our ap-
proaches for back-face culling or vertex cache im-
provement perform worse than expected, and comment
on possible solutions.

In this paper, we discuss the creation of single-strips
using the method from [19], its disadvantages and tech-
niques for improvement by assigning weights to the edges
(Sect. 3). We formulate methods to assign these weights
that would aid efficient rendering of front-facing triangles
as strips (Sect. 4) and that would increase the vertex cache
coherency (Sect. 5). It is also possible to combine the edge
weights that are suitable for different applications to mod-
ulate and achieve a new goal (Sect. 6). The results of our
experiments using these algorithms show a dramatic im-
provement in rendering efficiency (Sect. 7).

2 Related work

As mentioned above, we note that the basic problem of
finding an optimal set of triangle strips for a given tri-
angulation is NP-complete [13, 15], and a large body of
work has addressed the problem of heuristics to minimize
the number of triangle strips for static triangle meshes
[1, 2, 16, 23, 33, 35, 37]. Provably good and high-quality
triangle strips have been reported in [37] and the tun-
neling approach [33]. For real-time, continuously adaptive
multiresolution meshes [27], it is much more important
to compute a reasonably good set of triangle strips fast
than to compute the optimal solution. In this context,
methods such as SkipStrips [14], but also [4, 12] are based
on an initial good stripification and subsequent manage-
ment (mainly shortening and strip merging) of incremen-
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tal changes to the mesh, and hence the triangle strips.
To reduce the overall shortening and fragmentation of
adaptive strips, DStrips [32] manages triangle strips fully
dynamically by locally growing, merging and partial re-
computation of strips.

By introducing some extra data points, the QuadTIN
approach [30] allows the representation and triangulation
of any arbitrary irregular terrain height-field data set by
one single triangle strip. Moreover, it supports dynamic
view-dependent triangulation and stripification in real-
time. However, QuadTIN [30] does not support nor main-
tain a specific initially given triangulation. Recent work on
single-strip representations [11, 18, 19] improves on that
by finding a single-strip representation of a given manifold
using only a small number of additional geometric primi-
tives, whether these are triangles, quadrilaterals or tetrahe-
dra. In [11], the object of the stripification is not restricted
to be a triangulated manifold, and the perfect matching
is used as a step to find a two-factor of a bounded de-
gree graph. The work in [12] shows how linear ordering of
triangles can be used not only for efficient interactive ren-
dering, but also for mesh simplification and compression.
Using cones of normals for a cluster of geometric prim-
itives is common to several papers, like [24, 25], which
uses them for mesh simplification through vertex cluster-
ing.

Through the use of three vertex registers to hold tem-
porary transformed geometry results, triangle strips have
become an effective tool to improve rendering perform-
ance of large triangle meshes [1, 29]. Extending this con-
cept, the efficient use of extra vertex registers has not only
been exploited in geometry compression [6, 9] for band-
width reduction, but also for improved rendering [5, 21,
34]. In [21], multiregister vertex caching is used to in-
crease the locality of vertex references, which reduces
geometry transfer and transform costs significantly. Sim-
ilarly to our approach, [34] construct triangle strips that
enhance the use of the vertex cache, regardless of its size.
Further, [5, 36] also explore the relationship between mesh
locality and triangle strips.

The presented approach using a single-strip represen-
tation of manifold triangle meshes seamlessly exploits ex-
tended vertex registers for fast rendering, while allowing
for effective visibility culling. The single-strip representa-
tion and the high locality of its vertex referencing further
allows for a streaming-based rendering of large models.

3 Single-strip creation

The problem of finding a single triangle strip is equiva-
lent to finding a Hamiltonian path in the dual graph of
a mesh, which as we said above, is known to be an NP-
complete problem. However, if we allow the addition of
a few Steiner vertices that do not change the geometric fi-

delity or the topology, we can find a single triangle strip
in polynomial time, with the drawback that the size of the
processed mesh is larger after the stripification, due to the
new vertices introduced. However, experimental evidence
shows that this increase in the number of vertices is as
low as 2%. The algorithm presented by [19] is one such
method that uses a perfect graph matching algorithm on
the dual graph of the triangulated two-manifold to create
a single loop representation. Here, we briefly explain this
algorithm for the sake of completion.

A matching in a graph is pairing a vertex with exactly
one of its adjacent vertices. A perfect matching is one in
which every vertex of the graph is matched. It is known
from [38] that such a perfect matching exists for a three-
regular, three-connected graph, such as the dual graph
of a manifold without boundary. Finding a perfect match-
ing in this dual graph implies that every triangle in the
original mesh is matched with exactly one of its three
edge-connected triangle neighbors. Triangle strip loops
can be formed by connecting every triangle with its two
unmatched neighbors. This yields not one, but many dis-
joint strip loops.

Next, we use a fast greedy algorithm to iteratively join
all the separate loops into one. We do this by means of
three operations, each of which takes two or more loops
and merges them. After describing these operations, we
will outline the greedy algorithm. The first loop merging
operation, named edge swap, consists of a re-triangulation
of a pair of triangles (as seen in Fig. 2). A matched edge
shared by two triangles — which belong to different strips
— is removed. Subsequently, the two noncommon ver-
tices from the affected triangles are connected by a new
matched edge. This is a fundamental operation, because it
is sufficient to merge all the loops. Another advantage is
that it does not introduce new vertices to the mesh. The
disadvantages come from the geometric implications of
this re-triangulation: If the triangles across the edge are
not coplanar, the surface represented by this new triangu-
lation will be different. Because of this, edge swap should
only be applied in planar regions and on pairs of triangles
that form a convex quadrilateral. Otherwise, unacceptable

Fig. 2. Edge swap operation. Two previously disjoint strips are
merged by re-triangulating around a separating edge
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Fig. 3. A nodal vertex with (six) an even number of incident trian-
gles and triangles belonging to three unique cycles. By switching
the matched and unmatched edges, all these cycles can be merged
to a single cycle [19]

Fig. 4. Examples of non-nodal vertices. In both the examples, there
are six incident triangles but only two unique cycles [19]

model deformations could appear, such as flipped faces
and dents in the surface.

The second loop merging operation is called nodal ver-
tex processing. A nodal vertex with degree n is a vertex in
the original mesh where n is even and the number of dif-
ferent loops incident on that vertex is n/2 (Figs. 3 and 4).
Around such a vertex, pairs of matched and unmatched
triangles alternate. Swapping the matched and unmatched
edge relationships around a nodal vertex merges all the
incident strip loops into one. This operation is generally
preferred because, unlike the other two operations, nodal
vertex processing merges loops without modifying the
mesh geometry.

The third operation, edge split (see Figs. 1c and 5), in-
troduces a Steiner vertex in the middle of the matched
edge shared by two triangles. This vertex is connected to
the opposite vertex of each triangle, much like in the edge
swap operation, but without removing the initial matched
edge. Note that the new vertex is a nodal vertex with four
adjacent edges, so we can apply nodal vertex processing
to join the loops. Just like edge swap, this operation is
sufficient to merge all the loops into one. However, edge
split does not modify the appearance of the mesh, be-
cause the introduced vertex lies exactly on the separating

Fig. 5. Triangles before splitting: the weight of the matched edge
is w. After splitting, the matched edge is duplicated, with same
weight w, and the new unmatched edges have weight 0. After nodal
vertex processing the reduction of weight is 2w

edge. Its main disadvantage is precisely the introduction
of a new vertex in the mesh. In general, operations that
do not alter the mesh will be given preference, and we
will usually use edge split when there is no other option.
A rule of thumb to decide when to use edge swap or edge
split is the following: If the two adjacent triangles are
coplanar, or have a normal deviation below a user given
threshold, edge swap is preferable. Otherwise, we will use
edge split.

The greedy loop merging algorithm starts by finding all
the initially valid loop merging operations. For each iden-
tified operation we compute a priority number, and sort
them in a priority queue implemented as a skip list [31].
This priority favors operations that do not modify the
mesh, and penalize those that introduce a larger geomet-
ric distortion. Operations are popped one by one from
the queue, and it is checked whether they are still valid.
A strip merging operation is valid if the loops it merges
are disjoint. We use a union-find data structure to keep
track of which loops have been already merged. Two oper-
ations are equivalent if they merge the same set of triangle
loops. When one operation is applied, it invalidates all its
equivalent operations that remain in the list. If the popped
operation is valid, it is applied, and when the implied loops
are merged this is recorded in the union-find data struc-
ture. The algorithm continues until all the loops have been
merged, or there are no more operations left in the queue.
If the mesh is a manifold without boundaries, there will be
exactly one triangle strip loop for each connected compon-
ent of the manifold.

The main disadvantage of the above algorithm is that
the direction of the strip is not controllable. In other
words, unlike incremental strip growing algorithms [18],
the above strip loop creation method can be neither locally
nor globally steered to satisfy certain constraints. In this
paper, we introduce controllability to the above algorithm
by using a weighted perfect matching method. We show
that by imposing appropriate constraints for strip control,
we can achieve well-behaved triangle strips, that exhibit
excellent properties for interactive high-performance ren-
dering.
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3.1 Weighted perfect matching

It can be shown that there are many different perfect
matchings in the dual graph of a manifold without bound-
ary, yielding many different single strip loops. In order to
control the strip to satisfy certain properties, we have to
control the choice of matching in the dual graph of the
mesh.

We use a weighted perfect matching algorithm to find
a matching that maximizes the sum of weights among the
chosen matched edges. Higher weights indicate an edge
that is more desirable to be matched, and should there-
fore be excluded from the strip. Maximizing the added
weight of the chosen edges indirectly minimizes the total
weight of the nonchosen edges, which will form the single
strip.

The weights of the edges of the graph (or of the edges
of the mesh) are carefully chosen according to the ap-
plication for which the strip is required. For example, to
find a strip suitable for back-face culling, we would like
neighboring triangles with similar normals to be adjacent
to each other in the strip. Hence, the neighboring triangle
with maximum normal deviation should be the matched
triangle, thus that corresponding edge in the dual graph
should be assigned a higher weight than the other two
neighbors in order to be picked as a matched neighbor.

Assigning appropriate weights, by itself, is not enough
to get the desired single strip. As in the case of the original
algorithm, the matching yields many disjoint strip loops,
each of which possibly satisfying the desired constraints.
These disjoint loops have to be combined into one loop
while still preventing the strip from crossing high weight
matched edges.

3.2 Joining disjoint loops

The three considered operations to merge strip loops —
nodal vertex processing, edge split and edge swap opera-
tions — reduce the overall weight of the chosen matched
edges in the dual graph and hence the solution will be sub-
optimal. Our goal is to limit this reduction of weight as
much as possible, while merging loops into a single loop.
In order to do so, in the greedy loop merging algorithm we
modify the priority or cost of each possible loop merging
operation, before inserting them in the priority queue. In
the unweighted version of this algorithm, this cost simply
penalizes operations that modify the mesh geometry. Now,
this cost must be also used to reduce the loss of weight in
the perfect matching after applying the operations. Higher
cost is given to operations that would produce higher loss
of weight. This way, the cost of a nodal vertex processing
operation would be the difference between the sums of the
weights of the matched and unmatched edges around the
nodal vertex. The cost of an edge split operation is twice
the weight of the matched edge to split (refer to Fig. 5),
because this operation duplicates the originally matched

edge, thus doubling the overall weight. Finally, we set the
cost of an edge swap operation as twice the weight of the
swapped edge. If the application supports weight recalcu-
lation at loop merging time, the weight of the new edge
appearing after the operation would be subtracted from the
cost of the operation. However, these are general guide-
lines that can be overridden, for example, if a particular
application requires a merging operation to be always pre-
ferred over another one.

The quality of the single strip created at the end of
the algorithm is based on the order of the operations in
the priority list. Variations of the above method to cre-
ate different kinds of single strips can be achieved by
giving priority to different loop-joining operations. For
example, some applications might have a higher cost asso-
ciated with the addition of a vertex. In this case, an edge
split could be made more expensive than a nodal vertex
processing.

Using weights as a means to indicate the type of single-
strip that we want gives the algorithm designer a great
flexibility. For example, in order to compute the strips
shown in Fig. 6, we simply assigned weights based on the
orientation of the edges of the mesh: If we assign high
weight to mesh edges that are close to vertical and zero to
the rest, we get a single-strip that advances up and down,
in the vertical direction. Analogously, if we assign high
weight to mesh edges that are close to horizontal, and zero
to the rest, we get a single-strip that moves left and right,
in the horizontal direction. In the remaining sections, we
look at a few applications of the above constraint-based
stripification. We show how different weighing schemes
lead to strips suitable for applications such as back-face
culling. Furthermore, we provide a simple framework for
combining many weighing schemes to create one single
strip satisfying multiple objectives.

Fig. 6. Any weighing scheme can be used to indicate the prefer-
ence for a particular type of single-strip. In the first figure (left),
horizontal edges of the head model were assigned a high weight,
while in the second figure (right), vertical edges were similarly
penalized. The results are single-strips with different general orien-
tation
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4 Visibility culling

In the first application of our technique, we explain how to
create a triangle strip that is suitable for back-face culling,
and develop techniques for the per-frame management of
the strip while performing the culling. We would like to
stress that, in contrast to existing specialized visibility
culling algorithms, our emphasis is on a means for creat-
ing and managing single triangle strips with the purpose
of visibility culling, such that the front facing triangles are
still rendered efficiently with long strips.

In this section, we first explain our scheme for assign-
ing weights to the edges that are appropriate for efficient
back-face culling. Then, we describe the data structure
used to store the single strip returned by the algorithm
elaborated in the previous section. Finally, we discuss the
run-time management of this strip that integrates efficient
back-face culling.

4.1 Calculating edge weights

A large category of visibility culling techniques groups
parts of geometry into spatially coherent clusters. Later,
visibility is tested one cluster at a time, avoiding the cost
of testing every geometric primitive individually. In the
case of back-face culling, the triangles are grouped based
on their normal coherence. In the context of stripification,
we would like the strips to remain within the planar re-
gions as long as possible. Next we will see how these two
ideas (clustering primitives for visibility testing and mak-
ing the strip remain within planar regions) complement
each other.

Stripification for the back-face culling application has
two advantages. First, long strips of triangles can be col-
lectively tested for visibility. If the entire strip is facing
backwards, all the triangles in the strip are culled. Second,
all front facing triangles can be rendered as a strip, as they
are already organized in a linear order. Similarly, retain-
ing the strip in planar regions has two advantages. First,
it enables collective orientation testing for triangles in the
form of long strips, and second, when the strip is cut into
pieces of front and back-facing segments, the number of
such required cuts is minimized.

In order to achieve such a strip, suitable for back-face
culling, high weights are assigned to edges that define
sharp features of the mesh, while edges in planar regions
receive low weights. Such a weighing favors edges defin-
ing high curvatures to be matched, and thus retaining the
strip in the low curvature region. Local decisions on the
sharpness of features might be misleading. For example,
suitable refinement of triangulation can disguise a high
curvature region into a low curvature region and vice-
versa. Hence, robust algorithms for feature detection base
their decisions on global analysis of the model. We per-
form such an analysis on the model to cluster together

triangles with similarly oriented normals. The output of
this clustering algorithm is the input to our edge-weight
assignment method.

Clustering method. Identifying and building clusters of
triangles that have similarly oriented normals is a well-
studied problem ([17]). We use the variational shape ap-
proximation (VSA) method, described in [7] that is popu-
lar for its simplicity and good results in face clustering.
However, this iterative method requires a reasonable ini-
tial estimate of clustering to converge quickly. For this,
we use a greedy approach to initialize the clusters for
a given bound on normal deviation. The output of the VSA
method is a clustering of triangles based on normal devia-
tion (see Fig. 7a). The number of clusters is dependent on
a user-specified normal deviation tolerance. Finally, some
geometric information is gathered from each cluster in
order to aid efficient back-face culling. We will see this in
detail later in this section.

Deriving edge weights. The clusters produced by VSA
represent regions through which the strip can grow with-
out restrictions. Therefore, null weights will be assigned
to edges separating two triangles within the same cluster.
On the other hand, non-zero weights should be assigned
to edges connecting triangles across different clusters. The
value of these weights indicates how undesirable it is to
have the strip cross the associated border between clusters
(see Fig. 7b). Although all cluster boundaries represent
sets of edges that would rather be matched, this preference
is stronger for certain boundaries. Edges shared by two ad-
jacent clusters with similar average normals receive a low
weight, whereas edges connecting clusters with very dif-
ferent normals get higher weights. The reason is that it is
preferable to have the strip escape to an adjacent cluster
with similar orientation than to another with a dramati-
cally different average normal. Our experiments show that

Fig. 7. a Left: triangle clustering based on normal deviation. Tri-
angles in the same cluster are shaded with the same color. Clus-
ters minimize the normal deviation among the triangles contained.
b Right: disjoint triangle strip loops before merging. The weight
maximizing edge matching produces strips that hardly cross the
cluster boundaries
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using the deviation angle as a weight gives excessive im-
portance to the highest weighed edges, while completely
neglecting those with not much lower weight. The effect
is that, in practice, all but the sharpest boundaries are ig-
nored. Instead, if we take the logarithm of the cluster nor-
mal deviation as the actual edge weight, we produce strips
that cross sharp edges less often. Once the edge weights
are assigned, they are used to find the single strip, as ex-
plained in Sect. 3.

Though the weighted matching algorithm greatly re-
duces the number of times the strip crosses the boundary
of a cluster (by maximizing the number of boundary edges
in the matching), there is a number of situations where
such crossing is unavoidable. One example occurs when
a triangle has two boundary edges, forcing at least one of
them to be unmatched and allowing the strip to escape the
cluster through it. This problem can be easily identified
as a peak in the cluster, or outgoing triangle. The solution
(illustrated in Fig. 8) is splitting the outgoing triangle to-
gether with its neighbor from inside the cluster, at the cost
of adding one vertex and two new triangles to the mesh.
Depending on the average size of the clusters and the num-
ber of strip crossovers, this can mean a great improvement
in the resulting strip quality.

Fig. 8. Removing outgoing peaks from a cluster of triangles. The
identified outgoing peak (in dark on the left figure) is split, together
with an adjacent triangle inside the cluster. After the operation, no
triangle in the resulting cluster has two boundary edges, and it is
possible to reduce the number of times the strip crosses a cluster
boundary (indicated with a thick black line)

4.2 Segment-tree data structure

In order to use the single strip that we create as explained
in Sect. 3 in interactive rendering applications, we must
design an appropriate data structure to store and access
this strip. We use a static hierarchical data structure, simi-
lar to the one described in [26], that stores in a node the re-
sult of merging the strips contained in its children. Hence,
the root of the tree represents the segment composed of the
whole strip, and the leaves are the individual triangles of
the mesh. Different horizontal slices of the tree describe
complete representations of the strip, split in segments of
varying granularity.

We compute the following information for every node
of the tree, along with its starting and ending position
in the single-strip: Its average face normal N, the radius
angle of the normal cone that contains all normals in the
cluster θ, the centroid c of all vertices and the radius r of
the smallest bounding sphere centered at c (Fig. 9). All this
information will be used for visibility testing at render-
ing time. Although it is not discussed here, the bounding
sphere associated to each cluster can be used to perform
frustum culling, if the hierarchical data structure is con-
structed appropriately.

Fig. 9. Information associated to each segment of the triangle strip:
centroid of all vertices (c), bounding sphere radius (r), average face
normal (N) and radius of the cone that contains all normals (θ)

The described segment-hierarchy has the desirable
property that each node completely contains its two child
segments, and nothing else. In other words, if a non-leaf
segment-node starts at triangle A and ends at triangle B,
its two children nodes must represent two consecutive
triangle strips, the first one starting at A and the second
one ending at B (see Fig. 10a). We can make use of this
property to perform a recursive tree traversal and globally
discard large, coherent back-facing portions of the trian-
gle strip with just a few computations, without directly
processing the individual triangles.

It can be argued that this hierarchical data structure
ought to be balanced to enable the most efficient query
times. However, generic tree balancing techniques are not
applicable in our case. The reason is that, in general and
for most models, not all visibility tests are equally likely.
Visibility tests concentrate at the current silhouette of
the model. Further, edges with higher curvature are more
likely to be part of the silhouette than edges in planar areas
of the model. These edges with high curvature should be
accessible faster than others, hence should be closer to
the root in the hierarchy. Since we construct the tree in
a bottom-up manner, first merging parts of the mesh with
low normal deviation, planar regions are grouped first, and
regions separated by high curvature edges are not merged
until the last stages of the construction. Thus our method
for constructing the hierarchical data structure naturally
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Fig. 10. a Left: the segment-tree data structure. Each tree node rep-
resents one segment of the single-strip. The union of all nodes at
any given level comprises all the triangles in the model, with dif-
ferent granularity. The root node represents the whole single-strip.
Note that the number of triangles in each node at the same level
in the tree need not be the same. b Right: evolution of the render
front. As the interactive rendering progresses, some visible regions
become back-facing, and vice-versa. The small differences between
render fronts at successive iterations suggest storing this informa-
tion to speed up rendering

provides short access time for the most frequent visibility
queries.

4.3 Segment-tree traversal

Nodes in the hierarchical data structure described in the
previous section tend to contain contiguous strip segments
composed of triangles with similar normals. We use this to
our benefit, discarding or accepting large portions of the
strip by only calculating a dot product. The most basic ver-
sion of the rendering algorithm starts a recursive process
at the root of the tree. For each node n, its average nor-
mal and normal-deviation angle are used to determine if
the associated segment is (a) completely front facing, (b)
completely back-facing or (c) somewhere across the sil-
houette of the rendered model. If the result is either (a)
or (b), then the segment is accepted or discarded, respec-
tively. If the segment cannot be classified cleanly (case c),
we go one step down in the hierarchy and test its two chil-
dren independently. This process will continue down the
tree until the processed segment is either discarded or ac-
cepted for rendering, or until the segments are so small
that it is affordable to render them without further testing.
In Fig. 11, we represent the single strip as a colored ho-
rizontal band. Dark shaded segments in the band represent
rendered triangles in the strip, while light segments indi-
cate culled triangles. The coherence in the coloring of this
band, which remains high during continuous movement of
the viewpoint, demonstrates the relatively small number of
visibility tests performed. A more quantitative evaluation
of the strip coherence is given in Sect. 7.

In interactive applications, the difference in the pos-
ition and orientation of the viewer in the displayed scene
changes only gradually. Hence the sets of rendered and
discarded segments will be very similar in consecutive
frames. In order to exploit this coherence, we can avoid

Fig. 11. Real time back-face culling in the sphere model. The bar
indicates rendered parts of the single-strip, which are rendered in
dark color, and culled parts in light color. The high spatial coher-
ence observed in the single-strip allows culling many triangles with
few cuts

traversing the whole tree every frame by storing a render-
ing front, consisting of the lowest set of checked nodes
from the last frame. In successive iterations, the process
starts at the nodes in the rendering front, rather than at the
root. Depending on the new point of view, these nodes are
then split into their children, or merged up with their sib-
lings, as represented in Fig. 10b. It is likely that most of the
nodes in the rendering front will remain unmodified across
a number of frames, thus saving traversal time.

4.4 Results

It is known that the advantage of reducing the number of
triangle strips — as a means for limiting the bandwidth be-
tween CPU and graphics hardware — wanes as the total
number of strips reduces. This is because the amortized
cost of starting a new strip becomes less important with
longer strips. However, keeping a single-strip along with
a hierarchical structure of strip segments (Sect. 4.2) makes
the cost of accessing a segment section logarithmic on the
number of faces. If, instead of a single strip, we maintain
m separate strips and their associated structures, the ac-
cess cost becomes m log n

m , rising towards linear cost as
m approaches the number of triangles n. This is a clear
disadvantage if we want to use the strips, as furthermore,
the results in Table 3 show an increase in the frame-rates
obtained for all the models when constraints are applied
to aid visibility culling, which demonstrates the utility of
such constraints.
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We have experimented with models of mostly smooth
surfaces. In spite of using global clustering algorithms,
rougher surfaces, with plenty of high curvature features,
produce many small clusters, not so useful for efficient
visibility testing. In other words, high frequency changes
in the curvature reduce the quality of the strip when used
for back-face culling. However, running a smoothing filter,
such as a Laplacian filter, on the value of the normals used
for weighing easily solves the problem.

5 Transparent vertex caching

In our second application, we construct triangle strips with
improved vertex caching usage. Most modern graphics
processors have a vertex cache to reduce the data move-
ment, benefiting from the locality in vertex references.
Transparent cache optimization as in [21] refers to re-
ordering the strip to maximize the access to vertices al-
ready in cache. In this section, we present a weighing
heuristic that produces a single strip, presenting reason-
ably good vertex cache behavior for an arbitrary cache
size.

We provide an interesting insight that forms the foun-
dation for creating strips with high vertex cache coher-
ence. The edges in the triangulation that the strip does not
cross can be considered as the “medial axis” of the strip. It
is important to note that for a single-loop representation of
the manifold, this medial axis is a spanning tree of the ver-
tices of the triangulation (or two trees in case of genus zero
objects). The strip actually loops around the vertices of the
triangulation that form the leaves of this medial axis tree,
inducing a high vertex cache coherence for that particular
vertex. Hence maximizing the number of leaf vertices of
the medial axis tree increases the overall cache coherence.

It is our goal to find a medial axis with the max-
imum possible number of leaves. Although a few algo-
rithms have been proposed in the literature to find acyclic
subgraphs with minimum number of non-leaves [20] and
on the equivalent problem of maximizing the number of
leaves [22], they are difficult to implement. We observed
that the following simple heuristic worked well enough.
A breadth-first spanning tree with low depth and large
fan-out would maximize the number of leaf vertices and
hence the vertex cache coherence. This property is exhib-
ited by classical closed space filling curves like Sierpin-
ski’s. Its medial axis emulates a breadth-first tree (refer to
Fig. 12). The medial axis of the strip loop in the triangu-
lation corresponds to the matched edges in the dual graph.
To summarize, if the sequence of matched edges in the tri-
angulation emulates a breadth-first tree, then the strip that
goes around it emulates a space filling curve and hence
will have high vertex caching properties. We use this ob-
servation in our algorithm to find a suitable strip.

Fig. 12a–d. Left to right and top to bottom: a Spanning tree of
mesh edges, used to produce strips with low cache-miss ratio.
Edges in the tree receive positive weight, and the rest get zero
weight. b The produced single strip is superimposed on the span-
ning tree. c We substitute the spanning tree with the medial axis of
the single strip. d Dark edges highlight the few differences between
medial axis from ‘c’ and spanning tree from ‘a’

We build a breadth-first tree on the edges of the mesh,
imitating the medial axis of a space filling curve. Our in-
tention is to have the edges in this tree as matched edges.
This forces the strip to follow the shape of a space filling
curve whose medial axis is the computed breadth-first tree.
Since each triangle will have exactly one matched edge,
and we want as many of the edges to be matched, no more
than one edge per triangle can be part of the breadth-first
tree. Edges in the tree receive positive weights, and the
rest get the weight zero. The weight-maximizing perfect
matching chooses most of these non-zero weighted edges
following the shape of the breadth-first tree, which en-

Fig. 13. Left: single-strip on fandisk model, as constructed for
back-face culling. Right: cache-oriented single-strip on the same
model. Notice the strip locality is much higher than in the other
case
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sures that the resulting single-strip will have good vertex
locality.

5.1 Results

In most triangle meshes, the breadth-first tree growing
procedure produces short branches with many bifurca-
tions, and therefore many leaves, suitable for high vertex
cache coherence stripification (see Fig. 13). However, this
structure cannot always be generated with the simple
spanning tree method. There are many triangle models
obtained from height fields, for which each position in
a regular 2D grid receives a height value. These meshes
are extremely regular, and growing a spanning tree in
a breadth-first manner might produce very few leaf nodes
(see Fig. 14). The single-strip obtained using this medial
axis will have a very low cache-hit ratio. We solve this
problem by introducing randomization in choosing the
next edge to be added while growing the breadth-first tree.
This breaks the symmetry in the deterministic tree grow-
ing algorithm and introduces many branches, and hence
leaves in the structure.

Fig. 14. Two versions of the spanning tree used for vertex cache op-
timization of single-strips, and the close-up on the resulting strips.
Top-left: breadth-first spanning tree. The high regularity of the head
model produces long branches without bifurcation, taking a toll on
the cache efficiency. Top-right: randomized breadth-first spanning
tree. It grows in an irregular fashion, producing shorter branches
and more leaves. This reduces the cache-miss ratio of the resulting
strip. Bottom-left: strip resulting from breadth-first spanning tree
method. Notice the low vertex locality. Bottom-right: strip resulting
from randomized breadth-first spanning tree method. The vertex
locality is noticeably superior

Fig. 15. Cache-miss ratio for the single-strips of three models (fan-
disk, head and Happy Buddha), obtained in three different ways:
unconstrained strips, with the spanning tree method, and with the
randomized spanning tree method. In all cases, the randomized ver-
sion of our optimization performs better. Notice the especially large
difference for the popular cache sizes of 16 and 32 vertices

An advantage of generating a space filling strip is
that it shows good caching behavior irrespective of the
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cache size. Thus, the same strip will exhibit good cache
behavior for different cache sizes. The cache-size inde-
pendence is a desirable feature because it eliminates the
need for the application programmer to know the de-
tails of the system where the program will be deployed.
While knowledge about the actual cache size enables
some improvements [21], explicit optimization for a given
cache size can result in highly nonoptimal behavior for
other cache sizes. With graphics hardware vendors re-
stricting information on their designs, and an increas-
ingly large number of available GPU models, we ex-
pect such a feature to gain further attention. The strips
obtained with our cache-size independent optimization
method achieve cache-miss rates (number of vertex-cache
misses divided by the number of triangles) near those ob-
tained by [21], with the difference that we do not assume
anything about the size of the vertex cache. We also ob-
serve that [5] indicates comparable results. For example,
with a cache size of 32 vertices, while [5] reports an aver-
age cache miss ratio between 0.6 and 0.68 for various
models, our algorithm exhibits a value between 0.66 and
0.7. Our results indicate that for commonly used cache
sizes, a large percentage of vertices need to be fetched
only once.

Figure 15 plots the cache-miss ratios for the single-
strips of three models, obtained with different weighing
schemes (unconstrained strip, spanning tree of edges and
randomized spanning tree). In all three cases, and for all
reasonable cache sizes, our two cache-optimized strips
produce significantly lower cache-miss ratios than the un-
constrained strip. Notice that the theoretical lower limit
for this ratio is 0.5. The heuristic followed by our opti-
mization methods comes from the following: By increas-
ing the locality of the single strip, we reduce the aver-
age distance between successive appearances of the same
vertex. When using a FIFO replacement policy, vertices
whose distance between instances is equal to or lower
than d will cause no more than one unavoidable cache
miss in a cache of size d or larger. It has been shown
in [3] using an asymptotically optimal algorithm, that with
a cache size of 12.72

√
n, all n vertices are guaranteed

to be in the cache. For the same cache-size, we observe
that we achieve 90% of this optimal performance, even
though we do not know the specific cache-size before-
hand.

Fig. 16. Single-strip creation
pipeline. The process comprises
two stages. In the first one,
a weight is assigned to each
edge, which produces a set of
disjoint triangle strip loops. In
the second stage, these loops are
merged into one

6 Combining multiple targets

We have presented weighting schemes that are used to
find a single-strip maximizing different functional con-
straints like face normal coherence and vertex-cache hit-
ratio. However, finding a single-strip that maximizes mul-
tiple constraints simultaneously is a much more com-
mon scenario. For example, interactive rendering of large
models would benefit from both reduced vertex cache-
miss ratio and efficient visibility culling. Modifying a strip
generation procedure to satisfy multiple constraints can
be a much harder problem. The biggest advantage of
our stripification method is that it is a two-stage pro-
cess in which the first stage consists of the user provid-
ing the weights for the mesh edges, and in the second
stage the stripification is performed (see Fig. 16). Al-
though the quality of the resulting strip is only as good
as the scheme and accuracy of the weighting that the user
chooses, the stripification algorithm itself is independent
of both the weighting scheme and the assigned weights.
If there are multiple, possibly contradicting, constraints,
then the user’s weighting scheme should appropriately
combine the constraints and assign numeric values to the
mesh edges that reflect the relative importance of these
constraints. In our experiments, we computed the actual
weight as a linear combination of the weights from each
constraint.

There is another interesting application of combin-
ing multiple weighing schemes. In back-face culling, the
edges of the triangles belonging to planar regions receive
zero weights, as the normal deviation across those edges is
zero. Such a weight assignment drives the perfect match-
ing algorithm for an exhaustive search to identify a critical
point in the optimizing functional. A similar situation hap-
pens with many geometric optimization algorithms and
in those cases random perturbation of the input data is
a commonly used approach to bail the algorithm out of
exhaustive search. Similarly, for the edges in the planar
region, the addition of small white noise to their weights
tremendously accelerates the termination of the algorithm
with almost no penalty to the quality of the resulting strip.
For example, we saw the matching algorithm reducing
its run time from more than 10 minutes to about 30 sec-
onds, when random noise was added to the edge weights
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of the Happy Buddha model. Similar improvements were
noticed with other models.

7 Implementation and discussion

The creation time of the single strips was dominated by
two principal algorithms: perfect matching — common to
all strips — and face clustering with variational shape ap-
proximation — used for back-face culling. The efficiency
of the matching method we used [8] is sufficient for pro-
cessing meshes of size in the order of a million triangles
in a few minutes, running on a current desktop computer.
Treatment of significantly larger models needs an off-core
approach to be practical. The face clustering algorithm
runs in time comparable to that of perfect matching, em-
pirically showing a super-linear time to convergence (see
Table 1).

We estimated the run-time improvement provided by
our method on a set of standard models (Fig. 19) repre-
senting manifolds without boundary. To do so, we moved
the camera in ascending spirals around the center of the
models, as shown in Fig. 17, rendering each model 591
times. All models were rendered using OpenGL vertex
buffer objects. Tables 2 and 3 show the measured aver-
age frame-rates, applying different constraints to the strip
generation. In the results, we observe the largest per-
formance increase with the medium models, when using
strips optimized both for cache coherence and back-face
culling. Interestingly, the larger models show proportion-
ally less improvement, probably due to memory thrash-
ing.

We have calculated the frame rates at which we can
render our triangle strips, and used this as a measure of
the quality of the strips. However, this method depends on
the efficiency of our ad hoc rendering system. It would
be more appropriate to find a magnitude that can be eval-
uated independently of the implementation of the culling

Table 1. Preprocessing time. Average time (in seconds) spent in the
two main preprocessing stages of our algorithm: mesh face cluster-
ing for back-face culling optimization, and graph perfect matching
of the dual graph.

Model #triangles Face Perfect
clustering matching

Sphere 1280 1 0
Cylinder 4880 2 1.5
Trico 5660 2 1
Fandisk 12946 9 1
Head 32744 14 2.5
Horse 96966 48 7.75
Happy 100000 32 120
Balljoint 274120 132 13
Armadillo 345944 210 50
Balljoint x4 1096480 593 103
Armadillo x4 1383776 991 828

Table 2. Rendering frame rates. The single-strips were obtained in
the following manners: a) unconstrained strips and b) spanning tree
method. All models were rendered on a Pentium-4 2.4 GHz running
GNU/Linux with a NVidia PNY 980XGL Quadro 4 video card

Model #triangles a b
Unconstrained Span. tree

Sphere 1280 1951 1965
Cow 2218 1414 1486
Cylinder 4880 1181 1192
Fandisk 12946 537 733
Head 32744 226 227
Horse 96966 131 148
Happy 100000 110 117
Balljoint 274120 29 31
Armadillo 345944 24 25
Balljoint x4 1096480 9.2 10.2
Armadillo x4 1383776 6.33 6.80

Table 3. Rendering frame rates. The single-strips were obtained in
the following manners: a) unconstrained strips and b) optimizing
for back-face culling. All models were rendered on a Pentium-4 2.8
GHz running GNU/Linux with a NVidia GeForce FX 5900 video
card

Model #triangles a b
Unconstrained Bf. culling

Sphere 1280 1760 3069
Cow 2218 1658 1751
Cylinder 4880 1181 1988
Fandisk 12946 538 1207
Head 32744 226 290
Horse 96966 31 93
Happy 100000 63 59
Balljoint 274120 18 34
Armadillo 345944 14.84 18.52
Balljoint x4 1096480 4.59 9.47
Armadillo x4 1383776 3.77 6.4

algorithm, and the machine used. A sensible measure that
meets those properties is the number of continuous strip
segments being rendered. Given a back-face culling al-
gorithm, a strip is well-posed for back-face culling if it
can be culled appropriately along the silhouette of the

Table 4. Strip coherence during backface culling. Average num-
ber of strips rendered for some models when strips were computed
with and without back-face culling optimization. The lower number
of strips in the first column indicates that in all cases the back-
face-optimized strips are better suited for quick culling than the
unconstrained strips

Model #triangles W/ Bf. opt W/o Bf. opt

Cow 2218 56 62
Cylinder 4880 69 86
Fandisk 12946 35 101
Head 32744 178 221
Balljoint x4 1096480 3453 3886
Armadillo x4 1383776 3744 4498



Single-strips for fast interactive rendering

Fig. 17. Camera path used for measuring rendering frame rates. 591
frames are taken with the camera at the indicated positions in the
ascending spiral, and looking towards the origin, at the center of the
object

model using only a few cuts. Therefore, when produc-
ing a single-strip suitable for back-face culling, our goal
is to reduce the number of strip cuts at rendering time,
while keeping the number of total vertices rendered low.
In Table 4, we show the average number of strips ren-
dered for several models when the camera moved along
the spiral path of Fig. 17, always looking towards the
origin (center of the model). In all cases, the back-face
optimized strip needed fewer cuts before being sent for
rendering. Similarly, this phenomenon can be observed
directly if we represent in a colored bar the parts of the
single strip that are rendered or culled, like in Fig. 18.
As expected, the lower number of cuts in the strip re-
sults in a more compact set of dark bands in the figure,
representing fewer and longer strip segments being ren-
dered.

8 Conclusion and future work

In this paper, we introduced a generic method for con-
structing constrained single-strips from a manifold mesh
without boundaries. We have presented two mesh process-
ing techniques that benefit directly from the use of con-
strained single strips. Finally, we outlined how multiple
weighing techniques can be combined to obtain a single-
strip under multiple constraints.

Fig. 18. Representation of the rendered and culled strips at a given
moment while rendering the fandisk model. Dark segments of the
bars indicate parts of the strip that were rendered. Light segments
indicate culled parts of the single-strip. Top: using a back-face
culling optimized strip. Bottom: using an unconstrained strip. The
higher strip segment coherence in the first, optimized strip is appar-
ent

Most models that we have experimented with in this
paper (Fig. 19) may fit completely into the on-board video
memory of the latest consumer graphics cards. How-
ever, larger models require a view-dependent vertex-buffer
management. Some investigation can be done on differ-
ent priority schemes for loading segments of the strip on
the GPU, so that parts of the strip that are expected to
be required soon remain in the memory of the graph-
ics hardware. Even off-core data could be tackled this
way, with an appropriate paging mechanism. A key part
of any off-core stripification algorithm designed for gi-
gantic meshes is handling the boundaries generated by
the subdivisions that make the model manageable. The
presence of boundaries adds a new level of complexity to
the stripification procedure, and poses an interesting chal-
lenge.

Finally, weighing schemes can be devised aimed at
minimizing the frequency of changes in vertex properties
such as normal, color or material along the strip. Then
standard compression techniques will be able to be ap-
plied directly on the vertices of the single strip. Moreover,
encoding the position of consecutive vertices in the strip
would require fewer bits, given the expected reduction in
the intermediate distances.

Fig. 19. Some of the triangle meshes used in our work. Top: fan-
disk, cylinder, cow. Bottom: balljoint, armadillo, horse
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