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1 Introduction

Migros is one of the biggest companies in Switzerland and the shopping habits of its customers
is collected through loyalty cards. Migros uses the Teradata1 database system to maintain and
process the huge amount of data that is collected about the purchases of their customers. In this
project we investigate and apply some temporal probabilistic concepts in the Migros Teradata
database landscape. As part of that, we apply the parsimonious temporal aggregation, termed
PTA [1], on some huge real life data sets. Since the project has been restricted to an almost
pure SQL environment, we had to find some alternative algorithmic concepts for the PTA in
order to successfully process these large data sets.

The paper is organized as follows. In Chapter 2 we investigate the relations in Migros’
Teradata database system that are needed for the rest of the paper. In Chapter 3 we describe
some approaches on how to calculate probabilities for an important relation in the database
to get a time point timestamped probabilistic relation. In Chapter 4 we then show in which
way the PTA is used to transform the time point stamped relation to a temporal probabilistic
relation with interval timestamps. We introduce a new algorithmic approach which mirrors
some PTA aspects in such a way that it can be executed in an almost pure SQL environment
and afterwards, we present experimental results regarding its performance. Chapter 5 presents
a reference query to outline a possible application of temporal probabilistic relations in the
Migros domain. Finally, in Chapter 6 we draw some conclusions.

1http://www.teradata.com
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2 Migros Dataset

For the scope of this project we use two very central relations of Migros’ database. Both
relations contain data that is collected when customers buy articles at a location of Migros.
The data comprises general information about purchases as well as detailed insight of every
article that is bought in the course of a purchase.

2.1 First Source Relation: Transaction
The first relation is called the Transaction relation and each of its tuples stores summarized
information about a customer’s purchase in a Migros branch. All the information stored ap-
plies to the whole purchase but without going into the details of the articles that are part of
the purchase. Figure 2.1 shows the scheme of the Transaction relation with some assorted
attributes and a sample tuple.

Transaction

LocationID DateID TimeID CustomerID SalesTotal DiscountTotal ...

tr1 8502 2014-03-05 160135 312379620 16.70 1.30 ...

Figure 2.1: The Transaction Relation

The example tuple tr1 states that at the location with LocationID = 8502, on the 5th March
in 2014 at 16:05:35, the customer with the CustomerID = 312379620 has made a purchase.
The customer spent a total of SalesTotal = 16.70 CHF and saved DiscountTotal = 1.30
CHF due to special offers. As we will see in the following Chapter 3, we need to know
the atttributes LocationID , DateID , TimeID and CustomerID . Important to note is that
some of the attributes are displayed in a simplified manner since they’re composed of multiple
attributes of the implemented relation in the real life. But with the abstraction it is easier to
understand and talk about the relation’s attributes. E.g. LocationID is actually a compound
attribute, but for our purpose, it is enough to know that this attribute uniquely identifies at
which branch the purchase has happened. It is quite evident that DateID is storing the date in
the format ’yyyy-mm-dd’ and that the TimeID attribute is an integer of the form ’hhmmss’.
The CustomerID , e.g. 312379620, actually represents the number of a loyalty card. It is
important to know that the number is not unique to a certain person. One household can
request for multiple loyalty cards having all the same number. For example the mother of a
family has a loyalty card with a specific number and her child can have a second card with the
very same number. Therefore we can have entries in the Transaction relation with the same
CustomerID on very similar time-points, but very distinct locations.
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2.2 Second Source Relation: TransactionArticle

The second relation is called TransactionArticle and as the name is indicating, a tuple
of this relation stores detailed information regarding an article that is bought in a purchase.
Figure 2.2 shows, again in a simplified manner, an example tuple. Besides the attributes
LocationID , DateID , TimeID and CustomerID that we already know from the Transaction
relation, the most popular attribute is the ArticleID that uniquely identifies which article has
been bought. The example tuple tra1 states that at the location with LocationID = 8502,
on the 5th March in 2014 at 16:05:35 in the afternoon, one article, Quantity = 1, with
ArticleID = 29857103 has been bought by the customer with the loyalty card number
CustomerID = 312379620. The prices for that article has been Sales = 1.45 CHF and
the article price has been reduced by Discount = 0.45 CHF.

TransactionArticle

LocationID DateID TimeID ArticleID CustomerID Sales Discount Quantity ...

tra1 8502 2014-03-05 160135 29857103 312379620 1.45 0.45 1 ...

Figure 2.2: The Transaction Relation

2.3 Helper-Relations
Due to some data normalization measures, most attributes of the two source relations are quite
expressionless id values, e.g. LocationID or ArticleID . For every kind of ID there exists a
corresponding relation that stores names, translations and other attributes to the specific ID
values. With the help of joins on the corresponding ID attributes we are able to visualize
the data with more meaningful content. For example as shown in Figure 2.3, we can give
LocationIDs some real location names with the Location relation and with the Article re-
lation we are able to replace ArticleIDs with meaningful article names. In the interest of
keeping things simple for the examples in the paper, we will directly use more meaningful
content.

Location

LocationID LocationName ..

l1 8502 MMM Waedenswil ...

Article

ArticleID ArticleName ..

a1 160135 Premium Coke ...

Figure 2.3: The Location and Article Relation

The Calendar relation helps us to implicitly define some properties out of specific dates.
Figure 2.4 shows some of its attribute. DateID is the actual identifying date and all other
attributes refer in some extend to that date. WeekdayID represents what weekday, e.g. 3 =
Wednesday, we have on a particular date and YearWeekID provides us the number of the week
of the current year that the date is placed, e.g. 201409 represents that the date is in the 9th
week of 2014. In Chapter 3 we will make actual use of the method to derive further attributes
from a date.
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Calendar

DateID WeekdayID YearWeekID YearMonthID YearID ...

c1 2014-03-05 3 201409 201403 2014 ...

Figure 2.4: The Calendar Relation

2.4 Working Subset
There exist billions of rows in the two source relations Transaction and Transaction-
Article. Each day more than 1.6 million shoppings are recorded and more than 16 million
articles are purchased in the Migros domain. In order to keep the focus of the project into a
certain direction, we reduce the scope of the domain to a certain type of Migros Stores. Mi-
gros has thousands of different cost units that represent different markets and even services.
Of course on the one hand we have the Migros supermarkets but additionally on the other
hand there exist a lot of specific specialist warehouses like Micasa, Obi, SportXX, Valora
etc. as well and furthermore Migros has also business lines like catering services and Migros
restaurants. For this project we will focus the scope on the basic Migros markets of the de-
tail bussines division which are categorized to the three different size types ’M’, ’MM’ and
’MMM’ that most of the Swiss know. An additional reduction of the scope is that we only
focus on collected data that have a CustomerID associated with it. That means that we only
consider data that is created of purchases where a customer actually scanned their loyalty card
at the cash box.
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3 Computing Probabilities per Time
Point

In this chapter we will show some possibilities of how to transform a time point stamped rela-
tion into a temporal probabilistic relation. From the two main source relations Transaction
and TransactionArticle we will use the Transaction relation to derive the temporal prob-
abilistic relation ShopsIn. The main focus lies on finding appropriate probability values for
the tuples of this targeted relation but we will also show some concerns that came up during
the investigation.

Figure 3.1a shows the Transaction relation with a sample tuple tr1. The tuple tr1 states
that Jane Doe has been shopping in the Migros market ZH MM Meilen on the 5th March in
2014 at 16:01:35 in the afternoon. As indicated, we will derive the ShopsIn relation from the
Transaction relation. So first of all, we define the scheme of the target relation ShopsIn.
ShopsIn is a time point timestamped probabilistic relation which will store events in the form
of who (Cst) goes shopping at which location (Loc) in which point in time (T ) and what the
probability (P ) has been for this event anyway. Figure 3.1b shows a sample tuple of how the
data should look like for this relation. The tuple s1 is representing the fact that Jane Doe has
been shopping at ZH MM Meilen on the 5th March in 2014 and the probability for this event
has been 0.33. Comparing it to the Transaction relation from Figure 3.1a we see that we can
directly adopt the CustomerID and LocationID attributes from the Transaction relation for
the Cst and Loc attributes of the ShopsIn relation. The Timestamp T is equal to the DateID
attribute, but we do not reuse the TimeID attribute in the ShopsIn relation. This means
that we theoretically could have multiple tuples with the same values, representing customers
that went shopping at the same location multiple times a day. But as we see in later sections,
we take care of that in the probability calculations by a proper grouping of such events and
therefore there won’t be value equivalent tuples in the final ShopsIn relation.

Transaction

LocationID DateID TimeID CustomerID ...

tr1 ZH MM Meilen 2014-03-05 160135 Jane Doe ...

(a) The Transaction Relation

ShopsInP

Cst Loc T P

s1 Jane Doe ZH MM Meilen 2014-03-05 0.33

(b) The ShopsIn Relation

Figure 3.1: Deriving the ShopsIn Relation from the Transaction Relation

We describe 3 different approaches based on which we calculate probability values for
the tuples of ShopsIn. Subsection 3.1 describes probabilities that depend on a customer’s
likeliness to shop at a specific location, subsection 3.3 looks at how weekdays might be used
to define probability values and subsection 3.4 shows a combination of both as well as an
explanation why we decided that this is the most reasonable approach.
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3.1 Time-Independent Shopping Preferences
Our first approach to calculate probabilities relies on a customer’s preference to shop at a
specific location compared to the other locations the customer went shopping. Figure 3.2
shows again the sample tuple from Figure 3.1b of how the data of the ShopsInP relation
should look like but additionally points out that we will focus on the Cst and the Loc attributes
to calculate the probabilities.

Figure 3.2: The Attributes Cst and Loc are used to calculate P

In order to get the probability values of the customer’s likeliness to shop at specific locations
we need to calculate the portion of how many times a customer has been shopping at the lo-
cation of the current tuple compared to the total amount of times the customer went shopping,
no matter which location. Let s be an abbreviation ShopsIn, then the calculation formula to
get the probability P for every si ∈ s looks as follows:

si.P = |{s | s ∈ s ∧ s.Cst = si.Cst∧ s.Loc = si.Loc}|
|{s | s ∈ s ∧ s.Cst = si.Cst}|

Figure 3.3 shows an example with two more rows of Jane Doe shopping at ZH MM Egg on
2014-03-08 and at ZH MM Meilen on 2014-03-10. Since Jane Doe has been shopping at ZH
MM Meilen two times of the overall three times, the two tuples s1 and s3 get each a probability
of 2/3, i.e 0.67, which is shown in the Figure as well.

Figure 3.3: Calculating the Probabilities

The probability values reflect our desire to give higher probabilities to tuples that contain
locations that Jane Doe has visited more often. Nevertheless, if we consider that there exist
much more tuples of Jane Doe in Migros’ database, we see that this approach is rather pre-
mature. One rather undesirable fact is that all tuples where Jane Doe shops at ZH MM Meilen
have the same probability values and that they’re completely ignoring a customers changing
preferences over time.
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Locations where a customer goes shopping might change over time. Reasons might be that
a customer moves to another place, that the customer get a job in another city or educational
reasons are shifting the customers main spending time to other places. Figure 3.4 shows a
simplified example of Jane Doe who shops in spring (s1, s2, s3) in ZH MM Meilen and in
autumn in VD M M EPFL (s4, s5, s6). Since the proportion between tuples containing ZH MM
Meilen and tuples containing VD M M EPFL is the same, the probabilities is the same for all
six sample tuples, each calculated with 3/6 = 0.5.

Figure 3.4: Disadvantage of the Approach

We don’t know exactly why Jane Doe is mainly shopping in ZH MM Meilen in March and
afterwards, around the beginning of October, she prefers to shop in VD M M EPFL, but it
points out that it might be quite naive to let all existing events influence the probability of a
single event, disregarding how far in time they have happened.

3.2 Shopping Preferences Over time
In order to deal with the rather undesired temporally unlimited influence of events on each
other, we’ve decided to calculate the probabilities with the help of specific scopes. With a
scope we define a window in which an event is only influenced by other events within this
window. We define three different calculation scopes since with that we’re able to decide
later which calculation scope or combination of calculation scopes is best to use for the final
probability values. To be specific about the different scopes, we perform calculations on a
yearly, a monthly and a weekly basis. In order to be able to do that, we need the year-,
month- as well as the week- numbers which are all implicitly given by the timestamp T and
can be derived from the Calendar relation from Figure 2.4. For an easier understanding,
we display these attributes explicitly as additional attributes in our targeted ShopsIn relation.
For example, in Figure 3.5 we have Jane Doe shopping in ZH MM Egg on 2014-12-13 with a
yet uncalculated probability value. We also display the temporal IDs, e.g. the YearWeekID
with a value of 201450 means that the time-point 2014-12-13 is in the 50th week of the year
2014.
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Figure 3.5: The Implicit Scope Attributes

In terms of keeping the visualization and the calculations clearly arranged, we show ex-
amples only in a weekly scope and therefore also only use the YearWeekID from the scope
attributes to distinguish which events affect the probabilities of certain event groups. Fig-
ure 3.6 shows some sample events of the Transaction relation which we will use as source
tuples for the probability calculations of some result events for the targeted ShopsIn relation.
As visualized we will use the 7 source events tr2 to tr8 happening in the 51th week of 2014.

Figure 3.6: Sample tuples for Calculating Jane Doe’s Probabilities in Week 51

For the weekly calculation scope, we compute the portion of how many times a certain
customer has been shopping at the location of the current tuple during the whole week with
respect to the total amount of times this customer has been shopping during the whole week.
The calculation formula to get the probability P for every si ∈ s looks now as follows:

si.P = |{s | s ∈ s ∧ s.Cst = si.Cst∧ s.Loc = si.Loc ∧ s.YearWeekID = si.YearWeekID}|
|{s | s ∈ s ∧ s.Cst = si.Cst ∧ s.YearWeekID = si.YearWeekID}|

Figure 3.7 shows the detailed computation of the probabilities with respect to
the weekly scope whereas we keep the results temporarily in a separate relation
P_CustomerLocation_Week. The attributes Num and Den represent the numerator and
the denominator of a tuples current probability calculation. For example, since the two tuples
tr2 and tr8 from Figure 3.6 represent events of Jane Doe shopping at ZH MM Meilen in the
51th week of 2014, the attribute Num of tuple p2 in Figure 3.7 has the value 2. Vice versa,
the denominator Den of p2 is of value 7 due to the corresponding total amount of events given
by the tuples tr2 to tr8 placed in the 51th week of 2014. By calculating Num = 2 divided by
Den = 7 we finally get the probability P = 0.29 for the tuple p2.
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Figure 3.7: Example of Probability Calculations in a Weekly Scope

Given the above, we’re able to derive a ShopsIn relation with the probabilities calculated
in a weekly scope. Figure 3.8 shows the ShopsInP relation that results from assigning the
probability values from the P_CustomerLocation_Week relation from Figure 3.7 to the
events from the Transaction relation from Figure 3.6. Let p, tr and s be abbreviations
for P_CustomerLocation_Week, Transaction and ShopsInP respectively, the relational
algebra expression for deriving the ShopsInP relation looks as follows:

x← (ρCst ,Loc,T,YW ,Num,Den,P(p)) ./θ (Cst ,Loc,T,YWϑ(ρCst ,Loc,T,YW (tr))),
θ ≡ p.Cst = tr.Cst ∧ p.Loc = tr.Loc ∧ p.YW = tr.YW

s← πtr.Cst ,tr.Loc,tr.T,p.YW ,p.P(x)

Figure 3.8: ShopsIn Relation with Weekly Ccoped Probabilities

Before we’re joining p with tr, we’re already renaming the attributes of these relations
to the final attribute names they should have in s and for tr we perform even a grouping
before the join. The grouping is necessary e.g. for duplicate tuples like tr3 and tr4 in the
Transaction relation from Figure 3.6. Then we join p with tr on the attributes Cst ,Loc and
YW . Take note, that in the formula above we use the intermediary relation x only for better
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visualizing purposes. After the join we use a projection to get finally the desired attributes we
want to have in the ShopsInP relation.

To get an idea how it looks like when we do calculations with respect to all three scoping
attributes, Figure 3.9 shows event s2 from Figure 3.8 but additionally extended with the results
of the probability calculations on the yearly and monthly basis. We name the probability
columns according to their different calculation scopes Py, Pm and Pw for yearly, monthly
and weekly scopes respectively.

Figure 3.9: ShopsIn relation with scoped probabilities

We do not give examples for the yearly and monthly based calculations here since the cal-
culations are directly derivable from the given example of the calculations on a weekly basis.

3.3 Weekday Periodicity
The second and rather different approach to calculate the probabilities for our targeted
ShopsIn relation depends on the weekdays given by the tuples’ dates. We want to exam-
ine how likely a customer tends to shop on specific weekdays. The weekdays are actually
implied by the timestamp itself and can be derived from the Calendar relation, as shown ear-
lier in Figure 2.4. For an easier understanding, we display the weekdays as an additionally
attribute WD for ShopsIn as shown in Figure 3.10. The sample tuple represents the fact that
Jane Doe has been shopping at ZH MM Meilen on the 5th March in 2014 and the probability
for this event has been 0.33. The weekday WD points out that the event has happened on a
Wednesday.

Figure 3.10: The Attributes Cst and WD are used to calculate P

In order to get the probability values of the customer’s likeliness to shop at specific week-
days, we need to calculate the portion of how many times a customer has been shopping on
this weekday of the current tuple compared to the total amount of times the customer went
shopping, no matter which weekday. The calculation formula to get the probability P for
every si ∈ s looks as follows:

si.P = |{s | s ∈ s ∧ s.Cst = si.Cst∧ s.WD = si.WD}|
|{s | s ∈ s ∧ s.Cst = si.Cst}|
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Figure 3.11 shows an example with two more rows of Jane Doe shopping at ZH MM Egg
on 2014-03-08 which is a Saturday and at ZH M Hauptbahnhof on 2014-03-12 which is a
Wednesday. Since Jane Doe has been shopping at Wednesday two times of the overall three
times, the two tuples s1 and s3 get each a probability of 2/3 = 0.67, whereas the calculation
is also visualized in the Figure.

Figure 3.11: Deriving P from the values of WeekdayID

Unfortunately we have very similar issues here like in the first approach before, where we
examined a customer’s preference of specific locations. All of Jane Doe’s events taking place
on Wednesday’s have the same probability values. To lower this phenomena, we will again
apply the three different calculation scopes on this probability calculations as we’ve done it in
the section before for the first approach. Since the procedure stays the same and it is possible to
apply it directly on this type of probability calculation, we won’t deliver any further examples
for that and will directly look at a final result event of ShopsInP .

The sample event s1 from Figure 3.12 means that we look at an event for Jane Doe shop-
ping at ZH MM Meilen on 2014-10-18 which is a Saturday. The probabilities state, what the
probability has been that Jane Doe shops on a Saturday. Py sets the scope on the current year
2014, Pm sets the scope on the current month October of 2014 and Pw sets the scope on the
current week number 42 of 2014.

Figure 3.12: ShopsIn Relation with Scoped Probabilities

3.4 Location Preferences and Weekday Periodicity
The approaches that we’ve shown before seem quite reasonable methods to get probability
values for the ShopsIn relation. It might be quite straightforward to combine them since the
probability of where a customer tends to shop sounds very likely influenced by the current
weekday and vice versa. Since the exact science of the people’s shopping behaviour would
by far exceed the scope of this paper, we have to state some naive assumptions about a cus-
tomer’s daily routine. We believe that the routine is formed to a certain extend by a customer’s
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obligations. We assume that a customer’s daily routine and his obligation not only indicate on
what weekdays a customer tends to shop, but also that the weekdays give us a hint where a
customer is more likely to shop. Or in the other direction, that given a customer’s purchase in
a certain location, we could tell on which weekday(s) this event might be more likely.

So with that, the third approach combines the two approaches from before and therefore
makes the probabilities depend on the values of the customers Cst , locations Loc as well as on
the values of the weekdays WD . Again as before, the weekdays are implied by the timestamp
itself and for an easier understanding we additionally visualize them as a separate column as
shown in Figure 3.13. The sample tuple represents the fact that Jane Doe has been shopping
at ZH MM Meilen on the 5th March in 2014 which has been a Wednesday and the probability
for this event has been 0.5.

Figure 3.13: The Attributes Cst ,Loc and WD are used to calculate P

In order to get the probability values of the customer’s likeliness to shop at specific locations
on specific weekdays we need to calculate the portion of how many times a customer has been
shopping at this location on this weekday of the current tuple compared to the total amount of
times the customer went shopping, no matter which location or weekday. Figure 3.14 shows
an example with three more rows. Jane Doe is shopping at ZH MM Meilen on 2014-02-26
which is a Wednesday, at ZH MM Meilen on 2014-03-01 which is a Saturday and also at ZH
MM Egg on 2014-03-08 which is a Saturday. Since Jane Doe has been shopping at ZH MM
Meilen on Wednesday’s two times of the overall four times, the two tuples s1 and s3 get each
a probability of 2/4 = 0.5. The calculation is also visualized in the Figure.

Figure 3.14: Calculating Probabilities

As the example shows, we have again some tuples with same probability values, so we will
reapply the three different calculation scopes to this probability calculations as we’ve done it
before. Similarly as before, we do not repeat any examples since the procedure stays the same
and therefore jump right through to a result example.
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Almost identically as in the other two approaches, the sample event s1 from Figure 3.15
means that we look at an event for Jane Doe shopping at ZH MM Meilen on 2014-10-18 which
is a Saturday. The probabilities state, what the probability has been that Jane Doe shops in
ZH MM Meilen on a Saturday. Py, Pm and Pw represent again the probabilities according to
their respective scopes Y , YM and YW .

Figure 3.15: ShopsIn relation with scoped probabilities

3.5 Evaluating Probability Calculations
The probability calculations for the ShopsIn relation reveal some reasonable considerations
behind the computations but also some aspects that need to be investigated more deeply in
future work. On the one hand the dependency of the probabilities on the combined attributes
CustomerID, LocationID and WeekdayID received some positive feedback. On the other
hand, as the final results of the ShopsInTP relation has shown, a daily granularity for the
tuples reveals a data set that is a bit to perforated. That means that the ShopsInTP relation we
finally got, has to many temporal gaps in a customers shopping behaviour at specific locations.
This is not always bad, but with respect to a direct usage in the next chapter’s discussed
PTA algorithm, the amount of tuples that can be merged together is far too little. Also the
calculation scopes are a bit too static. In this chapter we have shown yearly, monthly and
weekly scopes that were quite easily calculable with the given helper tables in the database.
But after some late considerations it makes sense to set the scopes more dynamically as a
window around a tuples current timestamp. E.g. if we have a given time point 2014-10-18
and want to consider a yearly scope, taking the year 2014 as scope for the calculations is the
approach given in this chapter. An other but probably better approach follows the idea to set
e.g. a yearly scope in a way that we consider for the calculations the half year before the date
2014-10-18 and the half year after that date. But as said previously, this investigations need to
be pursuit in future work.
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4 The PTA

This chapter describes how the parsimonious temporal aggregation algorithm (PTA [1]) is
modified in order to reduce the enormous mass of data that comes along with our investigation
of Migros’ data set. So far in this project, we have a huge amount of time point timestamped
probabilistic data and the PTA helps us to reduce the amount of tuples in the desired relations
by forming intervals which follow the flow of the data. At the same time the PTA also ensures
that the introduced error which emerges from the reduction is minimal. Gordevicius et al. [1]
have introduced different PTA approaches and presented their respective algorithms that are
designed for general-purpose programming languages. However, in order to be able to use a
PTA algorithm in the Teradata database environment of the Migros’ database infrastructure, a
nearly pure SQL approach is needed. First we show the obstacles that prevent a direct adapta-
tion of the existing algorithms to probable equal SQL versions. After that, we show some very
basic principals of the PTA algorithm which we then reuse for a naive algorithmic approach
that can be adapted to a simple SQL approach. We illustrate the performance related draw-
backs of this basic SQL algorithm before we finally introduce some alternative modifications
that drastically speed up the SQL version of the PTA algorithm.

4.1 Obstacles of Existing PTA Algorithms
Given the implementation of PTA using a general purpose programming language Gordevi-
cius et al. [1] also shown the advantages regarding the performance while keeping the merging
introduced at a low as possible level. Unfortunately these algorithms rely on programming lan-
guage constructs and mechanisms that are not that easily to reflect in a pure SQL environment.

Initially, a dynamic programming approach has been introduced, that depends on constructs
like matrices. Matrices are not naturally given structures in SQL and some non-trivial algorith-
mic transformations would be needed to conceptually mirror these matrices that this algorithm
relies on. In an environment like in Migros, where we have billions of tuples, it is also clear
that we can’t try to directly apply database tables to represent matrices. The matrices can be-
come enormously huge, since their two dimensions are given by the number of tuples of the
input relation and the target size that the result relation should have.

Furthermore, a greedy algorithm has been proposed, that streams input tuples and inserts
them into a heap for further merging procedures. Streaming data is also not a natural concept
of common SQL languages and mirroring a heap data structure in a table would need some
thoughtful considerations on how to map it in SQL.

Both approaches have in common that they keep the data or a part of the data that will
be merged in main memory and the same holds true for the matrices or heap structures. In
a pure SQL environment some rethinking is needed since intermediary results of iterative
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merging steps will be stored in the database and are considerably more expensive for this
reason. Especially in the data dimensions of Migros it is clear that excessive amounts of
iterative inserts, updates and deletes need to be avoided in order to keep the algorithm with
good performance.

So even though it is not easily or effectively to reuse some mechanisms of the introduced
algorithms, some basic concepts can be kept. In the following sections we will show the basic
concepts that our modified PTA adopts and in which way these concepts are reused in our own
SQL based version of the PTA.

4.2 Basic PTA Principles
For the scope of this project, we assume a linearly ordered, discrete time domain, ΩT . A time
interval is represented as T = [Ts, Te] ∈ ΩT × ΩT and is a contiguous set of time points,
where Ts and Te are the inclusive start an end point respectively. The time interval that is
associated with each tuple represents the tuple’s valid time. Since we’re in the domain of
temporal probabilistic databases, tuples represent events and the probability P 7→ [0, 1] states
the probability of an event for each time point in the time interval of the event. The schema
of a temporal probabilistic relation is denoted as R = (A1, ..., Am, T s, Te,P), where the non-
temporal and non-probabilistic attributes are represented as A1, ..., Am, the time interval is
represented as Ts, Te and the probability is represented as P . To shorten notations we use the
abbreviation A = A1, ..., Am for all non-temporal/non-probabilistic attributes of a relation.
For r.A1 = s.A1 ∧ ... ∧ r.Am = s.Am we write the abbreviated version r.A = s.A.

Example 1 As a running example we use the ShopsIn relation in Figure 4.1a which records
shopping trips: a customer (Cst), the shopping location (Loc), and the time period (inclusive
[Ts, Te] in a daily granularity) in which for each day there is the probability (P ) that the
customer will shop at this very specific location. For instance, tuple s1 states that there is
a 0.9 probability that Ann shops at HB on the 8th of June. In the graphical illustration in
Figure 4.1b, the timestamps of the consecutively adjacent tuples s1 to s8 are are shown as
horizontal lines and the vertical positioning is proportional to the probability values.

ShopsIn

Cst Loc Ts Te P

s1 Ann HB 06/08 06/08 0.9

s2 Ann HB 06/09 06/09 0.2

s3 Ann HB 06/10 06/10 0.4

s4 Ann HB 06/11 06/11 0.525

s5 Ann HB 06/12 06/12 0.45

s6 Ann HB 06/13 06/13 0.35

s7 Ann HB 06/14 06/14 0.5

s8 Ann HB 06/15 06/15 0.4

(a) ShopsIn Relation

T
06/8 06/9 06/10 06/11 06/12 06/13 06/14 06/15

P

0.0

0.5

1.0 s1

s2

s3

s4
s5

s6

s7
s8

(b) Graphical Illustration of ShopsIn

Figure 4.1: The ShopsIn Relation with some Sample Data

Figure 4.2a and Figure 4.2b show the result when we apply the PTA algorithm where the
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result size is reduced to 4 tuples. Four separate merging steps on the input relation in Fig-
ure 4.1a are necessary to get the desired result size. For instance, we’re using two mergings
for s3, s4 and s5 to get z3 as one of the final PTA result tuples. The probability of z3 is com-
puted by averaging the probabilities of s3, s4 and 5 over each day, i.e., 0.4, 0.525 and 0.45 for
each day respectively, yielding the value 0.45833.

ShopsIn

Cst Loc Ts Te P

z1 Ann HB 06/08 06/08 0.9

z2 Ann HB 06/09 06/09 0.2

z3 Ann HB 06/10 06/12 0.45833

z4 Ann HB 06/13 06/15 0.4166

(a) The reduced ShopsIn Relation

T
06/8 06/9 06/10 06/11 06/12 06/13 06/14 06/15

P

0.0

0.5

1.0 z1

z2

z3 z4

(b) Graphical illustration of the reduced relation

Figure 4.2: The ShopsIn relation after applying the PTA

Usually multiple groups of consecutively adjacent tuples exist in an input relation that is go-
ing to be reduced by the PTA algorithm. We will term such groups adjacency-groups from now
on and later we will talk about the advantage of knowing the existence of adjacency-groups.

Example 2 In Figure 4.1 and Figure 4.2 we have omitted other adjacency-groups for bet-
ter visualizing purposes, but now we will show how it looks like when we have multiple
adjacency-groups in the data. Figure 4.3a shows that we can have several adjacency-groups
for the same customer making purchases in a certain location, i.e. Ann making also other
purchases in HB which are represented by the tuples s0, s9 and s10. In Figure 4.3b we ad-
ditionally like to show that there generally exist more records in the ShopsIn relation that
state the fact that also other customers are making purchases in certain locations. E.g. the
tuples s10, s11, s12ands13 represent the fact that a customer called Ben might be shopping at
Oerlikon with different probability values on each day between the 13th and 16th of June. But
for now we will ignore other possible adjacency groups and we will only focus on the tuples
s1 to s8.

T
06/6 06/7 06/8 06/9 06/10 06/11 06/12 06/13 06/14 06/15 06/16 06/17 06/18

P

0.0

0.5

1.0 s1

s2

s3

s4
s5

s6

s7
s8

s0

s9

s10

(a) Ann shopping in HB

T
06/13 06/14 06/15 06/16

P

0.0

0.5

1.0

s11

s12

s13

s14

(b) Ben shops in Oerlikon

Figure 4.3: Other groups of consecutively adjacent tuples
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4.2.1 The Merging of Adjacent Tuples
One of the most basic concepts of the PTA [1] algorithm is that it accomplishes the reduc-
tion by repeatedly merging adjacent tuples together. Two tuples are defined to be adjacent if
they hold two specific conditions. First, they need to have the same values for the grouping
attributes and second, that the start-point of one of the two tuples immediately follows the end-
point of the other tuple. Let r, R,A be as previously introduced, then two tuples ri, rj ∈ r
are adjacent, ri ≺ rj , iff

1. ri.A = rj.A
2. ri.T e = rj.T s− 1

Example 3 In our example data 4.1 we see that e.g. s1 and s2 have the same grouping at-
tributes A = {Cst ,Loc} with s1.Cst = s2.Cst = Ann and s1.Loc = s2.Loc = HB. Addition-
ally also the second adjacency constraint holds for these two tuples; the start-point Ts of s2
immediately follows the end-point Te of s1, i.e. s2.T e = s1.T s − 1 = 06/08. Therefore, s1
and s2 are adjacent s1 ≺ s2. Since all the tuples in our example have the same values for the
grouping attributes and furthermore are ordered by the attribute Ts, it is immediately clear
that we have 7 adjacent tuple-pairs s1 ≺ s2, s2 ≺ s3, s3 ≺ s4, s4 ≺ s5, s5 ≺ s6, s6 ≺ s7 and
s7 ≺ s8, which of course can be written in short as s1 ≺ s2 ≺ s3 ≺ s4 ≺ s5 ≺ s6 ≺ s7 ≺ s8.

PTAparallel tuple-pair and merge-pair interchangeably and write ri⊕rj to denote the merg-
ing of the two adjacent tuples ri, rj ∈ r, ri ≺ rj which is defined as

ri ⊕ rj = (ri.A1, ..., ri.Am, ri.T s, rj.T e,Pnew),

Pnew =
|ri.T |∗ri.P+|rj .T |∗rj .P

|ri.T |+|rj .T |

Example 4 The merging s1 ⊕ s2 of the two tuples s1 and s2 from Figure 4.1 would result to
the new tuple z1 = (Ann,HB, 06/08, 06/09, 0.55). Ann and HB are given by the values of
the current grouping attributes Cst and Loc, 06/08 is given by the inclusive start time point
s1.T s and 06/09 is given by the inclusive end time point s2.T e. The new aggregated value
z1.P = 0.55 is calculated by the time weighted mean of s1.P and s2.P . The calculations are
as follows:

z1.Pnew = |s1.T |∗s1.P+|s2.T |∗s2.P
|s1.T |+|s2.T | = 1∗0.9+1∗0.2

1+1
= 1.1

2
= 0.55

The syntax for the reduction ρ of a relation r to a certain size c is denoted as ρ(r, c). As
long as the size of r, i.e. |r|, hasn’t reached the desired result size c, we continue to merge
tuples in relation r.

4.2.2 The Sum Squared Error and Merging Order
In order to keep the introduced error of the reductions as small as possible, one concept of
the PTA is to merge the most similar adjacent tuples together. In the context of this paper,
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it means that the PTA needs to merge together tuples that have the most similar probability
values in P , weighted with respect to their time interval. With the computation of the sum
squared error, SSE , that would emerge from merging tuple-pairs together, the algorithm is
able to determine the most similar candidate merge-pair. The general calculation formula for
the SSE has been introduced by Gordevicius et al. [1] and we slightly adapt it to the current
temporal probabilistic context. Let r, R,A be defined as before, z = ρ(r, ·) be a reduction of
r, and let for each z ∈ z, rz = {r|r ∈ r ∧ z.A = r.A ∧ r.T ⊆ z.T} be the set of all input
tuples that are merged into z. The SSE (r, z) of reducing s to z is

SSE(r, z) =
∑

z∈z
∑

r∈rz |r.T |(r.P − z.Pnew)2

Example 5 To get the SSE that results from merging s1 and s2, the PTA computes the squared
distance (over the aggregation result Pnew) between z1 and the input tuples s1 and s2. The
detailed computation is as follows:

SSE({s1, s2}, z1) = |s1.T | ∗ (s1.P − z1.P)2 + |s2.T | ∗ (s2.P − z1.Pnew)2

= 1 ∗ (0.9− 0.55)2 + 1 ∗ (0.2− 0.55)2

= 1 ∗ 0.352 + 1 ∗ (−0.35)2

= 0.1225 + 0.1225
= 0.245

After calculating the SSE for each possible merge-pair candidate, the PTA chooses the
tuple-pair that has the smallest SSE. If the decision is ambiguous, i.e. two or more merges
would have the same resulting SSE, the PTA algorithm then chooses to merge the tuple-pair
that has the earliest starting time point.

Example 6 The SSE calculations for the first merging iteration in our running example are
shown in Figure 4.4. Each tuple represents a possible candidate merge-pair for the first merge
of two adjacent tuples. Each of them is expanded with the new probability value in Pnew and
the SSE that would result from the merge of the two corresponding tuples. As the results show,
the merge of s4 and s5 would produce the smallest error of SSE = 0.0028125.

Cst Loc Ts Te Pnew SSE

s1 ⊕ s2 Ann HB 06/08 06/09 1∗0.9+1∗0.2
1+1

= 0.55 1 ∗ (0.9− 0.55)2 + 1 ∗ (0.2− 0.55)2 = 0.245

s2 ⊕ s3 Ann HB 06/09 06/10 1∗0.2+1∗0.4
1+1

= 0.3 1 ∗ (0.2− 0.3)2 + 1 ∗ (0.4− 0.3)2 = 0.02

s3 ⊕ s4 Ann HB 06/10 06/11 1∗0.4+1∗0.525
1+1

= 0.4625 1 ∗ (0.4− 0.4625)2 + 1 ∗ (0.525− 0.4625)2 = 0.0078125

s4 ⊕ s5 Ann HB 06/11 06/12 1∗0.525+1∗0.45
1+1

= 0.4875 1 ∗ (0.525− 0.4875)2 + 1 ∗ (0.45− 0.4875)2 = 0.0028125

s5 ⊕ s6 Ann HB 06/12 06/13 1∗0.45+1∗0.35
1+1

= 0.4 1 ∗ (0.45− 0.4)2 + 1 ∗ (0.35− 0.4)2 = 0.005

s6 ⊕ s7 Ann HB 06/13 06/14 1∗0.35+1∗0.5
1+1

= 0.425 1 ∗ (0.35− 0.425)2 + 1 ∗ (0.5− 0.425)2 = 0.01125

s7 ⊕ s8 Ann HB 06/14 06/15 1∗0.5+1∗0.4
1+1

= 0.45 1 ∗ (0.5− 0.45)2 + 1 ∗ (0.4− 0.45)2 = 0.005

Figure 4.4: SSE Calculations

Since the calculated result is distinct, the PTA merges the tuples s4 and s5 to the resulting
tuple z1, as shown in Figure 4.5a. Note that the vertical positioning of the resulting tuple does
not not represent it’s newly calculated probability value of 0.4875.
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(a) First Best Merge
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(b) Complete Merging Order

Figure 4.5: ShopsIn relation

4.2.3 PTA Size and Error Bound
The concept of the PTA allows to choose from two different stop criteria regarding the dimen-
sion of the reduction, i.e. how many tuples are being merged together until the PTA stops the
reduction procedure. The two different possibilities to choose from are:

1. A certain size bound c, as already shown exemplary in Figure 4.2a. With that we indicate
the desired size we’d like the final result relation to have. Of course, the data of the input
relation can maximally be reduced to a certain size cmin, depending on the given data.

2. An error bound ε, that limits the PTA to only merge tuples until a certain total error has
been reached. In our project, we don’t focus on this approach.

Example 7 For our running example, we can determine that cmin equals 1, since all input
tuples have the same values in the grouping attributes and are consecutively adjacent. There-
fore we can freely choose the size bound c to be between the input relation size |s| = 8 and
cmin = 1. If we repeat the merge procedure as many times as possible, which reveals to be
7 merging steps since we have 8 input tuples, we end up with the final result tuple z7. The
individual merging steps that lead to this result are shown in Figure 4.5b, whereas the num-
bers below the horizontal merging lines indicate the order of the executed merging steps. This
illustration helps as well to determine what would happen if we choose a different size bound.
For example if we’d choose c = 3, we would then get the final result tuples {z1, z2, z3} whereas
z1 = s1, z2 = s2, z3 = (s3 ⊕ s4 ⊕ s5 ⊕ s6 ⊕ s7 ⊕ s8). z3 is the result tuple that would result
from the first 5 merging steps.

4.3 A Basic PTA Algorihtm in an SQL Context
In this section, we show the PTA’s most basic concepts, that we’ve described in Section 4.2
before, in an algorithmic context. We map the algorithm to an SQL context, investigate the
algorithm’s performance bottlenecks and show some performance measurements that make
clear that the basic SQL approach is not sufficient.
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4.3.1 The Basic PTA Algorithm
As we have seen in it as well in Section 4.2, the step by step merging of tuples until the
input relation reaches a certain size bound c requires a certain amount of iterations. Roughly
said, each iteration contains the calculations for the sum squared errors and the actual merge
of the most similar candidate tuples. Figure 4.6 shows the algorithm PTAbasic(r, c) which
comprises the PTA’s most basic concepts. Let r be the input relation that should be reduced
by the PTA and c be the size to which we want r to be reduced. The schema of relation r is
R = (A, T s, Te,P , SSE ), whereas the SSE attribute is used to keep track of the increasing
SSE when tuples are merged together. Of course, In the very beginning, all tuples have an SSE
of 0 since no tuples have been merged together and therefore no error has been introduced. The
algorithm starts with a while loop which depicts the fact that we merge tuples as long as the
size bound c is not reached. After that, the two for loops are needed to compose the possible
candidate merge-pairs. For each candidate merge-pair we calculate the new probability value
p and the emerging sse and then store this merge-pair into z. The schema Z of relation z is
the same as for r and therefore Z = R = (A, T s, Te,P , SSE ). After having all candidate
merge-pairs together, we choose the actual merge-pair, z⊕, to be merged with respect to the
constraints we have described in Subsection 4.2.2. We add z⊕ to the relation s and then also
remove the two tuples that actually have been used as the source tuples for the newly merged
tuple z⊕. Finally. as soon as the relation s reaches the size bound c, we quit the main loop and
return the reduced result relation as output.

1 Algorithm: PTAbasic(r, c)
2 while |r| > c do
3 z ← ∅;
4 foreach ri ∈ r do
5 foreach rj ∈ r ∧ rj .A = ri.A ∧ (rj .T s− 1 = ri.T e) do
6 p← |ri.T |∗ri.P+|rj .T |∗rj .P

|ri.T |+|rj .T | ;

7 sse← |ri.T |(ri.P − p)2 + |rj .T |(rj .P − p)2 + ri.SSE + rj .SSE ;
8 z ← {(ri.A, ri.T s, rj .T e, p, sse)};
9 z ← z ∪ z;

10 z⊕ ← {z | z ∈ z ∧ @z′ ∈ z(z′.SSE < z.SSE ∨ (z′.SSE = z.SSE ∧ z′.T s < z.Ts)};
11 r ← r ∪ z⊕;
12 r ← r − {r | r ∈ r ∧ r.A = z⊕.A ∧ r.Ts = z⊕.T s ∧ r.Te < z⊕.T e};
13 r ← r − {r | r ∈ r ∧ r.A = z⊕.A ∧ r.Te = z⊕.T e ∧ r.Ts > z⊕.T s};
14 return r;

Figure 4.6: The PTAbasic algorithm comprising the basic PTA concepts
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4.3.2 Mapping to SQL
The algorithm in Figure 4.6 compraises some loop-constructs that need some further explana-
tion on how they’re mapped to SQL and the Migros Teradata Environment. Regarding the two
nested for loops it doesn’t get too complicated since we can represent these with a self join
expression:

ρr1(r) ./(r1.A=r2.A)∧(r2.T s−1=r1.T e) ρr2(r)

The while loop in contrary is not directly implementable with SQL. In each Iteration of the
while loop the algorithm has to do it’s computation on a new state of the relation r due to the
tuple-pairs that get merged in each of the iterations of the while loop. For the realization of the
while loop we use Teradata BTEQ, a general-purpose command-based program, that is used
to submit SQL queries to a Teradata Database. The SQL queries are wrapped into macros
which can then be run via an execute command. Other BTEQ-SQL-Files can be included
with the run command and with the help of some simple if, goto and label directives
we can construct a while loop.

Example 8 Figure 4.7 shows a simplified excerpt of how the BTEQ while-mechanism is imple-
mented. We need two separate files, whereas the main.sql basically only needs to call the
loop.sql. Inside the loop.sql we execute the macro mergeTuples which contains the
SQL code that mirrors everything inside the while loop from Figure 4.6. Then we make a check
for a certain errorcode, which is set when the size bound is reached. If the condition evaluates
to false, we continue with the run file=/loop.sql command to rerun loop.sql from
the beginning. But if the condition evaluates to true, we jump to the end of the file via the
goto and label directives. BTEQ quits the current loop.sql file and continues proceed-
ing in the main.sql file. Since nothing happens there after the run file=/loop.sql
command, BTEQ stops running the main script and with that the algorithm has reached it’s
end.

-- <main.sql> : Main BTEQ script
.run file=/loop.sql

-- <loop.sql> : Loop BTEQ script
execute mergeTuples;
.if errorcode = 3513 then .goto ExitLoop
.run file=/loop.sql
.label ExitLoop

Figure 4.7: BTEQ While Loop

4.3.3 Complexity and Performance of the Basic SQL Approach
Given n = |r| as the amount of tuples in the input relation and c as the desired size we want
relation r to be reduced, the runtime complexity for the PTAbasic algorithm is basically given
by the three nested loops:
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1. the while loop that is run n− c times
2. the outer for loop that runs through all n tuples
3. the inner for loop that runs through all n tuples

The join is computed theoretically using a nested loop and this leads us to a complexity that
is cubic to the number of tuples n. Especially with respect to the very big data set that we’re
confronted with in the Migros Environment, this polynomial complexity is highly undesired:

(n− c) ∗ n ∗ n ≈ O(n3).

Running the PTAbasic algorithm on some sample data sets proves us that the algorithm is
far too slow. The measuring results are shown in Figure 4.8. None of the test runs, each of
them with different sizes n of the input relation r, has finished the merging procedure in a
reasonable time. Therefore the size bound c, which we choose to be cmin for all three test
runs respectively, hasn’t been reached. Measuring the number of iterations I that happen in
a minute I/M allows us to predict the approximate time T that the algorithm would have
needed to reach the end of its computations.

n c n− c I/M T

#1 166′773 99′266 67′507 60/60 ≈ 19h

#2 3′397′074 2′047′580 1′349′494 35/60 ≈ 27d

#3 84′531′997 50′887′420 33′644′577 3/60 ≈ 21y

Figure 4.8: Performance of the PTABasic algorithm

Calculating the SSE for each merge-pair and merging the candidate tuple-pair becomes
slower the higher n gets. With an increasing n, the number of iterations (n - c) augments
proportionally. Therefore two general improvements need to be targeted for the algorithm:

1. Increasing the number of merges per iteration so that less iterations have to be performed
in total.

2. Optimizing the calculations for the SSE so that a single iteration needs less time.

4.4 The Parallel PTA
In this section we present new algorithmic concepts that drastically improve the performance
of the PTA in Migros’ Teradata environment. First we investigate how to decrease the amount
of iterations. Afterwards, we show how we can minimize the duration of the SSE calculations
and with that the duration of a single iteration.

4.4.1 Conditions for Current Merging
As we have seen in the previous section, one major overhead in the PTA algorithm is the huge
amount of iterations that will downgrade the performance. The solution is the execution of
multiple mergings simultaneously in a single iteration.
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Example 9 As already seen before in Figure 4.5b and now highlighted in Figure 4.9a, we see
that in the first iteration s4 and s5 are merged and in the second iteration we do the same for s7
and s8. Since these two tuple-pair candidates do not overlap each other, it seems allowed that
these two merging steps could also happen at once in the same iteration, without messing up
the original order and changing the result. It even doesn’t matter which of the two tuple-pairs
are merged first. As shown in Figure 4.9b, the thing that matters is that s4 and s5 are merged
together before we merge the resulting tuple z1 with s3 and that s7 and s8 are merged before
the merging of z2 with s6. So an algorithm needs to be defined that merges s4⊕ s5 and s7⊕ s8
in the same iteration.
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(a) Merging steps 1 and 2
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(b) Merging steps 3 and 4

Figure 4.9: Multiple mergings in a single iteration

In order to determine which tuple-pairs should be merged concurrently, one part of the
approach is to order the tuple-pairs according to their merging order. We use a new integer
attribute that we term merge priority MP that stores the merging order for the merge pairs. As
previously described in Subsection 4.2.2 the merging order is determined by the SSE , and if
the decision is ambiguous, we order merge-pairs with equal SSE according to their starting
time point Ts. The main idea now is to merge the tuple-pairs with a higher priority, given that
they do not overlap with some merge-pairs that have already been chosen for actual merges.
We call this idea the Parallel Merge Strategy and leave it to this natural language definition
for now. As we will see later, implementing this idea is not that trivial.

Example 10 Using the SSE calculations we’ve made in Figure 4.4 we’re able to order the
tuple-pair candidates according to their merge-priority MP , as shown in Figure 4.10a. Note
that the y-coordinates now only state the merge-order from top to bottom and do not reflect
the merge-pairs’ probabilities P . E.g. as we already know, s4 and s5 are the first two tuples
that should be merged and thus the merge-pair s4 ⊕ s5 is visualized as the topmost tuple-pair.
Now if we proceed further, the tuple-pair with the next highest MP is s5⊕ s6. But since s5 has
already been chosen to be merged with s4 before, we do not take this tuple-pair as a possible
candidate merge-pair. As shown in Figure 4.10b, we appropriately visualize this fact with a
dotted line of the merge-pair and a vertically dashed line that shows the overlapping boundary.
Inspecting all remaining merge-pairs in the same manner in the order of the MP reveals us
the three merge-pair candidates s2 ⊕ s3, s4 ⊕ s5 and s7 ⊕ s8. Comparing this result to the
complete merging order in Figure 4.5b shows us that this approach of determining concurrent
tuple-pair merges is not sufficient yet. Whereas choosing the pairs s4 ⊕ s5 and s7 ⊕ s8 fits
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the expectations that these tuple-pairs should be merged in the same iteration, the tuple-pair
s2 ⊕ s3 shouldn’t be chosen. Actually, one of its tuples, s3, should be merged together with z1
as shown in Figure 4.5b. Only some merging steps after that, and only if the size bound hasn’t
been reached yet, z5 will be merged together with s2.
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Figure 4.10: Trying multiple merges at once

The algorithm is not allowed to execute a merging step x of two tuples, where at least one
of these tuples would have been merged with a different tuple in a merging step that would
actually precede merging step x. In order to prevent that, we need to calculate in advance
the SSE ’s of merging three adjacent tuples together to a merge-triplet. In favor for a better
differentiation of the terms, we call the SSE of merge-pairs SSE2 and the SSE of merge-
triplets SSE3 . Only the merge-pairs that have a SSE2 that is strictly smaller than the smallest
SSE3 of a merge-triplet, are possible candidates for being merged in a single iteration. We
label the constraint as well as the value with SSEMAX .

Example 11 Figure 4.11 shows that the merge of s3⊕s4⊕s5 has among all SSE3 the smallest
value and therefore SSEMAX = 0.00791667.

ShopsInSSE3

Cst Loc Ts Te P SSE3

s1 ⊕ s2 ⊕ s3 Ann HB 2015-06-08 2015-06-10 0.500000000000 0.260000000000

s2 ⊕ s3 ⊕ s4 Ann HB 2015-06-09 2015-06-11 0.375000000000 0.053750000000

s3 ⊕ s4 ⊕ s5 Ann HB 2015-06-10 2015-06-12 0.458333333333 0.007916666667

s4 ⊕ s5 ⊕ s6 Ann HB 2015-06-11 2015-06-13 0.441666666667 0.015416666667

s5 ⊕ s6 ⊕ s7 Ann HB 2015-06-12 2015-06-14 0.433333333333 0.011666666667

s6 ⊕ s7 ⊕ s8 Ann HB 2015-06-13 2015-06-15 0.416666666667 0.011666666667

Figure 4.11: Calculating the SSE3 of Merge-Triplets and finding SSEMAX

Comparing this value with the SSE2 s of the merge-pairs, which we’ve already calculated
in Figure 4.4, gives us the tuple-pairs s3⊕ s4, s4⊕ s5, s5⊕ s6 and s7⊕ s8. All of them have a
SSE2 stricty smaller than SSEMAX and thus fulfill our new SSEMAX constraint, which is also
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(a) Applying the SSEMAX constraint
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(b) Applying the Parallel Merge Strategy

Figure 4.12: Combining the SSEMAX constraint with the Parallel Merge Strategy

shown in Figure 4.12a. The merge-pairs s1 ⊕ s2, s2 ⊕ s3 and s6 ⊕ s7 are eliminated by the
SSEMAX constraint.

If we now reapply the Parallel Merge Strategy from the previous Subsection 4.4.1 we finally
get the desired choosing of the merge-pairs s4 ⊕ s5 and s7 ⊕ s8. Note that we do not have to
check any overlappings regarding the merge-pairs s1 ⊕ s2, s2 ⊕ s3 and s6 ⊕ s7 since they’re
already dismissed by the SSEMAX constraint.

4.4.2 The Algorithm of the Parallel Merge Strategy
In the interest of precisely defining the logic behind the Parallel Merge Strategy we have to
specify some mechanisms to make the improved algorithm work. We term the algorithm that
implements the Parallel Merge Strategy PTAparallel. Concerning some explanations a new
example needs to be introduced.

Example 12 In Figure 4.13 we assume to have a set of consecutively overlapping merge-
pairs with all having the same grouping attributes. All of these tuple-pairs fulfill the SSEMAX

condition and thus all of them are candidates for being possibly merged together. Again, the
timestamps of the merge-pairs are shown as horizontal lines. The merge-pair identifier above
each merge-pair, e.g. m1, is enumerated from 1 to 25 accordingly to the starting time points
of the merge-pairs on the timeline. We equip the tuple-pairs with an attribute TimeID that
mirrors these values. Note that this time, the vertical positioning is only a locally relative
representation of the merging priority MP . As we will see later, it is sufficient to only visual
this minimal aspect. The vertically higher positioned merge-pairs have a lower MP number
than their immediate timely overlapping neighbours that are placed lower and thus have a
higher preference to be actually merged. The MPs are written below the respective merge-
pairs. Other time specifications, e.g. specific labels on the the timeline, are completely omitted
since they’re not needed for the understanding of the algorithm.
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Figure 4.13: New example having 25 consecutively overlapping merge-pairs

First of all, we have to mark the top = > merge-pairs, which are the ones that have a
MP value that is lower than the MP of the immediately following and preceding merge-pairs.
Similarly, we also flag bottom = ⊥ merge-pairs that have a MP that is higher as the MP of
the immediately following and preceding merge-pairs. The two sets of tuples are defined as
follows:

m> = {m | m ∈m ∧ ∀m′ ∈m(
((m.Ts < m′.T s ∧ m.Te > m′.T s) ∨ (m.Ts > m′.T s ∧ m.Ts < m′.T e))
∧m.MP < m′.MP

)}

m⊥ = {m | m ∈m ∧ ∀m′ ∈m(
((m.Ts < m′.T s ∧ m.Te > m′.T s) ∨ (m.Ts > m′.T s ∧ m.Ts < m′.T e))
∧m.MP > m′.MP

)}

The second line in both the definitions m> and m⊥ fetches overlapping tuples for each
top or bottom merge-pair respectively. The third line in the definition for m> makes sure that
for a top merge-pair m> the value of the merge-priority MP is lower than the values for the
merge-pairs it overlaps. Vice versa, in the third line of the definition for the bottom merge-
pairs m⊥, the value for the merge-priority MP of a bottom merge-pair m> must be higher
than in the overlapping merge-pairs.

Example 13 In Figure 4.14 we show the new state of the merge-pairs that results from the
application of the top and bottom merge-pair rules. The merge-pair m1 for example is a top
m>1 merge-pair. Since m1 overlaps with the merge-pair m2 and m1 has a lower MP number
than m2, it must be a top merge-pair. Similarly merge-pair m3 is a bottom m⊥3 merge-pair.
It overlaps the preceding merge-pair m2 and the following merge-pair m4 and since both of
them have lower MP numbers than m3 we define m3 to be a bottom merge-pair.
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Figure 4.14: Finding top and bottom merge-pairs

For each bottom-flagged merge-pair m⊥, we now check if the nearest left and the nearest
right top-flagged merge-pair m> have both odd or both even TimeID attribute values. All
merge-pairs that do not fulfill this condition are removed from further considerations.

m>l = {m> | m> ∈m> ∧ m>.T s < m⊥.T s
∧ @m>′ ∈m>(m>

′
.T s < m⊥.T s ∧m>′ .T s > m>.T s)

}

m>r = {m> | m> ∈m> ∧ m>.T s > m⊥.T s
∧ @m>′ ∈m>(m>

′
.T s > m⊥.T s ∧m>′ .T s < m>.T s)

}

m←m− {m⊥ | m⊥ ∈m⊥ | m>l .TimeID % 2 6= m>r .TimeID % 2}

The first definition specifies on the first line that the nearest left top merge-pair m>l is a top
merge-pair m> on the left of the current bottom merge-pair m⊥. The second line says that
no other top merge-pair m>′ on the left exists that is closer to the current bottom merge-pair
m⊥ than the nearest left top merge-pair m>l . In the second definition, we give vice versa the
corresponding rules for the nearest top right top merge-pair m>r . The third definition requires
that a bottom merge-pair m⊥ that should be removed has a m>l and a m>r with one of them
having a TimeID that is odd and the other having a TimeID that is even.

Example 14 In Figure 4.15 the bottom merge-pair m⊥14 has tuple-pair m>11 as the nearest
left top merge-pair. The top merge-pairs m>1 and m>5 are far further away from m⊥14. Vice
versa we define for m⊥14 the tuple-pair m>16 as the nearest right top merge-pair. Whereas
m>11 has an odd TimeID of 11, m>16 has an even TimeID of 16 and so therefore we remove
m⊥14 from m. Applying the new rules to all bottom merge pairs m⊥ ∈ m⊥ reveals that
the bottom merge-pairs with the TimeIDs 18 and 22 have to be removed as well. With the
removal ofm⊥14,m

⊥
18andm

⊥
22 we reveal 4 newly formed subgroups of consecutively overlapping

merge-pairs. For example the subgroup #2 comprises the merge-pairs m15,m16 and m17 that
consecutively overlap each other.

30



T

m>1

2

m2

8

m⊥3

16

m4

9

m>5

3

m6

10

m7

17

m⊥8

23

m9

18

m10

11

m>11

4

m12

12

m13

19

m⊥14

24

m15

20

m>16

13

m17

21

m⊥18

25

m19

22

m20

14

m>21

5

m⊥22

15

m23

6

m>24

1

m⊥25

7

1 2 3 4

Figure 4.15: The creation of subgroups with consecutively overlapping merge-pairs

Accordingly we assign the subgroup numbers to a new attribute SubGroupID for each of
the remaining merge-pairs. In each of the newly revealed subgroups, we search the top merge-
pair with the lowest MP attribute valuem>sg and determine whether its TimeID is odd or even.
This computation is needed in order to finally define which merge-pairs of a subgroup will be
chosen for actual merges. All merge pairs that have a TimeID not equally odd or even like in
the merge-pair m>sg have to be removed from further considerations.

m>sg = {m> | m> ∈m>

∧ @m>′ ∈m>(m>
′
.SubGroupID = m>.SubGroupID ∧m>′ .MP < m>.MP)

}

m←m− {m | m ∈m | m.SubGroupID = m>sg.SubGroupID

∧m.TimeID % 2 6= m>sg.TimeID % 2
}

The first definition fetches for each subgroup the topmost merge-pair m>sg, i.e. the merge-
pair that has the lowest MP attribute value in a subgroup. The second definition then removes
in each subgroup the merge-pairs m that are not equally odd or even compared to the topmost
merge-pair m>sg of the corresponding subgroup.

Example 15 In Figure 4.16 the merge-pair m1 with MP = 2 is the one with the small-
est MP of subgroup #1. It’s TimeID is 1, which is an odd number and so all merge-pairs
in subgroup #1 that have an odd TimeID will be kept for concurrent merging. We apply
the same mechanism as well to the subgroups #2, #3 and #4 and determine that the merge-
pairs m1,m3,m5,m7,m9,m11,m13,m16,m19,m21 and m24 are finally chosen to be actually
merged simultaneously.
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Figure 4.16: Final choosing of the merge-pairs to be merged simultaneously

4.5 Implementation & Performance of the PTAparallel

So far we’ve increased the number of merges per iteration and therefore reduced the total
amount of iterations that are needed for the result of the algorithm to reach a desired size
bound c. We show how we optimize the calculations for the sum squared error so that a single
iteration needs less computation time. As the following Subsection 4.5.1 shows, the achieving
improvements are very implementation specific. After we have outlined the main mechanisms
of our implementation, we show in Subsection 4.5.2 experimental measurements that show
the performance gain of our new approach.

4.5.1 Optimizing the SSE Calculations
In the PTAbasic algorithm the SSE of merging two tuples is recalculated from scratch for
all merge-pair candidates in each iteration and that means that we perform in every single
iteration the self join on all of the tuples of the input relation, as described in Subsection 4.3.2.
Regarding the probable relation size in the Migros domain, it is clear that this takes a while.
Even worse, in the PTAparallel approach, we also need to calculate the SSE for merge-triplets
as well and this is actually a self join on a self join, i.e. has the form r ./ r ./ r. If we’d need
to recalculate this as well for every single iteration, we probably loose all the performance
improvements we’ve hopped to gain in the previous sections.

We will make use of 4 additional relations besides the main input relation in order to be
able to apply some specific mechanisms to save some computation time. The schemas of
these five relations are shown in Figure 4.17a. All relations except the Result relation have
a new attribute AdjGrpID that stores the adjacency-group a tuple belongs to. Remember
that we’ve introduced the concept of adjacency-groups in Section 4.2. The Main relation
stores the input tuples with all the attributes we already know, but additionally, the value
of the AdjGrpID attribute states the adjacency-group a tuple belongs to. The MergePair
relation represents all merge-pairs that can be formed with the tuples from the Main relation.
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Basically we’ve used such a relation already before in Section 4.2.2 which has been visualized
in Figure 4.4. The only difference now is that the MergePair relation includes also the MP
attribute that is needed for our Parallel Merge Strategy and so the MergePair relation looks
as in Figure 4.17b. The MergeTripletSSE relation schema is similar to the relation shown
in Figure 4.11 but this time we do not need to keep track of every single merge-triplet and it’s
corresponding SSE3 . Instead we only store the attributes Cst ,Loc,AdjGrpID and append the
smallest sum squared error that can be found in each of these corresponding adjacency-groups.
An example is shown in Figure 4.17c. The ChosenMergePair relation represents all the
tuple-pairs we actually merge during an iteration. This means it contains in each iteration the
result that emerges from applying the Parallel Merge Strategy to the MergePair relation.
Since the tuples of the ChosenMergePair relation are actually a subset of the MergePair
relation, the schemas of both relations are the same. The last relation Result contains, as
the name indicates, the result that we return with our PTAparallel algorithm, whereas it’s size
|Result| requires to be equal to c.

1. Main(Cst ,Loc,AdjGrpID , T s, Te,P , SSE ),

2. MergePair(Cst ,Loc,AdjGrpID , T s, Te,P , SSE ,MP)

3. MergeTripletSSE(Cst ,Loc,AdjGrpID , SSE )

4. ChosenMergePair(Cst ,Loc,AdjGrpID , T s, Te,P , SSE ,MP)

5. Result(Cst ,Loc, T s, Te,P)

(a) The Schemas of the Implemented Relations
MergePair

Cst Loc AdjGrpID Ts Te P SSE MP

Ann HB 1 06/08 06/09 0.55 0.245 7

Ann HB 1 06/09 06/10 0.3 0.02 6

Ann HB 1 06/10 06/11 0.4625 0.0078125 4

Ann HB 1 06/11 06/12 0.4875 0.0028125 1

Ann HB 1 06/12 06/13 0.4 0.005 2

Ann HB 1 06/13 06/14 0.425 0.01125 5

Ann HB 1 06/14 06/15 0.45 0.005 3

(b) The MergePair Relation

MergeTripletSSE

Cst Loc AdjGrpID SSE

Ann HB 1 0.00791667

(c) The MergeTripletSSE Relation

Figure 4.17: Implemented Relations

Figure 4.18 describes the basic SQL scripts that we run on these five relations. The scripts
can be divided into three main phases. First, we perform some initial steps that have to be com-
puted only once. Then we start the iterative reduction procedure that uses as a loop mechanism
a BTEQ while loop that is almost equal to the one we have introduced in Subsection 4.3.2.
After having reached the size bound c, we then finally have to put together the final result
relation.
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1. Initialization

• Populating the Main relation with the input tuples from the ShopsIn relation.
For all tuples that have the same Cst and Loc values, assign a unique AdjGrpID
number that marks which tuples belong to the same adjacency-group.

• For each adjacency-group which contains only one tuple, transfer its tuple in the
Main relation to the Result relation since they can’t be merged anyway.

• Using a self join on the Main relation, compute all merge-pairs that can be formed
from the tuples of the Main relation and store them into the MergePair relation.

• Using 2 consequent self joins, compute in each Cst ,Loc group for all
adjacency-groups the minimal SSE that results from merging three adjacent tu-
ples from the Main relation and store them into the MergeTripletSSE.

2. Iteration

• The algorithms needed for the Parallel Merge Strategy determine the merge-pairs
that we can simultaneously merge and store them into the ChosenMergePair
relation.

• In the Main relation delete the source tuples that were merged for the
ChosenMergePair relation and copy the chosen merge-pairs from the
ChosenMergePair relation into the Main relation.

• Delete all the merge-pairs from the MergePair relation that are in the same
adjacency-groups AdjGrpID that also appear in the tuples that are in the
ChosenMergePair relation. Recompute only the new possible merge-pairs for
these affected groups and therefore only a small subset of the Main relation is
actually joined together.

• Similarly delete all the tuples from the MergeTripletSSE relation that are in
the same adjacency-groups AdjGrpID that also appear in the tuples that reside in
the ChosenMergePair relation. The recalculation of the smallest SSE for these
affected groups needs as well only a small subset of the tuples from the Main
relation to be part of the self join on a self join.

3. Finalize

• If the size bound c has been reached and therefore no possible merge-pairs reside
in the MergePair relation, we can finally transfer all the tuples from the Main
relation to the Result relation.

Figure 4.18: Implementation
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4.5.2 Measurements of the Improved Approach
Running the new mechanisms implemented in the PTAparallel algorithm shows us drastic per-
formance improvements. Since the algorithm is able to finish the computations in a reasonable
time, we’ve measured the performance on five differently sized data sets. The results of the
five experimental measurements #1,#2,#3,#4 and #5 are shown in Figure 4.19. Let n and
c be as before. I is again representing the amount of Iterations the algorithm has to process
until the size bound c has been reached. The duration T is given in minutes and seconds.

n c n− c I T

#1 166′773 99′266 67′507 56 2 : 46

#2 843′796 506′334 337′462 71 3 : 03

#3 3′397′074 2′047′580 1′349′494 97 4 : 49

#4 16′918′699 10′179′069 6′739′630 112 12 : 01

#5 84′531′997 50′887′420 33′644′577 143 21 : 35

Figure 4.19: Performance of the PTAparallel algorithm

The algorithm shows impressive results and even the test run #5 with the largest relation
size n = 84′531′997 performs the n− c = 33′644′577 merging steps enormously quickly and
reaches the final size c = 50′887′420 in about 21 minutes and 35 seconds. Having a look at the
number of iterations I = 143 that were needed, shows us that we have decreased the number
of iterations massively and that we have really huge numbers of concurrent merging steps per
iteration.

The graphics in Figure 4.20 show the number of concurrent mergings that happen in each
iteration. Surprisingly the shape of the curve stays approximately the same for all five exper-
iments no matter how big the input relation is. Whereas the number of simultaneous merging
steps is rather slowly increasing in the beginning, we get more of them after about a forth of
the iterations. In the end, the amount of concurrent merge-steps is declining again. In each
experiment we have two very prominent peaks e.g. in experiment #1 in the iterations 18 and
38 we have in each 5003 and 6701 concurrent mergings respectively, whereas the iteration
in the second peak performs on its own approximately 10% of all the merging steps in this
test-run. Again, this last observation can be made in all our experiments, e.g. experiment #5
has in iteration 101 nearly 3 million concurrent merging steps which is again close to 10% of
the overall amount of mergings performed in this experiment. So the Parallel Merge Strategy
is obviously very effective and a huge improvement compared to a sequential step by step
merging procedure. Instead of having only one merge per iteration, as it is in the PTAbasic al-
gorithm, we have multiple iterations per iteration in the PTAparallel. For an input relation that
has a size of 84′531′997 tuples, the duration that the PTAparallel algorithm needs to complete
is with approximately 21 minutes massively outperforming the PTAbasic algorithm that needs
approximately 21 years. Important to mention is that the result of both algorithms is the same,
but we do not prove this in this paper.
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(a) Experiment#1 : n = 166′773 (b) Experiment #2 : n = 843′796

(c) Experiment#3 : n = 3′397′074 (d) Experiment #4 : n = 16′918′699

(e) Experiment #5 : n = 84′531′997

Figure 4.20: Comparison of the Amount of Mergings per Iteration
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5 Use Case Reference Query

In this chapter we will summarize the concepts that have been presented in this paper so far.
We will do that by applying them for a use case for which Migros still searches approaches that
work better than the ones they currently have. Migros is trying to improve the recommendation
of complementary articles to specific articles e.g. when a customer is examining an article on
their website and Migros would like to show additional articles that somehow fit to the present
one. Until now the article recommendation is not based on a customer basis, instead it is
based on the collected data of all purchases. Also the articles that are recommended tend to be
improper since the finding of a meaningful solution is not that trivial as one might think. This
chapter does not present a final best solution, instead the goal is to present an approach of how
temporal probabilistic relations and the PTA can be used to try solving such a problem.

5.1 Preparing Relations for the Use Case

5.1.1 Deriving the Buys Relation and Calculating Probabilities
We will use the TransactionArticle relation that we’ve introduced in Section 2.2 as
the source relation for the targeted relation that we need for the current use case. The
TransactionArticle with two sample tuples is shown in Figure 5.1a and we derive the
new Buys relation from it as shown in Figure 5.1b. We define tra to be an abbreviation for
TransactionArticle and b be an abbreviation for Buys. The relational algebra expression
for deriving the Buys relation from the TransactionArticle relation looks as follows:

b ← ρCst ,Art ,DateID(πCustomerID ,ArticleID ,DateID(tra))

TransactionArticle

LocationID DateID TimeID ArticleID CustomerID Sales ...

... ... ... ... ... ... ... ...

tra1 HB 06/07 160135 Salad Ann 1.45 ...

tra2 Oerlikon 06/08 124803 Salad Ann 1.45 ...

... ... ... ... ... ... ... ...

(a) TransactionArticle Relation

Buys

Cst Art T

... ... ... ...

b1 Ann Salad 06/07

b2 Ann Salad 06/08

... ... ... ...

(b) The Buys Relation

Figure 5.1: Deriving the Buys Relation

We reuse the attributes CustomerID , ArticleID and DateID to store tuples that represent
facts about which customers Cst buy what articles Art at a certain day T . As already men-
tioned in the beginning of this paper, we will implicitly replace meaningless ID numbers with
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some exemplary values. The exemplary tuples b1 and b2 represent the fact that Ann buys Salad
on the 7th as well as on the 8th August.

Different computation methods are possible to calculate the probabilities for the tuples of
this relation. We will keep it rather puristic here since we’d like to primarily focus on the
reference query in this chapter. For all tuples bi ∈ b we do a simple division operation to
calculate the probability P . First we count the number of tuples that have the same values
given the grouping attributes A = (Cst ,Art) as well as the same YW attribute and use
it as the numerator. We’ve implicitly omitted theF attribute in the relations in Figure 5.1
but the computation method can be directly adopted from Section 3.2. Secondly we get the
denominator by counting the number of tuples that have the same value in the Cst and YW
attribute, which actually means we count the total amount of articles a customer buys within
the same week. The calculation formula to get the probability P for every bi ∈ b looks as
follows:

bi.P = |{b | b ∈ b ∧ b.A = bi.A ∧ b.YW = bi.YW }|
|{b | b ∈ b ∧ b.Cst = bi.Cst ∧ b.YW = bi.YW }|

Figure 5.2a shows the results when we apply the calculation formula on the tuples b1 and b2
and assuming that Ann has bought 16 additional articles and none of them is Salad. We get a
probability P of 2/18 = 0.11 for both tuples b1 and b2 due to the two Salads Ann has bought
divided with a total of 18 articles that Ann has purchased. The tuples b1 and b2 represent the
fact that the probabilities of Ann having bought Salad on the 8th and the 9th June respectively
is 0.11 each. These probabilities already indicate a bit that the final probability values that
emerge from the later defined reference query might become rather small.

BuysP

Cst Art T P

... ... ... ... ...

b1 Ann Salad 06/07 0.11

b2 Ann Salad 06/08 0.11

... ... ... ... ...

(a) Calculating Probabilities P

BuysTP

Cst Art Ts Te P

... ... ... ... ... ...

b1 ⊕ b2 Ann Salad 06/07 06/08 0.11

... ... ... ... ... ...

(b) Applying the PTA

Figure 5.2: Further Transformations of the Buys Relation

5.1.2 Applying the PTA on the Buys Relation
As next we will apply the PTA algorithm on the Buys relation. Figure 5.2b shows the merging
of the tuples b1 and b2 whereas the new tuple’s value for Ts equals to the attribute value T of
b1 from the BuysP relation and Te equals to the attribute value T of b2. Figure 5.3a shows
the temporal probabilistic table BuysTP that contains some data we haven’t shown before
but which we made up now for exemplary purposes that are needed in the rest of this chapter.
The two merged tuples from before in Figure 5.2b are now represented by the tuple b5 of the
BuysTP relation. Additionally as already indicated by Figure 5.2b we now have intervals in
the BuysTP relation instead of the time points in the BuysP . E.g. tuple b5 means that in each
time point in the interval [06/07, 06/08] there is a probability P of 0.11 that Ann buys a Salad.
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BuysTP

Cst Art Ts Te P

b1 Ann IceTea 06/02 06/04 0.29

b2 Ann Evian 06/08 06/13 0.33

b3 Ann Mozarella 06/08 06/10 0.277

b4 Ann Tomato 06/09 06/12 0.25

b5 Ann Salad 06/07 06/08 0.11

b6 Ben Chocolate 06/10 06/11 0.275

(a) The BuysTP relation

TopLevelArticlesTP

Cst Art Ts Te P

a1 Ann Evian 06/08 06/13 0.33

(b) The TopLevelArticlesTP Relation

Figure 5.3: Buys Relation after PTA

5.1.3 The TopLevelArticlesTP relation
The temporal probabilistic relation TopLevelArticlesTP is created out of a selection of the
BuysTP relation. The schema and reading of the relation is the same as in the Buys relation,
but we claim that the top level articles that this relation contains, are those that have probabil-
ities higher than 0.3. Given a = TopLevelArticlesTP and b = BuysTP the corresponding
relational algebra expression looks as follows:

a ← σp > 0.3(b)

From the BuysTP relation, the only tuple that fulfills this constraint is b2 since b2.P = 0.33
and therefore b2.P > 0.3 holds true. For that reason the TopLevelArticlesTP relation looks
as shown in Figure 5.3b. In both of the relations TopLevelArticlesTP and BuysTP we have
tuples with rather low probability values and even the tuples b2 and a1 respectively with the
highest values of all tuples don’t seem quite high.

5.2 The Reference Query
The use case can be expressed in short with the following sentence: For a customer, which are
the article combinations he tends to buy, given that they don’t involve a top level article? The
relational algebra expression to answer this question looks as follows:

z ← (ρb1(b) ./TPθ1 ρb2(b)) −TP ((b ./TPθ2 a) ∪ (a ./TPθ2 b))

θ1 ≡ b1.Cst = b2.Cst ∧ b1.Art <> b2.Art
θ2 ≡ b.Cst = a.Cst ∧ b.Art <> a.Art

The temporal probabilistic self join (ρb1(b) ./TPθ1 ρb2(b)) of the Buys relation represents
all article combinations that customers have bought. The expression b1.Art <> b2.Art makes
sure that we only join different articles and that we don’t show combinations of the same
article with itself, which wouldn’t make any sense at all. The intermediary result x of this
self join is shown in Figure 5.4a. The calculations to get the correct intervals and probabilities
when using temporal probabilistic operators exceeds the scope of this paper.
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x

Cst Art1 Art2 Ts Te P

x1 Ann Evian Mozarella 06/08 06/10 0.09141

x2 Ann Evian Salad 06/08 06/08 0.03630

x3 Ann Evian Tomato 06/09 06/12 0.08250

x4 Ann Mozarella Evian 06/08 06/10 0.09141

x5 Ann Mozarella Salad 06/08 06/08 0.03047

x6 Ann Mozarella Tomato 06/09 06/10 0.06925

x7 Ann Salad Mozarella 06/08 06/08 0.03047

x8 Ann Salad Evian 06/08 06/08 0.03630

x9 Ann Tomato Mozarella 06/09 06/10 0.06925

x10 Ann Tomato Evian 06/09 06/12 0.08250

(a) x← (ρb1(b) ./
TP
θ1

ρb2(b))

y

Cst Art1 Art2 Ts Te P

y1 Ann Evian Mozarella 06/08 06/10 0.09141

y2 Ann Mozarella Evian 06/08 06/10 0.09141

y3 Ann Evian Salad 06/08 06/08 0.03630

y4 Ann Salad Evian 06/08 06/08 0.03630

y5 Ann Evian Tomato 06/09 06/12 0.08250

y6 Ann Tomato Evian 06/09 06/12 0.08250

(b) y ← ((b ./TPθ2 a) ∪ (a ./TPθ2 b))

Figure 5.4: The intermediary results x and y

Tuple x1 states that Ann buys both, Evian and Mozarella in a day from the 8th June to the
10 June with a probability of 0.09141. When we compare it with tuple x6 which gives us
the probability for the combination Mozarella and Tomato, we see that the probability for x1
is higher than x6. Our intuition about the reference query however is that this fact changes
when we compute the rest of the reference query. Our goal is to lower the impact of tuples
that comprise top level articles and we hope that in the end the combination of Mozarella
and Tomato shows us a higher probability than the combination of Evian and Mozarella since
Evian is a top level article. Take note that we have some duplicate information by these tuples,
e.g. the tuple b4 states the same as b1. Only the article names are swapped, which does not alter
the meaning in the context of product combinations here. Of course there are ways to modify
the reference query so that we don’t get tuples with equal meaning, but the query would get
much less readable.

The two temporal probabilistic joins that are united together ((b ./TPθ2 a) ∪ (a ./TPθ2 b))
represent the product combinations of the top level articles with the other articles. The union
with the join of the mirrored input relations a and b is needed so that also both representa-
tions of the article combinations are present here as well, which is later necessary for the set
difference operation. Again, the expression b.Art <> a.Art in the θ2 condition makes sure
that we don’t have combinations of the same article. In Figure 5.4b we show the intermediary
result y for the current expression. The tuples from the intermediary result relation y can be
read in the same way as the tuples from relation x. E.g. the tuple y1 states that Ann buys the
combination of the products Evian and Mozarella in each day from the 8th June to the 10 June
where the probability is 0.09141 for every day. Both of the intermediary result relations x and
y have significantly lower probability values for their tuples compared to the ones in the input
relations BuysTP and TopLevelArticlesTP .

Finally we perform the temporal probabilistic set difference x−y of our reference query in
order to lower the probability of product combination tuples that comprise a top level product
in one of their article attributes, either in Art1 or Art2. The set difference operation results
into the final relation z which is shown in Figure 5.5a. For a better visualization of which
product combinations are most likely to be bought when we have lowered the probability of
combinations that comprise a top level article, the result relation z has been ordered on the
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attribute P in a descending manner.

z

Cst Art1 Art2 Ts Te P

z1 Ann Mozarella Tomato 06/09 06/10 0.06925

z2 Ann Tomato Mozarella 06/09 06/10 0.06925

z3 Ann Evian Mozarella 06/08 06/10 0.0612447

z4 Ann Mozarella Evian 06/08 06/10 0.0612447

z5 Ann Evian Tomato 06/09 06/12 0.055275

z6 Ann Tomato Evian 06/09 06/12 0.055275

z7 Ann Mozarella Salad 06/08 06/08 0.03047

z8 Ann Salad Mozarella 06/08 06/08 0.03047

z9 Ann Salad Evian 06/08 06/08 0.024321

z10 Ann Evian Salad 06/08 06/08 0.024321

(a) z ← x− y

z′

Cst Art1 Art2 Ts Te P

z′1 Ann Mozarella Tomato 06/09 06/10 0.06925

z′2 Ann Evian Mozarella 06/08 06/10 0.0612447

z′3 Ann Evian Tomato 06/09 06/12 0.055275

z′4 Ann Mozarella Salad 06/08 06/08 0.03047

z′5 Ann Salad Evian 06/08 06/08 0.024321

(b) Cleaning up z

Figure 5.5: Final Result Relation z

Again we have at any one time two tuples here that are not real duplicates but actually
state the same info. E.g. tuple z1 and tuple z2 both state that the probability for Ann buy-
ing the product combination of Mozarella and Tomato is 0.06925 in each day of the interval
[06/09, 06/10]. For a better visualization and analysis of the result relation z we remove such
duplicates and represent it accordingly as relation z′ in Figure 5.5. As we’ve already indi-
cated and estimated in the computation steps before, the probabilities have all become very
low. Even though they’re all quite low, we can draw some conclusions from the relative dif-
ference between the probability values. The article combination z′1 has the highest probability
of all the tuples of the current relation and therefore states that of all article combinations that
Ann buys, the combination of Mozarella and Tomato is the most probable one with a prob-
ability of 0.06925 for the 9th and the 10th of June. At least this tuple matches our intuition
since we would have expected from the query that the combination of Mozarella and Tomato
has a higher probability than Evian and Mozarella. The only other tuple that does not contain
the top level article Evian is the result tuple z′4 which comprises the combination of Mozarella
and Salad. Unfortunately this combination is less likely as the ones stated by z′2 and z′3 which
contain Evian as one of their articles and thus the reference query does not fully mirror our
intuition of the final result.
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6 Conclusion

In this paper we’ve introduced the most important relations in Migros’ database system which
comprise the data that is collected from the purchases that customers make. We have shown
different methods to calculate probabilistic versions of these relations and then we’ve used
a newly developed PTA approach to transform the probabilistic relations into interval times-
tamped probabilistic relations. In the end we have applied the introduced concepts of this
paper to show a way to solve a real life use case that Migros has to deal with.
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