
Anlysis and Application of Pearson’s Correlation

and Case Matching Similarity on Time Series

Marc-Alain Chételat
marc-alain.chetelat@uzh.ch

January 24th, 2016

1 INTRODUCTION

A time serie s is a sequence of data points that consists of measurements
over a time interval. The data points are frequently stored in a time series
DB = {s1, s2, ..., sn}. Such data monitoring and analysis is done in a lot of
domains such as financial markets, meteorology or astronomy. E.g. weather
stations register in a fixed time interval outside temperatures in cities, valleys
or even on top of mountains.

We first analyze the Pearson’s Correlation Coefficient and the Case Match-
ing algorithm and calculate the values for sample data (Table 1). Then the
algorithms are implemented using Java. Finally we analyze the runtime as well
as the space complexity.

2 EXAMPLE DATA SET

We are using weather data of 21 weather stations located in South Tyrol. Each
station measures and persists the outside temperature every five minutes start-
ing on the January 1st, 2014 and ending on the December 30th, 2014. Hence the
structure of my data set is [Station ID] - [Timestamp] - [Temperature]. Table 1
shows sample data of two time series s1 and s2 in an interval of 45 minutes of
two different measurement stations in the South Tyrol. This data will be used
in the later examples.

1

Time t s1(t) ◦C s2(t) ◦C
13:10 3.425 4.429
13:15 3.263 4.5
13:20 3.085 4.529
13:25 2.861 4.629
13:30 2.837 4.671
13:35 3.124 4.6
13:40 3.5 4.6
13:45 3.5 4.694
13:50 3.5 4.841
13:55 3.5 4.788

Table 1: Sample weather data.

3 PEARSON’S CORRELATION
COEFFICIENT

3.1 Definition[1]

PCC measures linear correlation between two time series. A linear correlation
exists if a parameter changes proportionally as another parameters changes. An
example is shown in Figure 1. The function is defined as f(x) = 2

3x. Due to
linearity, if value x increases 3 from 3 to 6, y increases proportionally 2 = 3× 2

3
from 2 to 4. To apply PCC, the two time series must be scaled to intervals. The
PCC indicates the degree of correlation. It ranges from -1 to +1. Indicating +1
(-1 respectively) a perfect positive (negative respectively) linear correlation. If
PCC indicates 0, there is no correlation at all between the time series. Let s1(t)

Figure 1: Linear correlation.

and s2(t) be two time series such that |s1(t)| = |s2(t)|, then PCC is defined as

PCC(s1, s2) =

∑|s1|
t=1(s1(t)− s̄1)(s2(t)− s̄2)√∑|s1|

t=1(s1(t)− s̄1)2
√∑|s2|

t=1(s2(t)− s̄2)2
(1)

where s̄i = 1
|si|

∑|si|
t=1 si(t).

2

3.2 Example

The two time series shown in Table 1 are used to compute the PCC. The first

step is to calculate the means for each data set defined as s̄i = 1
|si|

∑|si|
t=1 si(t),

giving us the results listed in Table 2. The residuum si(t) − s̄i quantifies how

s̄1(t) s̄2(t)
4.628 3.260

Table 2: Mean values for s1(t) and s2(t).

much the actual value differs from the time series’ mean. Whether the value
differs positively or negatively does not matter. Therefore the residuum gets
squared. The mean value of all residua is calculated resulting in the time series’
standard deviation defined as

σ =

√√√√ 1

|si|

|si|∑
t=1

(si(t)− s̄i)2. (2)

The standard deviation indicates how much the values scatter around the time
series’ mean. In Table 3 the standard deviations for the corresponding time
series are listed. The last element missing is the covariance. It quantifies the

s1(t) s2(t)
σ 0.380 0.803

Table 3: Standard deviation for s1(t) and s2(t).

linear correlation of two variables. A positive algebraic sign means that the
two compared variables are positively correlated (e.g. one variable increases its
size the other one does too). A negative algebraic sign means the opposite (e.g.
one variable decreases on increasing the other one). The sample’s covariance is
defined as

Cov(s1, s2) =

|s1|∑
t=1

(s1(t)− s̄1)(s2(t)− s̄2) (3)

resulting in Cov(s1, s2) = 0.068. The covariance’s dimension depends on the
values’ sizes. Therefore it reflects the direction (positive/negative) of the corre-
lation only. Information about the correlation’s strength is not available. The
PCC reflects the standardized covariance making a statement about the corre-
lation’s strength and a comparison possible.

PCC(s1, s2) =
0.068

0.380× 0.803
= 0.223 (4)

The PCC of 0.223 concludes a weak positive correlation between the two time
series s1(t) and s2(t).

3

4 CASE MATCHING SIMILARITY[2]

4.1 Definition

As shown the PCC can be used to measure the correlation of linear correlated
values. The Case Matching Similarity (CMS) works as well with time series that
are non-linearly correlated. A parameter’s value in a non-linear correlated data
set does not change proportionally as changing the other parameter’s value.
Figure 2 shows a non-linear correlation. The function is defined as f(x) =
x3. If x increases from 0.5 to 1.5 the corresponding y-value is not increasing
proportionally. However non-linearity does not mean values can not correlate!
E.g. we consider two measuring stations in a valley. Station 1 is located on one
side where morning sun reaches, station 2 is located on the other side of the
valley where evening sun shines in. In the morning, station 1 registers higher
temperature values than station 2 for the same time (in the evening vice versa)
because sun heats up the air around station 1 and does the same in the evening
around station 2 on the other side of the valley. Hence different factors influence
on temperature, the time series of station 1 and 2 do not have to correlate
linearly but they still correlate due to stable meteorological conditions. CMS is
considering this fact and assumes related to data from Table 1 that the same

Figure 2: Non-linear correlation.

values of s1(t) and s2(t) co-occur frequently. This means if for points in time
t1, t2 the values in s1 are similar the values in s2 are as well. Even if the values
from s1 distinct clearly from those in s2, i.e.

∀t1, t2 : s1(t1) ≈ s1(t2)→ s2(t1) ≈ s2(t2) (5)

CMS proposes an algorithm to actually measure the strength of co-occurrence
between two time series s1 and s2. CMS splits the range of time series s1 into
equal-sized sub-ranges, called buckets. Each bucket contains the values of s2
such that s1 is within the bucket limits.

bz = {s2(t)|∀t : zw ≤ s1(t) < (z + 1)w} (6)

with z ∈ Z as the bucket’s ID and w ∈ R>0 as the bucket’s width. CMS then
calculates the bucket’s standard deviation. The smaller the deviation is, the

4

closer are the values s2(t) ∈ bz to the bucket mean b̄z, the more similar are they
to each other and the stronger is the co-occurrence. Formally, the standard
deviation for each bucket is defined as

σz =

√√√√ 1

|bz|
∑

s2(t)∈bz

(s2(t)− b̄z)2 (7)

with b̄z = 1
|bz|

∑
s2(t)∈bz s2(t) as the bucket’s mean. Let B = {bz|∀z ∈ Z :

bz 6= ∅} be the set of all non-empty buckets. Then CMS is defined as the
average bucket standard deviation, where each term is weighted by the number
of elements in the corresponding bucket

CMS(s1, s2) =
1

|B|
∑
bz∈B

|bz|
|s2|

σz (8)

4.2 Example

Using the example data set from Table 1, each value s(t) gets mapped into the
corresponding buckets bz with bucket values [zw, (z + 1)w). In the example we
will calculate the CMS(s1, s2) for bucket widths w = {0.2, 0.5, 1.0}. In tables
4, 5 and 6 the buckets bz, timestamps t and the corresponding values s2(t)
are shown. If width w is large, a bucket covers a wider range values s1(t)

bz s2(t) ◦C t

b14
4.629 13:25
4.671 13:30

b15
4.529 13:20
4.6 13:35

b16 4.5 13:15

b17

4.429 13:10
4.6 13:40

4.694 13:45
4.841 13:50
4.788 13:55

Table 4: Buckets bz with corresponding s2(t) for bucket width w = 0.2.

and more values s2(t) are put into the same bucket bz (e.g. with w = 0.2,
the number of buckets |B| = 4, where with w = 1.0, |B| decreases to 2).
Equation 7 calculates each bucket’s standard deviation. Again, the standard
deviation indicates how much differ the bucket’s values from its average (e.g. a
value s2(t) in bucket b14 differs 0.021 ◦C in average from the bucket mean ¯b14).
Table 7 shows all standard deviations for all buckets bz. Finally CMS calculates
the sum of the average bucket standard deviation weighted by the number of
elements in the corresponding bucket (e.g. for w = 0.2 CMS is defined as
CMS(s1, s2) = 2

100.021 + 2
100.035 + 1

100 + 5
100.146 = 0.084). We conclude that

5

bz s2(t) ◦C t

b5
4.629 13:25
4.671 13:30

b6

4.429 13:10
4.5 13:15

4.529 13:20
4.6 13:35

b7

4.6 13:40
4.694 13:45
4.841 13:50
4.788 13:55

Table 5: Buckets bz with corresponding s2(t) for bucket width w = 0.5.

bz s2(t) ◦C t

b2
4.629 13:25
4.671 13:30

b3

4.429 13:10
4.5 13:15

4.529 13:20
4.6 13:35
4.6 13:40

4.694 13:45
4.841 13:50
4.788 13:55

Table 6: Buckets bz with corresponding s2(t) for bucket width w = 1.0.

w bz σ ◦C

0.2

b14 0.021
b15 0.035
b16 0
b17 0.146

0.5
b5 0.021
b6 0.061
b7 0.092

1.0
b2 0.021
b3 0.133

Table 7: Standard deviations for all buckets where w = {0.2, 0.5, 1.0}.

for w = 0.2 the values s2(t) scatter 0.084 ◦C around the average of all bucket’s
standard deviations. Table 8 shows every CMS-value for all bucket width w.

6

w CMS(s1, s2)
0.2 0.084
0.5 0.066
1.0 0.111

Table 8: CMS for time series s1, s2 where w = {0.2, 0.5, 1.0}

4.3 Implementing CMS

The implementation is done in Java programming language. First, the data
is mapped into a tree based table that allows to control having for each time
stamp t exactly one value pair s1(t), s2(t). The input of the algorithm are the
two time series s1, s2 as a double array and the bucket width w as a float variable.
Because a value pair only exists ∀ s1(t) ∈ s1, ∃ s2(t) ∈ s2 and n = |s1| = |s2|,
a run through the data set is done in n steps. As shown in Algorithm 1,
the data set is run through entirely three times. For more detailed complex
analysis read section 4.4. Function ”getBucketMap” maps each value s2(t) to
its corresponding bucket bz, persisted in a tree map with bz as key and s2(t)
as value. Each bucket’s mean and standard deviation then gets persisted into
the ”bucketMeanMap”, ”bucketStandardDeviationMap” respectively with bz as
key and b̄z / σz as value. Last but not least ”getCMS” calculates the CMS of
the two time series s1, s2.

4.4 Complexity Analysis

As shown in pseudo code of CMS, all values s1 are run through once in function
”getBucketMap” having a runtime of O(n) with n = |s1| = |s2|. In the method
”getBucketMeanMap” all values s2 are run through as well thus having the
same runtime O(n), so does the method ”getBucketStandardDeviationMap”.
The overall runtime complexity results in O(3n) = O(n).

Regarding space complexity, assumed both time series s1 and s2 are loaded
into main memory with space consumption O(n) each. At runtime each value
s2(t) is put into lists consuming O(n) steps again. Overall space complexity
equals O(2n+ n) = O(n).

4.5 Pseudo Code of CMS

Input: Two time series s1, s2 and bucket width w
Output: CMS(s1, s2)

Listing 1: Pseudo Code of CMS

2 func t i on getBucketMap (s1 , s2 , w)
b l l = (int) s1 (t) // b l l as bucke t lower l im i t

4

7

while (s2 i s not p e r s i s t e d in to map)
6 for each s1 (t) in s1

i f (s1 (t) >= b l l && s1 (t) < b l l + w) then
8 bucketMap . put (b l l , s2 (t))

else
10 i f (s1 (t) > b l l) then

b l l += w
12 else

b l l −= w
14

return bucketMap
16

func t i on getBucketMeanMap (bucketMap)
18

for each b l l
20 sum(s2)

22 bucketMean = sum/ b l l . s i z e

24 bucketMeanMap (b l l , bucketMean)

26 return bucketMeanMap

28 func t i on getBucketStandardDeviationMap (bucketMap , bucketMeanMap)

30 for each b l l
for each s2 (t)

32 sum(s2 (t) − bucketMean)ˆ2

34 var iance = sum/ s2 . s i z e
standardDeviat ion = s q r t (var iance)

36
bucketStandardDeviationMap (b l l , s tandardDeviat ion)

38
return bucketStandardDeviationMap

40
func t i on getCMS(bucketMap , bucketStandardDeviationMap , s2)

42
for each b l l

44 cms = b l l . s i z e / s2 . s i z e ∗ s tandardDeviat ion

46 return cms

8

References

[1] Jie Liu Abdullah Muen Suman Nath. “Fast Approximate Correlation for
Massive Time-series Data”. In: (2010).

[2] Kevin Wellenzohn Michael Boehlen. “Continuous Imputation of Missing
Values in Highly Correlated Time Series”. In: (2016).

9

