
Department of Informatics!

Harald Gall Martin Glinz Philipp W. Leitner 
 

Advanced Software Engineering  
 
 

Problem Solving, Problem Frames#

© 2014 Martin Glinz. All rights reserved. Making digital or hard copies of all or part of this work for educational, non-commercial use is permitted. Using this material for
any commercial purposes and/or teaching is not permitted without prior, written consent of the author. Note that some images may be copyrighted by third parties.#

General Problem Solving Strategies#

❍  Decomposition#

❍  Aspects/Views#

❍  Patterns and metaphors#

❍  Taxonomy of problem classes#

❍  Normal vs. radical design#

❍  Means vs. end#

Advanced Software Engineering: Problem Solving, Problem Frames #© 2012 Martin Glinz# 2#

The World and the Machine#

❍  Why not just specify and design the machine?#

❍  What does S, W |– R actually mean?#

❍  Illustration: the turnstile problem#

Advanced Software Engineering: Problem Solving, Problem Frames #© 2012 Martin Glinz# 3#

Problem Frames#

❍  What is a problem frame?#

❍  How / why do problem frames help?#

❍  What kinds of frames are defined by Jackson?#

Advanced Software Engineering: Problem Solving, Problem Frames #© 2012 Martin Glinz# 4#

The Required Behavior Problem#

Advanced Software Engineering: Problem Solving, Problem Frames #© 2012 Martin Glinz# 5#

Application context: 
Achieve/maintain a required behaviour in a given problem domain#

[Jackson 2006]#

The Commanded Behavior Problem#

Application context: 
Achieve a required behaviour in a given problem domain by commands
issued by an operator#

#

Advanced Software Engineering: Problem Solving, Problem Frames #© 2012 Martin Glinz# 6#

[Jackson 2001, p. 112]#

The Frame Concern#

Arguing that#

❍  the machine behavior#

together with#

❍  the domain properties#

satisfy the requirements#

Advanced Software Engineering: Problem Solving, Problem Frames #© 2012 Martin Glinz# 7#

Commanded Behavior 
Frame Concern  
[Jackson 2001, p. 113]#

The Information Display Problem#

Application context: 
Display information about a part of the world#

Advanced Software Engineering: Problem Solving, Problem Frames #© 2012 Martin Glinz# 8#

[Jackson 2006]#

The Workpieces Problem#

Application context: 
Provide a tool for editing a work piece such as text, graphics, etc.#

#

Advanced Software Engineering: Problem Solving, Problem Frames #© 2012 Martin Glinz# 9#

[Jackson 2006]#

The Transformation Problem#

Application context 
Transform input data to output data#

Advanced Software Engineering: Problem Solving, Problem Frames #© 2012 Martin Glinz# 10#

[Jackson 2006]#

Decomposing and recomposing problem frames#

❍  Separate the problem into individual frames#

❍  Model the frames#

❍  Address the frame concern#

❍  Re-integrate the frames into a single design#

Advanced Software Engineering: Problem Solving, Problem Frames #© 2012 Martin Glinz# 11#

A hard problem!#

Other problem patterns: The four-variable model#

❍  Four variables: monitored, controlled, input, output#

❍  Three relations: NAT (the constraints), REQ (the requirements), SOFT
(machine input to machine output)#

❍  Two mappings: MON à INPUT, OUTPUT à CON#

Advanced Software Engineering: Problem Solving, Problem Frames #© 2012 Martin Glinz# 12#

Tabular Notations for State Machine-Based Specifications

March 2008 www.stsc.hill.af.mil 21

The tabular notations provided by StP
SE are compact and readable. However,
diagrams and tables of StP SE provide
neither state nesting nor orthogonal
regions. Similar to VFSMs, structuring is
possible using hierarchical decomposition.
In order to facilitate the implementation
phase, the StP SE tool suite provides code
generation and reverse engineering capa-
bilities for the C programming language.

Parnas Tables
Parnas and Madey developed the four-
variable model as an underlying state
machine model to formally specify system
requirements [14]. The name of the model
arises from the fact that a specification
contains four distinct sets of variables:
• Variables monitored by the system

(MON).
• Variables controlled by the system

(CON).
• Variables that the input devices of the

system read from (INPUT).
• Variables that the output devices of

the system write to (OUTPUT).
The relations between the variable sets of
the four-variable model are illustrated in
Figure 3.

Specifically, the variables are linked by
the following five relations:
• Natural constraints on the monitored

and controlled variables (NAT).
• Expected change of controlled vari-

ables in response to changes in moni-
tored variables, i.e., the actual system
requirements (REQ).

• Relation of monitored variables to
input variables (IN).

• Relation of controlled variables to out-
put variables (OUT).

• Relation between input and output
variables, realized by software (SOFT).
A possible notation for expressing

these relations are Parnas Tables [10].
Parnas Tables are a collection of 10 table
types for capturing functional and rela-
tional expressions, each having a distinct
syntax and semantics. A developer should
choose the table format that produces a
simple, compact representation for
expressing the relation at hand. For each
table type, rules exist for identifying
incompleteness and inconsistency.

Table 5 (see page 22) contains a sam-
ple Parnas Table of type decision table. A
decision table can represent a function or
relation where the domain is an ordered
set of potentially distinct types. One
dimension of the table itemizes the ele-
ments of the domain. Table 5 shows the
syntax of a decision table representing the
relation between two variables, A and B,
and a decision that is made based on the

values of these variables. For instance,
Table 5 states that if A = A2 and B = B2

then make Decision2.
Parnas Tables do not support nesting

or orthogonality, but allow the developer
to reference a function that is defined in a
different table. Since Parnas Tables have
completely formal semantics, tool support
can be developed to check the tables auto-
matically. However, to the best of our
knowledge, such tool support is not cur-
rently available.

SCR
SCR is a set of formal methods for the
design of software systems [3]. Similar to
Parnas tables, SCR also uses the four-vari-
able model as its underlying abstraction, and
the relationships between monitored and
controlled variables are captured in tables
[10, 14].

In order to capture the relations con-
cisely, SCR defines modes. A mode
describes a set of system states in which
the system exhibits equivalent behavior in
response to events and conditions. Mode
classes then describe the relationships
between these modes and are modeled in
terms of mode transition tables. In order
to model complex systems with indepen-
dent components, several mode classes
may be constructed to capture concurren-
cy. The occurrence of an event is denoted
by a value change of a condition. @T is
used to specify that a condition becomes
true, while @F specifies that a condition
becomes false.

SCR uses three different types of
tables to specify a system: condition tables,
event tables, and mode transition tables.

A condition table defines the value of
a variable depending on the mode and a
condition. For example, in Table 6, the
variable var3 is assigned the value greater,
equal, or less in the modes M1 and M2 of
mode class MC1, depending on the values
of variables var1 and var2.

An event table defines the value of a
variable as a function of the mode and a
(possibly conditioned) event. For example,
Table 7 (see page 22) assigns variable var4 a
true or false value in the modes M1 and M2

of mode class MC1 based on a change in
value of the variable var3.

Finally, the mode transition table

defines how the mode of a mode class
changes in response to events. A sample
mode transition table for the mode class
MC1 is given in Table 8. Specifically, the
system changes from mode M1 to mode M2

upon variable var4 becoming true, and
switches back to mode M1 if the variable
becomes false. Commonly, a mode transi-
tion table contains only events that change
the mode; events that do not cause mode
changes are omitted to increase readability.

The SCR notation is rigorous and com-
pact, but purely tabular. Nesting and
orthogonality are not supported by the
notation, but hierarchical decomposition
can be used to structure complex systems.
Tools to support various V&V approaches
have been developed [3]. Once the system
model is complete, the model can be
checked for different types of errors, such
as incompleteness or ambiguities. In addi-
tion, a simulator can be used to run sce-
narios and inspect whether the results are
as expected.

RSML
The RSML was originally developed to
write requirements specifications for
process-control systems such as a collision
avoidance system for a commercial airlin-
er [11]. RSML combines a graphical nota-
tion based on Harel statecharts with a tab-
ular notation for specifying transition con-
ditions. As such, RSML retains most of
the advanced features of statecharts, such
as depth and orthogonality, while using
tables to facilitate the readability of condi-
tions associated with transitions.

RSML specifications generally consist
of state diagrams with unlabeled transi-
tions. Transitions are not labeled in order
to increase the readability of a state dia-
gram when enabling conditions of transi-
tions are complex. Instead of using labels,

MON

TUPTUOTUPNI

CON

OUTIN

REQ

SOFT

NAT

Figure 3: Four-Variable Model [14]

Table 4: StP SE State Transition Table

[Parnas and Madey 1995]#

Design Spaces#

❍  What?#

❍  Why?#

❍  How?#

Advanced Software Engineering: Problem Solving, Problem Frames #© 2012 Martin Glinz# 13#

 JANUARY/FEBRUARY 2012 | IEEE SOFTWARE 47

user interface implementation struc -
tures,4

software architectural styles,5

distributed sensors,6 and
typeface design.7

Design studies use the exploration of
design spaces to find suitable designs,
often by searching, as a model of de-
signer action.8

Often—and in most practical prob-
lems of realistic size—the design space
is not completely known in advance. In
this case, the elaboration of the space
proceeds hand-in-hand with the de-
sign process. Herbert Simon treated
the task of selection from a fixed space
as enumeration and optimization, and
the task of searching an unknown or
open-ended space as search and sat-
isficing.9 These cases align (roughly)
with routine and innovative design.

Representing
Design Spaces
Figure 1 shows a small design space for
sharing information via the Web. This
is only a small slice of the entire design
space, selected to compare representa-
tions of the same space. For this small
example, each of the three dimensions
has two possible values:

Activation. Does the sender
push the information to the
reader, or does the reader pull the
communication?
Privacy. Is the communication pri-
vate to a small set of known parties,
or is it public?
Authorship. Does one person or
an open-ended group author the
information?

Figure 1 shows examples at ev-
ery point of the space. For instance, a
sender pushes email to the reader’s mail-
box, the sender writes it, and it’s private

to the sender and
named recipients.
Of course, more
than one applica-
tion can occupy a
point in this space.
For example, in-
stant messaging
also lies at the
<sender push, pri-
vate, solo> point.
Some points might
also be unoccu-
pied. This might
happen because
the combinations
of choices don’t
make sense, or it
might indicate an
opportunity for new products.

Sketching multidimensional spaces
obviously doesn’t scale well. This small
design space admits other representa-
tions. For example, in Table 1, rows
correspond to points in the space, and
columns correspond to the dimensions.
This table’s shortcoming is that it repre-
sents the points on each dimension only
implicitly, in the values in the table’s
body. This format can represent the
design space only to the extent that it’s
populated with a full range of examples.

You can also represent this design
space by focusing on dimensions and
their values. Figure 2 shows one such
form. Following Frederick Brooks, the
tree has two kinds of branches: choice
and substructure.10 Choice branches,
flagged with “##,” are the actual design
decisions; usually one option should
be chosen. Substructure branches (not
flagged) group independent decisions
about the design; usually all of these
should be explored.

Figure 2 has only one hierarchi-
cal level, but the format allows deeper
structure; indeed, the traffic signal
simulation space we’ll look at is much

richer. This representation’s advantages
are that it shows alternatives without
relying on examples (Figure 2 adds two
alternatives—interactive and login con-
trolled) and it handles hierarchical de-
scriptions well. Its disadvantage is that
it represents a point in the space dif-
fusely by tagging all relevant values.
The figure illustrates this by placing the
email, wiki, and (static) webpage in-
stances in the representation.

Naturally, if other properties domi-
nate design concerns, a different de-
sign space would be appropriate. The
example I just discussed addresses how
information flows between users. If
the properties of interest are related to
content representation and storage, the
dimensions of interest might be <per-
sistence, locus of state, latency, content
type>.

The Traffic Signal
Simulation Design Space
To relate design spaces more closely
to practice, I turn to a problem of a
more realistic size, drawn from the US
National Science Foundation-spon-
sored Studying Professional Software

Webpage Wiki

Twitter

Facebook wall
with comments

Yahoo group
as email

email
d-listemail

Solo Shared

Facebook
status

Reader pull

Sender push

Ac
tiv

at
io

n

AuthorshipPriv
ac

y

Priv
ate

Pub
lic

FIGURE 1. A small design space for Web information sharing. This
representation selects three decisions about information sharing and
shows how they correspond to some common applications.

[Shaw 2012]#

Normal vs. Radical Design#

Advanced Software Engineering: Problem Solving, Problem Frames #© 2012 Martin Glinz# 14#

P36 (1935)# P51 (1940)#

Me 262(1942)#

Design Process#

❍  A rational design process?#

❍  Innovation#

❍  Mature systems#

Advanced Software Engineering: Problem Solving, Problem Frames #© 2012 Martin Glinz# 15#

References#

Booch, G. (2012). The Professional Architect. IEEE Software 29, 1 (Jan 2012). 12-13.#
Brooks, F.P. (2010). The Design of Design: Essays from a Computer Scientist. Boston, MA: Pearson Education.#
Herrmannsdörfer, M., S. Konrad, B. Berenbach (2008). Tabular Notations for State Machine-Based Specifications.
Crosstalk, issue 3/2008. 18-23.#
Jackson (2001). Problem Frames: Analysing and Structuring Software Development Problems. Harlow: Addison-
Wesley.#
M. Jackson (2005). Problem Frames and Software Engineering. Information and Software Technology 47, 14 (Nov
2005). 903-912.#
M. Jackson (2006). A Tutorial on Software Development Problem Frames. BCS RESG Problem Frames Day, The
Open University, Milton Keynes, UK. 10 May 2006.#
Krasner, G.E., S.T. Pope (1988). A Cookbook for Using the Model-View-Controller User Interface Paradigm in
Smalltalk-80. Journal of Object-Oriented Programming 1, 3. 26-49.#
Kruchten, P.B. (1995). The 4+1 View Model of Architecture. IEEE Software 12, 6 (Nov 1995). 42-50.#
Meyer, B. (1992). Applying “Design by Contract”. IEEE Computer 25, 10 (Oct. 1992). 40-51.#
Parnas, D.L. (1972). On the Criteria To Be Used in Decomposing Systems into Modules. Com­munications of the
ACM 15, 12 (Dec. 1972). 1053-1058.#
Parnas, D.L. and Clements, P.C. (1986). A Rational Design Process: How and Why to Fake It. IEEE Transactions
on Software Engineering SE-12, 2 (Feb 1986). 251-257.#
Parnas, D.L., J. Madey (1995). Functional Documents for Computer Systems. Science of Computer Programming
25, 1 (October 1995). 41-61.#
Shaw, M. (2012). The Role of Design Spaces. IEEE Software 29, 1 (Jan 2012). 46-50.#
 #
Advanced Software Engineering: Problem Solving, Problem Frames #© 2013 Martin Glinz# 16#

