
Jasmin Ebner, 13-747-159 03. Dezember 2015

Integrity Constraints in Temporal Ground
and Now-Relative Databases
Introduction
In contrast to non-temporal databases, temporal databases have the advantage that they can record

time-varying data. Here one has to distinguish between valid time and transaction time. Valid time

describes the period in which a tuple is valid in the real world, whereas transaction time refers to the

time when a tuple is recorded in the database. But often one does not and cannot know how long in

the future a fact will hold, so it’s desired to be able to simply say that a fact is valid till now. In this case

we talk about now-relative databases.

As in normal databases the two most important integrity constraints in temporal databases are

primary keys and foreign keys. A primary key (PK) is a constraint that uniquely identifies each record

in a database table and a foreign key (FK) points to such a primary key. These principles can be adapted

to temporal databases, here the constraints must hold at every point in time.

In this report I will have a closer look at how these integrity constraints can be violated in temporal

ground databases and how this principles can be adapted to now-relative databases. When I speak

about now, this now does always refer to the current time. Furthermore, all time intervals that are

used in this report are assumed to be left-closed and right-open. Besides, only the cases where now is

used as upper bound for an interval are considered.

Integrity constraint violation in ground temporal databases

Primary Keys with valid time
First we’ll start having a look at the primary keys. As mentioned above, a primary key must be unique

at every point in time. This in general means that for all the tuples having the same PK, their valid time

must not overlap.

So let’s assume we have a relation with different tuples with a primary key that in the current situation

do not violate the primary key constraint. Here it is possible to violate the PK-constraint by either

inserting a new tuple or updating an already inserted tuple. It is not possible to violate the constraint

by deleting an existing tuple. This is because by deleting tuples it can only happen that there exist new

gaps between the valid times of the tuples, but no intersection can occur.

Figure 1 - Violation of primary key constraint

Inserting

Assume Attribute A is the primary key, in Figure 1 the tuple 4 cannot be inserted in the table because

it intersects with tuple 2 and tuple 4. Figure 2 shows the four different cases in which the primary key

constraint can be violated by inserting a new tuple. So before I can insert a new tuple, it must be

checked that none of these cases occurs, otherwise the insertion must be rejected.

Jasmin Ebner, 13-747-159 03. Dezember 2015

Figure 2 - Different cases of primary key violation

Updating
As mentioned above, deleting tuples will not violate the primary key constraint. So updating an existing

tuple is actually the same as deleting the old tuple, checking if the new tuple does not violate any

primary key constraints and then, if it does not violate any constraint, inserting it. But if the new tuple

does violate a constraint, the insertion must be rejected and the old tuple that we have deleted must

be reinserted.

Foreign Keys with valid time
The more complicated of the two integrity constraints is the referential constraint. If you have a foreign

key, it must be ensured that at every point in time of the validity period of a tuple in a referencing

relation, there is a single corresponding tuple in the referenced relation with the required foreign key

value. But in the overall valid time of the foreign key it can reference to multiple tuples.

There are two ways in which violation can occur, either by changing the referencing or the referenced

relation.

Figure 3 - Foreign Key example

It is assumed, that at the moment we have the two relations that are shown in Figure 3 that do not

violate any constraint. That is, we have a relation Orders with a foreign key ProductId that is referencing

the primary key ID in the Products relation. In the Products relation, the primary key constraint is not

violated. More, for the whole valid time period of the tuples in Orders, there exist one or more tuples

in Products with the right primary key. In the following section I will discuss the cases in which

referential integrity constraints can be violated based on the example of Figure 3.

Changing the referencing relation
First we’ll have a look at how violation can occur by changing the referencing relation Orders. This is

quite similar to how violations to primary keys can occur. So first a violation can occur when a new

tuple is inserted. Because it could be that not for every point in the valid time of the new tuple, there

exists a corresponding primary key ID in the referenced relation Products. Be it because in the

referenced relation the valid time starts too late, finishes too early or contains gaps.

Jasmin Ebner, 13-747-159 03. Dezember 2015

Here, too, violation cannot occur when I delete a tuple in the referencing relation. So the other case

when violation by changing a referencing relation can occur is when a tuple is updated. Once again this

can be handled like above: I delete the old tuple and insert, if no violation occurs, the new tuple with

the wished values into the relation. If a violation does occur the insertion must be rejected and the

deletion must be undone.

Changing the referenced relation
The other situation in which a violation can occur, is when the referenced relation Products is changed.

Here the cases in which a violation to the foreign key constraint can occur are deleting and updating.

Starting with deleting a tuple of Products, we do have to ensure that no tuples in Orders are referencing

to the tuple we want to delete in its valid time period. Because otherwise these tuples in Orders will

point to something that does not exist anymore. Therefore the deletion of such a tuple would have to

be rejected.

Violating the FK constraint by updating can occur when I short the valid time. Because by shortening a

tuple’s valid time in Products, the same problems as for deleting can occur and therefor I virtually need

to check the same as for deleting.

Integrity constraint violation in transaction time
So far, this have been the cases in which violation in valid-time tuples can occur. The next step is to

discuss about how tuples with transaction time can violate the two integrity constraints. As already

mentioned, transaction time refers to the time when a tuple is recorded in the database. The tables of

these databases are called system-versioned tables. This is because the system, and not the user, sets

the start and end times of the tuples and this times cannot be modified by the user.

To illustrate, a tuple with transaction time is handled as follows. When a new tuple is inserted into the

database, its start-time is set to the current time – also called the transaction-timestamp - whereas its

end-time is set to the highest possible date-value available in the database, this could be something

like the year 9999. This is because we are talking about ground temporal databases and the value now

does not exist there.

When that tuple is updated, it’s handled like this: The old tuple is being copied and the copies end-

date is set to the transaction timestamp. In the original tuple, the start-date is set to the new

transaction timestamp.

Now there exist two different kind of tuples in the database: the historical rows (the ones that have

been valid before) and the current system row, that is the row that contains the current time.

A deletion of a tuple does not really delete the tuple, it only sets the end-time of the current tuple to

the transaction-timestamp. This means that the tuple existed until this timestamp but not anymore.

So actually, if the system set’s the right times when inserting, updating and deleting tuples, there is no

further need for integrity checking because this indicates that all historical rows do not violate any

constraint. This does only hold if transaction time databases are considered isolated. When talking

about bitemporal databases, that are databases with transaction time and valid time, also the cases

discussed in the section “Primary Keys with valid time” and “Foreign Keys with valid time” have to be

checked.

Jasmin Ebner, 13-747-159 03. Dezember 2015

Adaption to now-relative databases

Integrity constraints in now-relative databases
As seen before, there a lot of scenarios in which integrity constraints can be violated in temporal

databases, all of them can still occur in now-relative databases. In this section the additional scenarios

I found for now-relative databases will be handled.

Primary Keys with now-relative databases
First, we’ll handle the cases in which the primary key constraints with valid times can be violated, so

whenever I talk about start and end times, valid times are meant.

In the previous chapter we’ve seen that a new inserted tuple with a time period can violate the primary

key constraint if its time period overlaps with another time period of a tuple with the same Primary

Key. Let’s adapt this scenario to now-relative databases.

Figure 4 – Case 1 Primary Key Violation with determinate times

Description of the case 1
Figure 4 shows a tuple T1 whose end time is now. This means it is currently valid. Suppose I insert a

new tuple T2 to the database whose start time is bigger than the current time. Presently when I insert

the tuple into the database, no violation occurs, because no intersection between the time periods

occurs. But when time moves on, the value of the variable now grows and therefore the periods of the

two tuple are going to overlap. This is the time when a violation occurs.

Discussion of case 1
It is not that elementary to figure out how to handle this case. A possibility would be, that as soon as I

insert the new tuple, the variable now in the old tuple’s end time is set to the new tuple’s start time.

In our case, now in T1 would be replaced at insertion time with t3. Like this no intersection occurs and

the new tuple would from the given start time on replace the old tuple. Instead of replacing now at

insertion time with t3, it could only be replaced at the time when the violation would occur.

But this does not have to be the wished behaviour. It could also be that a mistake occurred and

somebody did not notice that there is a tuple with the variable now that might still be valid in the

future. In this case, it would be more appropriate not to be able to insert the tuple at all, that means

that the insertion will be rejected.

Figure 5 - Case 2 Primary Key violation with determinate times

Description of case 2
The reverse scenario might also be possible. Figure 5 shows a tuple T1 with a ground start and a ground

end time that already is in the database. A new tuple T2 is inserted which ground start time and

variable end time are at the moment both smaller than the old tuple’s start time. Once again at this

[t1, now)

[ts, now)

[t3, t4)

[t3, t4)

Jasmin Ebner, 13-747-159 03. Dezember 2015

point in time, no violation occurs. But as time moves on, the new tuple’s end time will catch up with

the old tuple’s start time and a violation occurs.

Possible solution to case 2
Here I show you one way how this case could be handled and what problems are associated with it.

When someone adds a tuple with a valid time that is not ground, it most probably means that the tuple

should still be valid in the future but it is not known how long. This means, that if the new tuple would

only be valid until the old tuple becomes valid, one could have set the new tuple’s end time to the old

tuple’s start time. So more probably the intention of inserting this tuple must have been that this tuple

should be valid from a given time to a time in the future (expressed by now) but not in the period,

where the old tuple is valid.

Figure 6 – Possible solution to case 2: insert two tuples instead of one

This could be solved like in Figure 6. That is, instead of inserting one tuple, two new tuples are inserted,

a ground one that is valid until the old tuple becomes valid, and one that is valid from when the old

tuple is not valid anymore.

With this solution another problem may occur, because it could be that for some circumstances the

new tuple stops being valid before the old one becomes valid. In this case it would be impractical to

have insert a ground and a variable tuple because when the tuple stops being invalid, the ground

tuple must be adapted and the variable tuple must be deleted.

This were the basic scenarios in which primary key violation can occur. In the next part will be discussed

how these violation can occur when the valid time of tuples is indeterminate.

Primary keys with indeterminate times
Indeterminate valid time means, that the start and / or end time lies somewhere between two values,

but it is not exactly sure where. In now-relative databases this values can also be a variable. When we

have tuples with indeterminate valid times, we distinguish between possible and definite time.

Figure 7 – Possible and definite time

Having a look at Figure 7 the possible timespan lies between v1 and v4 and the definite timespan lies

between v2 and v3.

Figure 8 – Primary key violation with indeterminate times

In picture we see two tuples with indeterminate times. Where the line is dashed it means that the valid

time is possible, otherwise it’s definite. Now a primary key violation does not automatically occur when

Jasmin Ebner, 13-747-159 03. Dezember 2015

the times intersect, but I assume that a violation occurs when at least a part of one of the two tuples’

valid times that overlap is definite. I make this assumption because as long as only possible times

overlap, it only might be that there exist multiple tuples having the same primary key at the same time.

But as soon as a part of the intersection is definite, it is clear that no other tuple with the same primary

key can exist at that definite time. In Figure 8, a violation occurs where it is marked as red, no violation

occurs where it is marked as green.

Now let adapt this scenario to now-relative databases. I will consider three different cases.

Figure 9 – Case 1 Primary Key violation with indeterminate times

Discussion of Case 1 (Primary Key violation with indeterminate times)
Case 1 is shown in Figure 9. In this case I have a tuple T1 whose end time lies somewhere between now

and a ground variable. If a new tuple T2 is inserted whose definite time overlaps somewhere with the

valid time (be it possible or definite) a primary key violation occurs, no matter what value there is for

now. This is because the new tuple does only consist of definite time, and therefore at every point in

the valid time period of the tuple T2, no other tuple with the same primary key can exist. So this tuple

T2 cannot be inserted and is rejected.

Figure 10 – Case 2 Primary Key violation with indeterminate times

Discussion of Case 2 (Primary Key violation with indeterminate times)
Case 2 is shown in Figure 10. Here we have the case that the end time of T1 lies somewhere between

now and a ground value. I can insert a new tuple as long as w1 is bigger than now and w2 is bigger than

v2. But when time moves on, now grows and at some point the definite time of the first tuple will

overlap with the possible time of the second tuple and a violation occurs. So a tuple T2 must be

rejected, if the end time of T1 and the start time of T2 overlap in possible valid time and the lower

bound of T1’s end time is now.

Figure 11 – Case Primary Key violation with indeterminate times

Discussion of case 3 (Primary Key violation with indeterminate times)
Case 3 is shown in Figure 11. This case is really interesting, because as time moves on, the violation

disappears. We have a tuple T1 with a determinate start time and an end time that lies between v1

and v2 (v1 and v2 are both ground values and v1 is bigger than now). If someone wants to insert a new

tuple with a start time that lies between now and a ground value, this is not possible at the moment

Jasmin Ebner, 13-747-159 03. Dezember 2015

because there is an intersection with the definite time of the first tuple. But as time moves on now will

grow and this intersection will disappear. But of course it should not be allowed to insert such a tuple

when now is smaller than v1

Foreign Keys with now-relative databases
In this section the scenarios for referential integrity constraints from ground temporal databases will

be adapted to now-relative databases.

Figure 12 – Case 1 Foreign key violation

Discussion of case 1 (foreign key violation)
So assume we have a database with a tuple in the relation being referenced whose start time is a

ground value v1 and its end time is a variable value v2 (like in Figure 12). If someone wants to insert a

tuple in the referencing relation having a value w1 between v1 and v2, and w2 bigger than v2 the

problem occurs, that we do not know if there exists a referenced tuple in the span from v2 until w2.

Because the only thing we know is that the tuple in the referenced relation is valid until now and if

nobody changes this tuple it will also be valid in the future, but we are not allowed to assume that it

will be valid in the future while inserting the referencing tuple. Therefore the referencing tuple must

be rejected in this case.

Figure 13 – Possible workaround for case 1

Possible workaround for case 1
A workaround I see, is that instead of inserting the tuple from above, a similar tuple could be inserted

(like in Figure 13). The difference is, that the new tuple’s end time is not the ground value w2 but a

possible timespan that lies between v2 and w2, where v2 has always the same value as v2 in the

referenced relation. Like this, no violation occurs, because it is only possible but not definite that the

tuple between v2 and w2 is valid. But of course this might not be the right solution for every case,

because the tuple in the referencing relation does not have exactly the same meaning anymore.

Figure 14 – Case 2 Foreign key violation

Description of case 2
The next case we’ll have a look at is shown in Figure 14. We have a tuple in the referenced relation

with the ground values v1 and v2 and a tuple in the referencing relation with w1 being between v1 and

v2 and w2 being a variable value that at the moment also lies between v1 and v2. Of course this tuple

Referenced relation

Referencing relation

[t1, now)

v1 v2 = now

Jasmin Ebner, 13-747-159 03. Dezember 2015

would not occur any violation at the moment, but as time moves on and no additional tuples have

been inserted in the referenced relation in the meantime, w2 grows and when w2 becomes bigger

than v2, the foreign constraint will not hold anymore, because not for every point in time there exists

a referenced tuple anymore. There are two possible solutions I see.

Possible solutions to case 2
One is that as soon as time v2 arrives, it must be checked if still no tuples for the future valid time of

the referencing relation exists. If no, w2 must be set to the current time. If there exist an accurate tuple

(let’s call it T3) that is valid from v2 on in the referenced relation w2 can keep its value now. But as

soon as the valid time of T3 ends, the same inspection must be redone.

Figure 15 – Possible solution to case 2

The other solution is similar to the one in the previous example, that is that the violation is already

checked when the tuple is inserted. So when someone wants to insert a tuple in the referencing

relation, its end time cannot be depending on now. But it could once again be possible to insert an

indeterminate tuple (like in Figure 15), whose end time lies between now and the ground value v2.

Like this, it is still possible to say that the end time depends on now but only until this variable value

has the same or a bigger value than v2. So the foreign constraint is not violated.

Transaction time with now-relative databases
Transaction time tuples in now-relative databased do not a lot differ from transaction time tuples in

ground temporal databases. The difference that exists is, that if a new tuple is inserted to the database,

the transaction end time is not set to the biggest possible value but to now. But the rest stays the

same, when a tuple is updated, the old tuple is being copied, and in one tuple the transaction end time

and in the other tuple the transaction start time is set to the current timestamp. When a tuple is being

deleted, the transaction end time is set to the current time.

Therefore also in now-relative databases there exist historical system rows and current system rows

that are generated automatically from the system. And therefore it must once again only be ensured

that the system sets the right times when inserting, deleting and updating tuples and that there is no

further need for integrity checking because this automatically indicates that all historical rows do not

violate any constraint. Once again this does only hold if transaction time databases are considered

isolated. When talking about bitemporal databases the primary key constraints and foreign key

constraints with valid time have to be checked.

Jasmin Ebner, 13-747-159 03. Dezember 2015

List of figures
FIGURE 1 - VIOLATION OF PRIMARY KEY CONSTRAINT ... 1

SOURCE: EFFICIENT SEQUENCED TEMPORAL INTEGRITY CHECKING - WIE LI, RICHARD T. SNORDGRASS, SHIYAN DENG, VINEEL K.

GATTU, S. 134
FIGURE 2 - DIFFERENT CASES OF PRIMARY KEY VIOLATION ... 2

SOURCE: EFFICIENT SEQUENCED TEMPORAL INTEGRITY CHECKING - WIE LI, RICHARD T. SNORDGRASS, SHIYAN DENG, VINEEL K.

GATTU, S. 134
FIGURE 3 - FOREIGN KEY EXAMPLE .. 2
FIGURE 4 – CASE 1 PRIMARY KEY VIOLATION WITH DETERMINATE TIMES .. 4
FIGURE 5 - CASE 2 PRIMARY KEY VIOLATION WITH DETERMINATE TIMES ... 4
FIGURE 6 – POSSIBLE SOLUTION TO CASE 2: INSERT TWO TUPLES INSTEAD OF ONE .. 5
FIGURE 7 – POSSIBLE AND DEFINITE TIME .. 5
FIGURE 8 – PRIMARY KEY VIOLATION WITH INDETERMINATE TIMES .. 5
FIGURE 9 – CASE 1 PRIMARY KEY VIOLATION WITH INDETERMINATE TIMES .. 6
FIGURE 10 – CASE 2 PRIMARY KEY VIOLATION WITH INDETERMINATE TIMES .. 6
FIGURE 11 – CASE PRIMARY KEY VIOLATION WITH INDETERMINATE TIMES ... 6
FIGURE 12 – CASE 1 FOREIGN KEY VIOLATION ... 7
FIGURE 13 – POSSIBLE WORKAROUND FOR CASE 1 ... 7
FIGURE 14 – CASE 2 FOREIGN KEY VIOLATION ... 7
FIGURE 15 – POSSIBLE SOLUTION TO CASE 2 .. 8

If no source is mentioned, the figure was made by myself.

Bibliography
This report was written with help of these papers:

Wei Li, Richard T. Snodgrass, Shiyan Deng, Vineel K. Gattu, Aravindan Kasthurirangan. Efficient

Sequenced Temporal Integrity Checking

Krishna Kulkarni, Jan-Eike Michels. Temporal Features in SQL:2011

James Clifford, Curtis Dyreson, Tomas Isakowitz, Christian S. Jensen, Richard T. Snodgrass. On the

Semantics of „Now” in Databases

Matthias Nicola, Martin Sommerlandt. Managing time in DB2 with temporal consistency – Enfore

time-based referential integrity

