Basismodul Report
Integrating Now as Variable with Basic Querying
Functionality into PostgreSQL

Mohit Narang
mohit.narang@uzh.ch
Legi: 14-706-618

May 18, 2015

Abstract

This implementation is about the integration of NOW with the basic querying
funcationality into PostgreSQL. The fundamental approach is to consider NOW
as a dynamic variable instead of a runtime constant as it is used currently in
the PostgreSQL implementation.

Following are the major tasks completed as part of this assignment:

e Literature study about the concepts of using now. [2]

e Literature study about implementation details regarding representation of
now physically in the PostgreSQL kernel.[1]

e Literature study about now resolving strategies.

e Implementation of the C code changes to the PostgreSQL kernel based on
the literature study.

1. Literature Study

1.1 The concept of Now

Now is a time variable used to represent temporal aspects of data being recorded
in a database. Its value changes as time passes and should always match cur-
rent time. It is required in databases, for example in an inventory management,
where the current inventory of 3 items start being valid since 1 July and until
current time. So the same inventory is also valid from 1 to 2 July or 2 to 3
July as long as there is no change in the inventory. This information is very
suitable for using now as a value instead of changing the expiry date every day.
Currently the databases only support concrete timestamps instead of variables
in the time columns.

Problems with previous approaches

Pessimisting and optimistic assumptions

1. Using Now in a database to represent the valid-to gives a too pessimistic
view about the future.

2. Sometimes variables like co are used to overcome this, but they are
prone to a view too optimistic.

Punctuality assumption

Changes have to be made before they happen which is a problem in real
life. The database states usually lag some days from the real world due
to which this condition is hard to satisfy.

Predictive updates

If the valid-to is populated with now and that happens to be before the
valid-from time there is a problem with the notion of time, where valid-
from is always before valid-to.

Assumptions

The accuracy of current time should be very clear because the value of
now depends on that. This introduces ambiguity when the data is queried
on some day but from a different reference point of time. The semantics
for the same are not clearly defined currently.

The paper by Clifford [2] tries to define semantics which solve the above
problems. In that there is a whole new logical representation framework defined
in the paper which is the core of the study for this implementation.

1.2 Logical representations

The semantics proposed in this paper use a fully ground model, which means
that there are no variables allowed. There are three different time frames in this
representation which are:

e Valid time
e Transaction time
e Reference time
There are also five important time instants which are:
e Initiation: Transaction time when a relation is created.

e Reference time: Time of database observer’s frame of reference. An ob-
server can query the expected database state from any reference time
regardless of current time.

e Query time or Current transaction time: time at which a query starts
being processed.

e Valid timeslice time: time for which information is queried.

e Transaction timeslice time: time (instants) during which the information
must be current in a database.

An example would be: Consider a temporal database relation inventory is cre-
ated on February 2. Current day is March 3. The store manager wants to verify
a state of database as reported on February 15. The manager wants to verify
that a product after sale on February 7 was deducted in wrong quantity from
the inventory on February 10.

e Initiation: February 2, the creation date of the database
e Reference time: February 15, the day of reporting of wrong state

Current time: March 3

Valid timeslice: February 7, the real world date when inventory changed

Transaction timeslice: February 10, when transaction was recorded in
database

1.2.1 Extensional and variable database levels

With regard to this framework definition it is assumed that a time interval is a
set of time instants bounded by the starting and terminating instants. In vari-
able databases Valid time intervals are made up of from and to attributes in
a tuple and transaction time intervals are made up of start and stop attributes.
This section discusses about how to move to extensional representation of a

database starting from variable representation. The basic idea is to get rid
any temporal variables in a variable database and all the timestamps are in-
stants instead of intervals. There is an additional temporal attribute called
reference time. Extensional model presents a very simple treatment of temporal
databases with mathematical logic. This conversion of a variable level database
to extensional level is called extensionalization.

v
variable database level db i gV (db)

extensionalization mapping [] [1

extensional database level [4%] a=([a8]) = [q¥ (db)]

Figure 1: Variable to Extensional

The top level of Figure 1 represents varaible level of a database db, which
after going through ¢ queries goes to a state ¢* (db). The part of the database
supports variables like now.

An example would be a tuple in the inventory database:
< Xboz,8 remaining, Electronics, [February 7,now/>
A query is applied on February 25 to this database: “Number of remaining
XBox in inventory on February 10”
The result will be: <Xbox, 8 remaining, Electronics>
The bottom level of Figure 1 represents extensional temporal data model.
The extensional mapping of a tuple in the inventory database:
< Xbox,8 remaining, Electronics, [February 7,now/> tuple in the variable db will
be represented in extensional model as:
{<Xbox,8 remaining, Electronics,[February 7,February 25]>,
< Xbozx,8 remaining, Electronics, [February 8,February 25]>,
. <Xbox,8 remaining, Electronics, [February 25, February 25]/> }

db "
variable bind
database
level v v .
m] bind (db) _ q qvﬂ?fnd‘(db)

(1 1

extensional indE . B £ . 2 A
database |Idb]] Mdl—a- bind { [db])) —_— qr'(bind l?‘[[db]])= |I‘.i :{bmd »fll'l') JJ]]

level

[bind"tdb jJ

Figure 2: Preprocessing

In figure 2, a variable database gets mapped into an intermediate where a
bind" operator maps all the tuples’ variables with timestamps. This allows to
use the same TSQL or SQL based query engines without much modification.

The paper [2] presents the semantics for extensionalization of ValidTime
databases with 4 different kinds of variables:

e Now
o Now relative
e Indeterminate

e Now relative indeterminate

In this implementation now based valid time is used, with following resolving
strategy:

NOW as a lower bound
o Current time : toypr
e Future time : tfyture

NOW = max (tcurrytfutu’l“e)

NOW as an upper bound
e Lower bound (start time) : 4

e Current tiem : .y

NOW] tcurr When ts S tcurr
it ts otherwise
’ NOW) teurr when ts S teurr
ts + 1 otherwise
NOW} tcurr when ts + 1 < tcurr
(t ts + 1 otherwise
° NOW) tC’U.T"I” When tS + 1 S tC’U.’I'"I"
ts + 2 otherwise

1.3 Physical representation

Physical representation of NOW is a very important part of the whole equation
because it affects the core performance of the database during the data access
[K. Torp, C. S. Jensen, and M. Bohlen. Layered im- plementation of temporal
DBMS concepts and tech- niques. A TimeCenter Technical Report TR-2, 1999.].
Following approaches have been proposed:

e NULL
Advantage: It takes less space.
Disadvantage: Indexing will be a problem due to null values.

e MIN (smallest timestamp)
Disadvantage: Range indexing problem

e MAX (largest timestamp)

The paper [1] by Stantic proposes to use time instants instead of ranges to
solve these problems. It only needs to make sure about the granularity to be
meaningful enough for the application requirements. The query experiments
done using this approach give following results as in Figure 3 and 4 which are
quite impressive.

Physical Disk Reads for 10% Qyery duration for 10%

= POINT [FomT

B A LI

oML

Al

Ouery1 Ouery2 Oue

Figure 3: Results

CPU Usage for 10%

— W POINT

2500 o M

[oML

CPU Unis

Query 1 Query 2 Query 3

Figure 4: Results

2 PostgreSQL kernel

2.1 Implementation of Now and limited query functionality

A new boolean variable is added to RangeBound struct in rangetypes.h header
file. This is the base of representing NOW using the literature studies. It is
stored physically for the daterange datatypes in each of the relations whenever
a new insert is done.

The basic idea implemented in the kernel is to intercept the daterange based
SELECT and INSERT queries. Whenever a NOW value is intercepted the
kernel uses new logic to manipulate the range values based on the now resolving
strategy [Optional citing of Yvonne Miille’s research]. The methods changed are
range_in() and range_out() for INSERT and SELECT statements respectively
to handle the input and output of the NOW based data.

2.2 Algorithmic Data flow

Whenever a query is entered in the psql utility it is checked for the rangebound.
If any of the attributes in the resulting tuples contain rangebound it enters into
function range_in() or range_out() depending upon whether its an INSERT or
a SELECT query.
Case 1: INSERT

In this case the landing function is range_in(). The range is first converted into
Datum and then checked if the range is valid by comparing the upper and lower
bounds. Whenever a NOW is detected in this range the resolving strategy kicks

in in this function and the compare function is also updated to accomodate the
new way of handling the range. At the time of storage the value of now is
replaced with a fixed date depending upon the resolving strategy. The fact that
the range contains a variable now is stored in a new boolean variable added to
the rangebound struct called bool now.
Case 2: SELECT

In this case the landing function is range_out(). The data is loaded from the
RangeBound Datum and converted to a string. Then based on the resolving
strategy and presence of bool now flags the Datum is converted to a string and
passed to the output.

Regular
Processing

Query Input If Rangebound

Yes

if upper Yes SetRANGE_UB_NULL

: ——|

is now Setupper.now =true
No

if lower Yes Set RANGE_LB_NULL

5 e

is now Set lower.now = true

No

Serialize/Deserialize

Figure 5: Algorithm

References and Conclusion

I would like to thank Yvonne Miille and Dr. Michael Bohlen for guiding through
this Basismodul study. It had been a pleasure to learn from their expertise
and experience. It was a very steep learning curve to start working with the
postgresql kernel, but was indeed a very satisfying work to do. I hope to work
more with the database group at the ifi for masterproject as well in future.

Bibliography

[1] Bela Stantic, John Thornton, Abdul Sattar, A Novel Approach to Model
NOW in Temporal Databases, Fourth International Conference on Temporal

Logic (IEEE 2003).

[2] James Clifford, Curtis Dyreson, Tomas Isakowitz, Christian S. Jensen, On
the Semantics of “NOW?” in Databases, ACM Transactions on Database Sys-

tems, Vol. 22, No. 2, June 1997, Pages 171-214.

