
Robert Jan Stucki

SQL implementation of Singular
Value Decomposition by

Housholder transformation and QR
formalization

December 2012

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland

Contents

1 Introduction 3

2 Implementation 5

2.1 Correlation Computation . 6

2.2 Householder Transformation . 7

2.3 QR Algorithm . 8

3 Experimental Evaluation 10

3.1 Setting . 10

3.2 Results . 10

3.3 Interpretations . 11

4 Summary & Conclusion 13

2

Chapter 1

Introduction

This report is part of a Bachelor deepening task (Vertiefungsarbeit) done at the Database
Technology Group of the University of Zurich under the direction of Prof. Dr. Michael
Böhlen. Advisor and supervisor was Mourad Khayati who gave really helpful advice and
also set the performing student thinking about the topic in-depth.

The aim of the task was to investigate and implement the Singular Value Decomposition
(SVD) method using SQL queries. SVD is a matrix decomposition method that decom-
poses a matrix V into three matrices L, Σ and RT . The product of the three matrices
is equal to V . The SVD method is performed by using the Householder transformation
and the QR factorization. This thesis shows the computation of Σ and RT but does not
include L.

Formally, a matrix V = [V0|V1|...|Vn−1] ∈ Rm×n can be decomposed into a product of
three matrices as follows:

SVD(V) = L×Σ×RT

Additionally, it was also required to first compute the correlation of the underlying data.
The correlation matrix was used then as input for V .

The assignment was divided into the following subtasks:

� Understand and implement the QR formalization and the householder transforma-
tion that perform SVD using PL/SQL

� Evaluate the scalability of the implemented decomposition on an Oracle server:
horatio.ifi.uzh.ch (test datasets are available on the server)

� Empirical comparison of the running time between the SQL implementation and a
main memory implementation provided by the supervisor

� Report of 5-10 pages

� Oral exam (approx. 25 min)

3

4

Furthermore, an important requirement of the task was to use as much standard SQL
code as possible instead of procedural language code, i.e. PL/SQL in Oracle, which is
dependent on the underlying Database Management System.

As a base for the implementation of the SVD computation, the paper “Efficient compu-
tation of PCA with SVD in SQL”[2] was used.

The time horizon of this project was two months from the 25th of September until the 1st

of December 2012.

Chapter 2

Implementation

As already mentioned in the introduction, the implementation includes the three substeps
Correlation Computation, Householder Transformation and the QR Algorithm. For clar-
ity and independency use, the three steps were implemented in three separate PL/SQL
procedures. If needed, they could easily be assembled to one continuous procedure.

Furthermore it was decided at the beginning of the project that the following data struc-
ture would be used for the tables in Oracle:

row id col id value
0 0 0.4845848845
0 1 0.4721235568
0 2 0.4612587456
0 3 0.3712455255
...

Table 2.1: Table structure used in Oracle Database

There is one column used for the row index and another one for the column index. Both
together build the primary key of the table. In the third column is the basic value
stored. One advantage of this structure is that it is very flexible as it can store any 2D
matrix. This is especially an asset for the given test datasets where the number of given
observations and time series can vary depending on what data the user wants to examine.
Furthermore, there is no limit in number of columns or rows for the input matrix. All
DBMS have a limit in number of columns. So, the used data structure cannot run out of
available columns. In the paper[2], they did use SQL script generators because some of
the tried implementations were optimized on a fix number of columns. This step is not
needed for the chosen data structure as the number of columns in the tables is always 3.

Table 2.2 shows the main symbols used in this report and their definitions.

5

6

Position Symbol Definition
General L Left eigen vectors matrix (table)

Σ Eigen values matrix (table)
R Right eigen vectors matrix

Correlation X Input/start table
Q Helper table with summarizations for correlation computation
L Helper table with summarizations for correlation computation

Householder I Identity matrix
P Rotation matrix (table) needed for Householder Transformation
V Table of correlation matrix

QR algorithm Q Helper table for QR algorithm
R Helper table for QR algorithm
U Helper table for computing L

Table 2.2: Table of notations

2.1 Correlation Computation

The main focus of ths assigment thesis is not set on the computation of the Pearson
correlation. But it is required to get from the provided datasets to the starting position
for the actual SVD calculation. Therefore it is considered as a relevant part of the task.

Before the correlation coefficients can be computed, the summarization vector L and the
summarization matrix Q have to be worked out from the input matrix X. Once they are
prepared, the correlation matrix V can be computed. The formulas therefore are visible
in Figure 2.1.

Li =
∑
xi

Qij =
∑
xix

T
j

Vij =
nQij−LiLj√

nQii−L2
i

√
nQjj−L2

j

Figure 2.1: Formulas for correlation computation[2]

In the PL/SQL procedure, the computation is implemented with normal insert/delete
statements applying the abovementioned formulas. Extracts of the source code with
explanations are left out in this report in respect of the minor importance towards the
computation of the Singular Value Decomposition.

7

2.2 Householder Transformation

The goal of Householder’s algorithm (c.f. Algorithm 1) is to transform the symmetric
matrix V0 into a similar symmetric tridiagonal matrix Vn−2. A symmetric tridiagonal
matrix is a matrix that its nonzero elements are found only on the diagonal, subdiagonal
and superdiagonal of the matrix and its subdiagonal elements and superdiagonal elements
are equal.

The Householder Transformation [4] is the first step to compute the SVD, starting with
the quadratic correlation matrix V0 as input. The Householder Transformation is done in
n - 2 steps where V is a n x n matrix. A rotation Pk is generated to obtain Vk = PkAk−1Pk,
with k = 1, 2, .., n − 2. At each step there is also computed Uk = Uk−1Pk with U0 = I,
where I is the identity matrix.

input : Square correlation matrix V0
output: Vk and Uk as input for the QR algorithm

1 for k = 0 to n-3 do

2 α = -sign(vk+1,k)
√∑n−1

j=k+1(vjk)
2

3 r =
√

1
2
α2 − 1

2
αvk+1,k

4 w0 = w1 = w2 = ... = wn−1 = 0

5 wk+1 =
vk+1,k−α

2r

6 for j = k+2 to n-1 do

7 wj =
vjk
2r

8 end

9 Pk = I − 2wwT

10 Vk+1 = PkVkPk

11 Uk = Uk−1Pk

12 end

Algorithm 1: Householder transformation[4]

The computation of α, w and r in SQL is rather straight forward and does not need any
extra explanation. Whereas the computation of Vk+1 could be implemented in different
ways. It was decided to multiply first Vk−1 ∗ Pk and after that in a second step Pk ∗Mk

with Mk = Vk−1 ∗ Pk. The implementation in SQL was done as follows:

--compute A(k)= P * A * P

--compute A * P = a2

delete t_a2;

insert into t_a2(

8

select tableH.row_id, tableH.col_id, sum(tableH2.val * tableP2.val)

from t_h_full tableH2, t_p_full tableP2, t_h_full tableH

where tableH2.row_id = tableH.row_id

and tableH2.col_id = tableP2.row_id

and tableP2.col_id = tableH.col_id

group by tableH.row_id, tableH.col_id

);

commit;

--compute P * (a2) = A(k)

...

2.3 QR Algorithm

During each iteration of the QR algorithm, there is a QR factorization, two matrix multi-
plications and an error computation[2]. The QR factorization is a substep of the complete
QR algorithm. It is explained in Algorithm 3. The iterations are executed until a given
number of iterations is reached or better the computed error converges towards a given
error threshold. In the implementation both break conditions were realized. For compa-
rable tests it makes more sense to use the same number of iterations whereas it is more
reasonable in real applications to use an error criteria.

input : Symmetric tridiagonal matrix V , matrix U , error tolerance ε
output: Eigenvectors matrix L and Eigenvalues matrix Σ2

1 do

2 compute Qk and Rk which fulfill Vk−1 = QkRk (QR factorization)

3 Lk = Lk−1Qk with L0 = U

4 Vk = RkQk

5 while (error > ε);

6 forall the elements e of L do
7 e = abs(e)
8 end

9 forall the elements e of V do
10 e = abs(e)
11 end

12 Σ2 = diag(V)

Algorithm 2: Pseudo code of QR algorithm[2]

The pseudo code in Algorithm 2 shows the basic idea how Σ2 and L are computed through
the QR algorithm.

9

input : Symmetric tridiagonal matrix V = [v0 v1 ... vn]
output: Matrix Q and matrix R

1 Q = V , Q = [q0 q1 ... qn]
2 for i = 0 to n-1 do
3 rii = ‖qi‖
4 qi = qi/rii
5 for j = i+1 to n-1 do
6 rij = qi ∗ qj
7 qj = qj − rij ∗ qi
8 end

9 end

Algorithm 3: Computation of Q and R by the QR factorization[4]

The following SQL source code snippet shows the implementation of the QR factorization
step of the QR algorithm. Two for loops are needed for the computation. The first loop
is iterating over all rows and the second one over the rows beginning at i + 1.

--compute Q and R

for j in 0..(n-1)

loop

insert into t_r(select j, j, sqrt(sum(Power(val, 2)))

from t_q_qr where col_id = j);

commit;

update t_q_qr set val = val /

(select val from t_r where col_id = j and row_id = j)

where col_id = j ;

commit;

for i in (j+1)..(n-1)

loop

insert into t_r(select j, i, sum(tableQ1.val * tableQ2.val)

from t_q_qr tableQ1, t_q_qr tableQ2

where tableQ1.row_id = tableQ2.row_id

and tableQ1.col_id = j and tableQ2.col_id = i);

commit;

update t_q_qr tableQ1 set val = val -

(select val from t_r where col_id = i and row_id = j) *

(select val from t_q_qr tableQ where tableQ.col_id = j

and tableQ.row_id = tableQ1.row_id)

where tableQ1.col_id = i;

commit;

end loop; end loop;

Chapter 3

Experimental Evaluation

An important part of this work was to evaluate the scalability of the implemented decom-
position on an Oracle server. Secondly, the SQL implementation should be compared by
running time with a main memory implementation, which was provided by the supervisor.
Additionaly to these tasks, the results of the SQL implementation were compared with a
similar SQL implementation in the underlying paper[2].

3.1 Setting

The source code of the main memory implementation[3] was provided in C++ but was
converted into Java to be able to use JDBC. The computation of the correlation matrix
was implemented with a helper class which can compute the correlation of two vectors.
The source code of this helper class in Java was also provided by the supervisor and was
slightly adapted to the requirements of the task.

It was used a HP EliteBook 8560p, Intel i7 2.70 GHz, 8GB RAM, 500GB disk, for running
the test samples of the main memory implementation. Whereas the Oracle server for run-
ning the SQL implementation did have the following specifications: QEMU Virtual CPU
version 0.12.5, 2.30 GHz, 4GB RAM, 1Gbit disk. And in the mentionned paper[2], they
did use a Intel Duo Core CPU, 2.6 GHz, 4GB RAM, 1TB disk for the SQL experiments
and a workstation with a 1.6 GHz CPU, 256MB RAM, 40GB disk for the Java tests.

3.2 Results

First of all, it was checked for reference reasons how long insert/delete transactions take
time on the provided server which the SQL implementation is tested on. The results of
this test are visible in Table 3.1. It shows that an insert transaction takes almost double
of the time a delete transaction takes.

10

11

Quantity Insert [sec] Delete [sec] Inserts/sec Deletes/sec
1’000’000 72 39 0.000072 0.000039
2’000’000 163 76 0.000082 0.000038

Table 3.1: Duration of insert/delete transaction on Oracle server

Table 3.2 shows the performed experiments comparing the own SQL implementation
against the Java main memory implementation. The results show that the SQL im-
plementation is massively slower than the Java implementation. For the given sizes of the
input matrix, the Java implementation did not throw any <out of memory> exception.

Size Correlation [sec] SVD [sec]
n d SQL Java SQL HH SQL QR SQL Total Java Total

10000 30 5 0.3 6 102 108 0.014
10000 50 14 0.6 31 438 469 0.016
10000 100 52 2.2 437 3066 3503 0.031
15000 30 7 0.3 7 104 111 0.015
15000 50 19 0.9 30 435 465 0.016
30000 30 14 0.6 6 103 109 0.015
30000 50 42 1.6 29 418 447 0.016
50000 50 75 2.6 31 420 451 0.016

Table 3.2: Comparison of SQL implementation with main memory implementation

A second comparison was made between the SQL implementation and the SQL imple-
mentation of the underlying paper[2]. The results are visible in Table 3.3. It seems like
the own implementation of the correlation computation is faster whereas the SVD com-
putation is slower, but this would have to be statistically proven. The performed tests
can only give indications.

Size Correlation SVD
n d own[s] paper[s] own[s] error iter. paper[s] error iter.

10000 30 5 7 108 0.00007 100 92 0.00376 78
10000 50 14 20 469 0.0006 100 481 0.00365 146

Table 3.3: Comparison of SQL implementation with SQL implementation of the paper[2]

3.3 Interpretations

The results in Section 3.2 look extraordinarily at a first glance. But after a little bit of
reflection they are reasonable.

That the Java implementation is that much faster than the SQL implementation was not
expected. There might be several reasons which can explain this result. First of all, the

12

tests of the SQL code and the Java code were not run on the same computer. The used
computer for the Java code did have a better processor, more RAM and also more disk
space. Especially the additional RAM and the better processor may have led to a better
performance of the tests.

While the SQL code for the correlation computation and the Java Code use more or
less the same algorithm, the used algorithms for the Singular Value Decomposition differ
strongly. Especially in the number of iterations does the Java code strongly decrease the
computing time.

Another point which might explain a large slice of the time differences are the insert,
update and delete transactions which are used for the computations in SQL. Even read
transactions might take longer on the SQL server because in most cases the data has first
to be loaded from disk into main memory. Table 3.1 shows how long insert and delete
transactions without any computations or queries can take on the provided Oracle server.

It was also tried to improve the performance of the SQL implementation by using truncate-
commands instead of deletes, but this measure did not bring any time saving, rather to
the contrary. Also the use of views instead of inserting the tuples into a table did not
provide any economy of time. It seems that the Oracle DBMS already optimizes the SQL
code by itself.

In the experiments of the paper[2], the tests with the Java library JAMA[1] did lead to
<out of memory> exceptions. The biggest possible combination for the input matrix was
100’000 x 30 and the tests were run on a workstation with 256MB RAM only. Therefore
it does not surprise that the new tests with the provided C++ code[3] on a computer with
8GB RAM do not throw an exception. Considering only the space needed for storing the
input matrix in main memory it would have need of 1’073’741’824 double values to fill
the 8GB of RAM and create an exception. This quantity will never be reached by the
provided data set with a maximum size of 11’353’335 values. Also paying attention to
other RAM consumers of the program would not change this fact.

The second comparison between the own SQL implementation and the one of the paper[2]
does not show a significant discrepancy. Also both used computers for the tests have
approachingly identical specifications. To make a more meaningful statement about the
comparison, more tests would have to be performed and also the source codes would have
to be compared. Unfortunately, the paper[2] does not provide any source code.

Chapter 4

Summary & Conclusion

It turned out that this project was a really challenging and ambitious task for a short time
period of two months. After reading literature and trying to understand the underlying
mathematical algorithms, the implementation of these algorithms in SQL took quite a
while. The limitation of using as much SQL as possible did not make the realization
easier.

The next step was to analyze the written SQL code and try to improve it concerning time
performance. Towards the end of the project, the implemented SQL code was compared
with a Java implementation and the results of the underlying paper[2].

It was not expected that the SQL code would take that much longer than the main memory
implementation, but after some hours of thinking it became comprehensible. It could also
be extracted from the results that the main advantage of the SQL implementation, which is
no memory limitation, never gets a chance for the given datasets and computer hardware.
It is also uncertain if the SQL implementation would scale for such a large dataset as
the QR algorithm has a complexity of O(sn3) whereas s is the number of iterations for
convergence and n the number of rows/columns of the correlation matrix.

The short time period assigned to the task does leave some extensions open. For example,
it would be interesting to compare the implemented SQL code with the SQL code of the
paper[2]. On both sides there might be some optimizations possible as the paper does not
provide to much information about how they did implement it in SQL. Another uncleared
point is how user defined function in PL/SQL would perfom against the standard SQL
code. This was not part of the task, but it might still be interesting to examine it further.

Befor ending the assignment with an oral exam, this report had to be written. Overall, it
was a successful and educationally valuable project, but on the other hand also very time
consuming and demanding.

13

References

[1] JAMA Java Matrix Package, http://math.nist.gov/javanumerics/jama/, 2012

[2] Navas M., Ordonez C., Efficient computation of PCA with SVD in SQL, in DMMT,
2009

[3] Numerical Recipes Software, Webnote No. 2, Rev.1,
http://www.nr.com/webnotes/nr3web2.pdf, 2012

[4] Salleh S., Zomaya A., Bakar S., Computing for numerical methods using Visual C++,
2008

14

