
Z-KNN Join for the Swiss Feed

Database: a feasibility study

Francesco Luminati

University Of Zurich, Switzerland

francesco.luminati@uzh.ch

1 Introduction

K-nearest neighbor query (knn) and k-nearest neighbor join (knnj) are becoming funda-
mental in many applications, such as Knowledge Discovery in Databases, spatial databases
and so on. Many previous approaches require spatial indices or changes in the database
engine, posing a big limitation to the implementation. Moreover, the SQL approach nor-
mally relies on a User Defined Function (UDF), such as the Euclidean distance, which is
not optimized by the query optimizer.

The authors of [1] designed an algorithm that can be implemented using only primitive
SQL, exploiting so the standard functionalities of a DBMS, such as the query optimizer.
In this report we test the approach against the Swiss Feed Database, a vertically organized
database containing millions of measurements of nutrients in animal food.

2 K-nearest neighbor join

The k-nearest neighbor join (k-nnj) can be defined as the operation in which each point
of the vector set Q = {q1, ..., qn} must be combined with its k closest partners in vector
set R = {r1, ...rn}. Formally it is defined as follow:

Definition: k-nn Join Q n
k�nn

R

Q n
k�nn

R is the smallest subset of Q⇥R that contains for each point of Q at least k

points of R and for which the following condition holds:

8(q, r) 2 Q n
k�nn

R, 8(q, r0) 2 Q⇥R \Q n
k�nn

R : kq � rk < kq � r0k

1

Here k · k denotes the distance between two points, usually corresponding to the
Euclidean distance for multidimensional vector spaces. The SQL query for solving the
k-nnj problem can be expressed as follow [2]:

SELECT ⇤ FROM Q,
(SELECT ⇤ FROM R

ORDER BY | |Q. obj � R. obj | |
LIMIT k)

We immediately notice that this query is going to order the table R by distance for
every point in Q. This means that the query gives very bad performance, especially with
big tables. Furthermore, to calculate the k · k a User Defined Function (UDF) is needed
to compute the Euclidean distance between two points. Because a UDF is not a native
part of the DBMS, the query optimizer is not able to optimize the execution plan of the
query and ends up to plan an expensive nested-loop join [1].

3 Efficient algorithm

In [1] an efficient algorithm is presented. It can be implemented using only primitive
SQL operators and do not rely on the UDF as a main query condition, so that the query
optimizer can understand and optimize the query. The paper shows an approximate and
an exact k-nn algorithm for one query point q and an extension of it to the k-nnj. The
approximate algorithm gives a constant factor approximation with only O(log N) page
accesses in any fixed dimension, the exact algorithm can achieve similar efficiency for
certain types of data distribution.

For the scope of this report we are going to investigate in detail only the approximate
algorithm in two dimensions, because the implementation of it in one dimension already
returns the exact result, as we will see later.

3.1 Z-knn approximate algorithm

The idea behind the approximate Z-knn algorithm is to reduce the multidimensionality
to one dimension, and then do a range scan around q over one dimension, using a B+tree
index. If the locality of the points in one dimension is maintained, the nearest neighbors
in multi-dimensions are going to be near q also in one dimension, making them easy and
fast to find using an index.

Z-value

To map the multidimensionality to one dimension, the Authors choose the Z-value func-
tion, which is calculated by interleaving the binary representation of the coordinates X,
Y from the most significant bit (msb) to the least significant bit (lsb) (see Example 3.1).

Example 3.1: calculate the Z-value of coordinate (4, 6):
Y: 6 -> binary: 110
X: 4 -> binary: 100
Z-value: 111000 -> decimal: 56

2

Figure 1: Z-value curve: the Z-shaped curve is produced connecting the Z-values of the
coordinates.

The computation of Z-values only requires bit-shift operations, which are already
available in most database engines [1]. The Z-value curve, as seen in Figure 1, is obtained
by connecting the points by the numerical order of their Z-value, producing the charac-
teristic Z-shaped curve. In most cases, Z-values preserve the locality of points and we can
find the neighbors of q in a close neighborhood on the Z-value curve, lets say � position
up and down. However it is not always the case, as we will see later in the example. To
get a theoretical guarantee, we create ↵ shifted copies of the table using ↵ random vectors
!
v . The operation is defined as shifting all points in Ri, 8i 2 [1,↵], by the vector !

vi doing
r +

!
vi for all r 2 Ri.

Algorithm

For the scope of the algorithm, we add to every table Ri a column named Z-value con-
taining the Z-value of the respective point and we sort the table, createing a B+tree index
on the Z-value column. This operation is executed in a pre-processing phase, because the
same tables and index can be reused for every query by the algorithm.

Now, for a query point q and its Z-value zq, we look for the successor of zq among all
Z-values in Ri, and define it as zr (zr >= zq). The �-neighborhood of q is defined as �
points up and � points down to zr. At the end, the algorithm, as shown in Algorithm
1, selects the top k points in the unioned (↵ + 1) �-neighborhood, using the Euclidean
UDF to calculate the distances.

Example

The algorithm is now explained using an example to highlight some important facts. The
original table R0 is rappresented in Table 1 and we produce one shifted copy of it (↵ = 1)

3

Algorithm 1 approximative Z-knn (query point q, point sets {R0, . . . , R↵})

1. Candidates C = ;;

2. for i = 0, . . . ,↵ do

3. Find zir as the successor of z
q+

!
vi

in Ri;

4. Let Ci be � points up and down next to zir in Ri;

5. For each point r in Ci, let r = r � !
vi;

6. C = C [Ci;

7. Let A = knn(q, C) and output A.

knn(q, C) selects the top k points (nearest neighbors) using the Euclidean UDF.

Z-val Pid X Y
1 1 1 0
2 2 0 1
3 3 1 1
6 4 2 1
14 5 2 3
15 6 3 3
16 7 4 0
17 8 5 0
26 9 4 3
33 10 1 4
35 11 1 5
36 12 2 4
37 13 3 4
38 14 2 5
44 15 2 6
57 16 5 6

�������!!
v1 = (2, 1)

Z-val Pid X Y
7 1 3 1
12 2 2 2
13 3 3 2
22 7 6 1
23 8 7 1
24 4 4 2
39 10 3 5
45 11 3 6
48 5 4 4
49 6 5 4
50 12 4 5
51 13 5 5
52 9 6 4
56 14 4 6
58 15 4 7
63 16 7 7

Table 1: R0 (left) and R1 (right), shifted usign vector !
v1 = (2, 1).

4

Figure 2: Cartesian representation of points in table R0, overlapping the Z-value curve.

using the vector !
v1 = (2, 1). The parameters in the example are: � = 3 and k = 3, the

query point used is q = (3, 3), zq = 15. Again, � is the number of point selected in the
scan up and down of q on the Z-value curve and k is the number of neighbours we are
interested to find.

To enforce the understanding of the example we propose Figure 2 and Figure 3, where
the points of table R0 and R1 are drawn in a Cartesian coordinate system, with underlying
the Z-value curve.

At this point we apply the approximative Z-knn algorithm to both table R0 and
R1: the successor of zq = 15 in R0 is z0r = 15, which correspond to the pid 6; the
successor of z

q+
!
v1

= 49 in R1 is z1r = 49 (pid 6). The scan of � points up and down
from z0r in table R0 produces the candidates C0 = pid{3, 4, 5, 7, 8, 9}, the scan on table
R1 the candidates C1 = pid{5, 9, 10, 11, 12, 13}. From line 6 of the algorithm, C =
C0[C1 = pid{3, 4, 5, 7, 8, 9, 10, 11, 12, 13} and the final k-nearest neighbors knn(q, C) are
pid{5, 9, 13}.

The locality issue of Z-value curve is evident in R0 and Figure 2. The simple �-scan
over Z-values on just R0 would have missed two “good” candidates, pid 12 and 13. Only
thanks to the shifted table copy R1 the algorithm has found also these points, returning
the correct answer.

5

Figure 3: Cartesian representation of points in table R1, overlapping the Z-value curve.

4 Z-knn algorithm in one dimension

In a one-dimensional space things are simpler. There is no need to map multidimension-
ality to one dimension, so the Z-value transformation is not necessary and the issues of
this transformation fall. This means that we can create the index directly on the inter-
ested column, for example a timestamp, without the need of the Z-value column and also
the shifted copies of the table are not necessary anymore. The one-dimensional situation
implies that a � scan up and down of q will immediately detect all the exact neighbors.
Moreover, we can do some assumption: q can be used directly to find its successor rq
in R, � = k already ensure to find the k-nearest neighbors and the Euclidean UDF in
one-dimension results to be a simple subtraction UDF () = kq � rk.

4.1 The Swiss Feed Database

The Swiss Feed Database contains chemical parameters of 155 nutrients about more
than 600 animal feed types. Companies, farmers and research institutions use this data
to preserve healthy, effective and cheap animal feed. The chemical parameters of the
nutrients are elaborated in two ways: the first implies chemical analyses on feed samples;
the second calculate parameters using the laboratory measurements of other nutrients.

These calculations are well-known dependencies between nutrients and are computed
with the help of regressions. The complexity of the regression depends on the number of
involved nutrients and spreads from one to many. The results of the regressions are called
derived attributes and can be defined as functions depending on other nutrients and on

6

time.
The calculation of derived attributes encounter the problem that for every timestamps

only a few chemical laboratory measurement are performed for an economical question.
This means that the function to compute the derived attributes for every timestamp has
to find the nearest neighbors of all the parameters involved that are not available.

Moreover the neighbor search is applied on a non-fixed subset of data that changes
based on user selections, making the derived attributes not pre-computable.

4.2 Z-knn Join

For the computation of derived attributes we frequently need to join the fact table with
its nearest neighbors, so we have extended the k-nnj SQL query seen in Section 2 to
compute the one-dimensional Z-knn algorithm, producing the Z-knnj.

Now the Z-kknj is applied to the Swiss Feed Database to calculate the derived at-
tributes Vit-A, defined by f(Ca⇤Na

100). In the Swiss Feed Database, the data are very
sparse, so that a vertical design of the table has been chosen to spare space, having every
foods and nutrients in one fact table.

SELECT ⇤ FROM f a c t_tab l e AS RQ, (
((((SELECT ⇤ FROM f a c t_tab l e AS RP WHERE RP. timestamp >= RQ. timestamp

AND nut r i en t = ’Ca ’ AND food = ’Hay ’
ORDER BY (RP. timestamp) ASC LIMIT 1)

UNION
(SELECT ⇤ FROM f a c t_tab l e AS RP WHERE RP. timestamp < RQ. timestamp

AND nut r i en t = ’Ca ’ AND food = ’Hay ’
ORDER BY (RP. obj) DESC LIMIT 1)) AS RA

ORDER BY ABS(RA. timestamp�RQ. timestamp) LIMIT 1) ⇤ (
((SELECT ⇤ FROM f a c t_tab l e AS RP WHERE RP. timestamp >= RQ. timestamp

AND nut r i en t = ’Na ’ AND food = ’Hay ’
ORDER BY (RP. timestamp) ASC LIMIT 1)

UNION
(SELECT ⇤ FROM f a c t_tab l e AS RP WHERE RP. timestamp < RQ. timestamp

AND nut r i en t = ’Na ’ AND food = ’Hay ’
ORDER BY (RP. obj) DESC LIMIT 1)) AS RA

ORDER BY ABS(RA. timestamp�RQ. timestamp) LIMIT 1)) / 100) AS Vit�A
WHERE nut r i en t IN (’Ca ’ , ’Na ’)

What the query does is first to limit the fact_table to the elaboration of only one
food, the Hay. Then, the nearest neighbor of the nutrient Ca and Na is found, and the
Vit-A is calculated using the formula f(Ca⇤Na

100). All this results are then joined to all the
timestamps of the specific food in the fact_table.

4.3 Working dataset

Here we expose a situation where the Z-knnj algorithm can express the maximum of
efficiency. Suppose there is a table for every nutrient containing the measurements and
timestamps. The interested derived attribute Vit-A is defined by f(Ca⇤Na

100). Starting
with timestamp 8, let say that the Ca value for timestamp 8 is found in the Ca table

7

Timestamp Quantity
2 80
5 86
7 75
8 70
10 68
12 72
18 81
20 85

Timestamp Quantity
1 3
3 2.5
4 3.5
6 3.6
9 5
11 2
15 4.5
16 2.5

Table 2: Table of the Ca nutrient measurements (left) and the Na nutrient mesurements
(right).

Figure 4: B-tree of the Na table, the neighbors of timestamp 8 are found immediately.

(Table 2), but there is no Na value for that timestamp. A Z-knn search on the Na table
(Table 2) immediately produce two candidates, timestamp 6 and 9, as seen in the B-tree
on Figure 4. At the end the algorithm will return timestamp 9 as the nearest neighbor
of 8.

4.4 Not working dataset

The situation in the Swiss Feed Database is quite different as we know. The data are
vertically organized, having every foods and nutrients in one fact table. Let say the table
is organized in a timestamp, food, nutrient and quantity column (Table 3). To calculate
the derived attribute Vit-A (f(Ca⇤Na

100)) for the food Hay, starting by timestamp 9, we
get the Ca value. Now the Z-knn algorithm is looking for the Na neighbors for food Hay
of timestamp 9, finding them only 4 leaves left and 3 leaves right in the B-tree (Figure 5).
Of course the algorithm is working, returning the value at timestamp 16, but its execution
is much less performing, requiring more page accesses. The join query in Subsection 4.2

8

Figure 5: B-tree of the fact table, finding the neighbors here can degrade to a range
search.

must be extended with the instruction WHERE food = ’Hay’ AND nutrient = ‘Na’, as
we have seen. We immediately notice that the additional condition severely restrict the
table; the B-tree is used to find the starting point q (in this case timestamp 9), but then
if the neighbors are not on the same leaf or nearby it, a range scan left and right q must
be done, degrading the performance and nullifying all the benefits of the algorithm.

5 Conclusion

Timestamp Food Nutrient Quantity
1 Hay Na 4
3 Corn Na 2.5
4 Apple Z 1.1
6 Soja P 3
9 Hay Ca 80
11 Corn Ca 70
15 Soja P 6
16 Hay Na 2.3

Table 3: Vertically organized fact table.

The Z-knn algorithm in one-dimension
is simple and fast if the dataset be-
hind R is dense, i.e. it contains many
frequently occurring items, and is not
severely restricted by additional con-
ditions. In this case, the B+tree can
give the best to locate q and scan the
neighbors.

This is not the case of the Swiss
Feed Database, where we need the
nearest neighbors of only a minimal
part of the table and the data are
very sparse. The additional condi-
tions in the query causes the degra-
dation to a range scan, loosing every benefit of the algorithm and the B+tree. There-
fore the Z-knn algorithm results to be of no interest for the Swiss Feed Database.
In fact, the SQL query in Subsection 4.2 has been tested on the Swiss Feed
Database, giving the expected result, namely that the query takes hours to complete.

9

References

[1] Byn Yao, Feifei Li, Piyush Kumar: K Nearest Neighbor Queries and KNN-
Joins in Large Relational Databases (Almost) for Free. Data Engineering
(ICDE) Conference. (2010)

[2] Christian Böhm, Florian Krebs: The k-nearest neighbour Join: Turbo
Charging the KDD Process. Knowledge and Information Systems. (2004)

10

