Clustering of Amino Acids Profiles

Samuele Zoppi

University Of Zurich, Switzerland

samuele.zoppi@uzh.ch

1 Introduction

Classifying feed data can be very challenging. When a feed sample is analyzed,
an amino acids profile, composed of the values of 18 essential amino acids, is
built based on the chemical analyses. This process is time consuming, expensive
and, therefore, results in various mistakes. For example, due to wrong setup
of chemical analyses, the derived containment of some amino acid might be
different from the true value. Another example are misclassified or unclassified
feed types. In this case, based on the amino acids it is possible to correctly
classify the feed type or even to determine a new one. In this project we will
use clustering analyses techniques on amino acids profiles to detect outliers
and correctly classify the feed data. In particular we will use DBSCAN and
OPTICS which are efficient and accurate density based clustering techniques
for high dimensional data. The project is divided into three tasks:

1. Learning of DBSCAN and OPTICS that are described in [3, 4].

2. Implementation of the above mentioned clustering techniques in any pro-
gramming language and graphical visualization of the results.

3. Experimental evaluation and comparison of the above mentioned tech-
niques on amino acids profiles.

2 The Data

An amino acids profile is composed of the values of 18 essential amino acids:
LYS, MET, CYS, THR, TRY, ILE, LEU, PHE, TYR, VAL, ARG, HIS, ALA,
ASP, GLU, GLY, PRO and SER. The amino acids profiles are stored with
a unique identification number and the name of the feed type that they are
supposed to come from. The dataset taken into consideration is composed of
393 amino acids profiles from about 80 different feed types, where each feed
type generates at least one and up to 20 amino acids profiles.



Example:

ID 1 2

Feed type Ackerbohnen | Lupine weiss
LYS 0.057011911 | 0.0446280992
MET 0.009897901 | 0.0068870523
CYS 0.01306523 0.0155647383
THR 0.027714123 | 0.0341597796
TRY 0.007601588 0.0074793388
ILE 0.03404878 0.041322314
LEU 0.062554735 0.0696969697
PHE 0.040383437 | 0.0365013774
TYR 0.029297787 0.0443526171
VAL 0.039591605 | 0.0385674931
ARG 0.076807713 0.1006887052
HIS 0.022963131 | 0.0210743802
ALA 0.039591605 0.0308539945
ASP 0.110856493 | 0.0982093664
GLU 0.114815654 0.1874655647
GLY 0.041967101 | 0.0373278237
PRO 0.034840612 0.0373278237
SER 0.035632444 0.046969697

Table 1: Example of two amino acids profiles

3 Clustering Algorithms

In order to find clusters in the feed data, we will use two different clustering
algorithms. The first one, named DBSCAN, requires the input of two variables:
the minimal number of points to build a cluster MinPts and e (epsilon) as a sort
of density parameter for the searched clusters. The second one, named OPTICS,
is a further development of DBSCAN. In this case there is no parameter epsilon
and thus the clusters can vary in density.

3.1 DBSCAN

In DBSCAN the clusters are defined using the idea of density reachability [4].
Given a minimum number of points MinPts and a distance e (epsilon) the fol-
lowing definitions are given:

e directly density-reachable: a point Q is directly density-reachable from
a point P, if the distance between Q and P is smaller than e and if the
€ — neighborhood of P contains at least MinPts points.

e density-reachable: a point Q is density-reachable from a point P, if



there is a chain of points P1,...,Pn, P1=P, Pn=Q such that Pi+1 is directly
density-reachable from Pi.

e density-connected: a point Q is density-connected to a point P, if there
is a point O such that both P and Q are density-reachable from O.

e noise: a point Q is a noise from the perspective of a point P, if Q is neither
directly density-reachable nor density-reachable from P.

Figure 1: Point D is directly density-reachable from A, points B and C are
density-reachable from A and density-connected among each other, point N is
a noise [1].

A cluster is a set of points which are all at least density-connected among
each others. If a point, which is not yet in the cluster, is at least density-
connected with any point of the cluster, then this point will also be part of the
cluster. The algorithm used to implement DBSCAN is described in Algorithm
1 in the appendix.

The runtime complexity of the algorithm is O(n?). The major disadvantage
of DBSCAN is, that - in order to achieve good results - the distance epsilon
should be chosen appropriately to the density of the clusters. This approach
does not permit to find clusters having very different densities.

3.2 OPTICS

OPTICS, as a further development of DBSCAN, eliminates the problem of
choosing an appropriate distance epsilon as an input variable and thus per-
mits to find clusters having very different densities. OPTICS is based on the
concepts of core-distance and reachability-distance. Given a minimum number
of points MinPts and a distance € (epsilon):



e core-distance: the core-distance for a point P is undefined, if the ¢ —
neighborhood of P contains less than MinPts points or is the distance
between P and his MinPts-th distant point.

e reachability-distance: the reachability-distance of a point P from a
point Q is undefined, if the e—neighborhood of P contains less than MinPts
points, otherwise the reachability-distance is the maximum between the
core-distance of P and the distance between P and Q.

The parameter epsilon is, as mentioned, not strictly necessary. It can be set to
a sufficiently large number so that it is never the case that the core-distance or
the reachability-distance are undefined. In this case the runtime complexity of
the algorithm (Algorithm 3) is O(n?), because every neighborhood is composed
from the whole dataset.

The points are output into an ordered list following a particular order, storing
the smallest reachability-distance for every point. The determination of the
clusters in OPTICS is done visually. The reachability-distance of every point
in the ordered list is visualized as a line in a diagram, like in Figure 2, where
the y-axis reports the reachability-distance and the x-axis is the sequence of the
points in the ordered list.

Figure 2: Visualization of the reachability-distances of the points in the ordered
list [2]

The clusters can be recognized as the points forming a gap between the
longest vertical lines (or longest reachability-distance values). In Figure 2, draw-
ing a horizontal line and taking each gap between each crossed vertical line as a
cluster, three different clusters can be recognized. The two dimensional points in



the top of the figure is the analyzed dataset, the three clusters are marked with
different colors. If we move down the horizontal line, more clusters will appear.
The choice of where to put the horizontal line is crucial for the definition of the
clusters. All the points which have a reachability-distance above the horizontal
line are considered as noises, which do not belong to any cluster. The visual
determination of clusters can result in more work for the user, but this way (in
contrast to DBSCAN) clusters having different densities can be classified.

4 Clusters Visualization Tool

In order to visualize the results of the clustering, we developed a tool which
visualizes the clusters found. The tool only works on DBSCAN, because in
order to find the clusters using OPTICS, manual work is needed.

The initial interface (Figure 3) asks the users to enter the values for the
minimal number of points needed to build a cluster (MinPts) and a distance
epsilon.

MinPoints: |10

SCAN |

Figure 3: Input of the variables

After pressing on the SCAN button, the clusters found are displayed sorted
by their dimension (Figure 4).
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Figure 4: Visualization of the results

The number of points contained in each cluster is displayed as a part of the
name of the cluster, e.g. “A36” contains 36 points. At this stage it is possible
to select one or more clusters and launch one of the following operations:

e PLOT ALL: visualize all the points (i.e. amino acids profiles) contained in
the selected clusters, where each cluster will be represented with a unique
color. Figure 5.
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Figure 5: Visualization of the points of two clusters

For each amino acid type a vertical axis is drawn and the scale for the range
of values is adjusted. The points on the vertical axis are joined with a line for

every amino acids profile.
e PLOT MEAN: visualize the mean value over all points in a cluster for the
selected clusters. Figure 6.
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Figure 6: Visualization of the mean values for two clusters

e POINTS: output the points contained in the selected clusters, each point
contains an amino acids profile, a unique identification number and the

feed type for the amino acids profile. Figure 7.
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Figure 7: Output of the points contained into two clusters

At the first place in the output there is the identification number of the
point, then the name of the feed type - where the amino acids profile should
come from - is stated and after that the list of the values of the amino acids
profile are reported. The values of the amino acids are printed out following the
order of the graphical visualization (PLOT ALL).
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Figure 8: Ranking list of the closest neighbors of two clusters



e NEIGHBORS: output the closest clusters for the selected clusters, i.e. a
ranking list that starts with the closest cluster and ends with the most
faraway. A close cluster means, that it contains amino acids profiles having
values close to the selected clusters. Figure 8.

4.1 Setting MinPts and Epsilon

For an initial test MinPts should be chosen really small (like 2 or 3), epsilon can
be chosen randomly as a positive number. Both parameters will be adjusted
by running some experiments. The goal is to cluster the amino acids profiles
belonging to the same feed type into a single cluster, where each cluster should
be homogeneous. A cluster containing amino acids profiles from the same feed
type is called homogeneous. By contrast, if a cluster contains amino acids
profiles belonging to different feed types it is called heterogeneous. An example
of a good cluster is reported in Figure 9, which contains 16 amino acids profiles
derived from fish flour (Table 2) and is homogeneous.

’ ID ‘ Feed type
105 F.Poisson 999 Danemark
107 F.Poisson 999 Danemark
108 F.Poisson72% Norvege
109 F.Poisson 999 Danemark
110 F.Poisson72% Norvege
111 F.Poisson72% Islande
112 F.Poisson 999 Danemark
114 | F.Poisson 999 Danemark beh A
115 F.Poisson 999 Danemark
106 F.Poisson72% Norvege
113 | F.Poisson 999 Danemark beh A
116 Fischmehl 70/72
118 Fischmehl 70/72
103 Fischmehl islaendisch
117 Fischmehl 70/72
102 Fischmehl 64%

Table 2: Amino acids profiles of a good cluster
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Figure 9: Example of a good cluster

In order to find a good epsilon, we can run a first test - setting MinPts to
2 - and then look at the results of the clustering. At this point the following
statements can be made:

e If we have just one or few clusters with very many points in it and prac-

tically no noises, it means that epsilon is too big and we should choose a
smaller one.

e If we have many noises, epsilon is probably too small.
e If the clusters are heterogeneous, epsilon is probably too big.

The consequences of changing epsilon are described in the experimental eval-
uation section of this document - in this section we just give the users of the
clustering tool a guide how to achieve good clustering, without going into tech-
nical details. By running some experiments, a good value for epsilon should
be found. After this, if we want to cut the clusters that are too small, we can
simply increase MinPts until a value we consider as good.

Example of setting a good value for epsilon:

In Table 3 the results for four different experiments with MinPts set to
2 are reported. If we choose epsilon>=0.1, we would end up with a single
cluster containing all the points, so epsilon should be smaller. If epsilon=0.04,
we would have more clusters and few noises, but the clusters would still be too
heterogeneous, so epsilon should be decreased. Choosing epsilon=0.01, we would
have homogeneous clusters but this time with too many noises, so epsilon should
be bigger. With epsilon=0.02 we have homogeneous clusters, a good number of



them and not too many noises, so epsilon=0.02 should be a good value for this
dataset.

epsilon | MinPts ‘ #clusters ‘ #noises ‘ homogeneous ‘

0.01 2 49 220 YES
0.02 2 53 77 YES
0.04 2 18 14 NO
0.1 2 1 0 NO

Table 3: Four experiments using different pairs of epsilon and MinPts

4.2 Finding Outliers and Missclassified Points

In order to find the outliers, we have to analyze the noises found by the clustering
algorithm. Looking at the noises we can distinguish and analyze these three
cases:

e If a noise-point is the only point in the dataset belonging to its feed type,
then it is clear that it cannot belong to any cluster, because to build a
cluster we need at least two points deriving from the same feed type. Such
points cannot be considered as outliers.

e If a noise-point has been classified as a noise while a cluster containing
points from the same feed type exists, then this is a good indication that
the noise-point could be an outlier.

e If a group of noise-points having the same feed type is found and no cluster
of such feed type exists, then it is probable that these points have not
built a cluster because they have a too small density. If a bigger epsilon
is chosen, the points would be clustered together, so they should not be
considered as outliers.

Example:

There are feed types like gastro soup, oat glume or goat whey, that have
amino acids profiles, which vary quite a lot from measurement to measurement.
Thus, the amino acids profiles of these feeds are often classified as noises. Indeed,
if we increase epsilon, at a certain point a cluster for each of this feed type will
be created and they will be clustered together.

In order to find misclassified points, we have to look at the clusters. If a
cluster contains one or few points, that are not coming from the same or a close
feed type like the majority of the points in the cluster, then this can be the
case that these points have been misclassified, i.e. their feed type is wrongly
classified and their real feed type is probably the one of the majority of the
points in the cluster. If we do not know, whether two feed types are close or
not, we can try to decrease epsilon and see if the points (belonging to different
feed types) remain in the same cluster or not. If they remain in the same cluster,
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then the feed types are either really close or there is some misclassified point in
the cluster. A special case would be, if a point is at the same time misclassified
and an outlier or the only one belonging to its feed type. In this case, it is not
possible to recognize it as misclassified, because it would be in the noises group.

Example:

If we find a cluster, where flay seeds and sunflower seeds are together, it
is because they have a very similar amino acids profile and not because some
of them have been misclassified. But if we find for instance some soya beans
clustered with many maize gluten, then we can be pretty sure that the amino
acids profile from soya beans has been misclassified.

5 Experimental Evaluation

In this section we want to test the efficacy of the two algorithms deriving clusters
and classifying noises. The analyzed dataset is composed of 393 18-dimensional
points. The dataset contains amino acids profiles from about 80 different feed
types, which each generates one up to 20 amino acids profiles.

5.1 DBSCAN

The efficacy of DBSCAN depends on how good the two input variables MinPts
and epsilon are set. In order to do this, we ran 15 different experiments with 15
different pairs of MinPts and epsilon. The results are reported in Table 4:

’ epsilon ‘ MinPts H #clusters ‘ #points/ cluster ‘ #noises ‘

0.01 2 49 3.5 220
0.01 5 9 8.4 317
0.01 10 1 17 376
0.02 2 53 5.9 77
0.02 5 14 14.5 190
0.02 10 7 19.1 259
0.03 2 34 10.6 32
0.03 5 11 26.4 103
0.03 10 5 46.4 161
0.04 2 18 21 14
0.04 5 7 48.8 51
0.04 10 3 102.3 86
0.1 2 1 393 0

0.1 5 1 392

0.1 10 1 391 2

Table 4: DBSCAN experiments with different pairs of MinPts and epsilon
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For each pair of epsilon and MinPts we kept track of the number of clusters
found, the average number of points per cluster and the number of noises found.
The results can be generalized into the following rules:

MinPts /| MinPts \, | epsilon 7 | epsilon
#clusters Ny N Ny N
#points/cluster Va ¢ Va AV
#noises Va Ny Ny Va

Table 5: Effects of changing MinPts and epsilon

If the minimal number of points to build a cluster (MinPts) increases, the
number of clusters will decrease, because some small clusters will not be in the
results anymore, while the average number of points per cluster will increase, due
to the absence of the small clusters. All this will increase the number of noises
found. The inverse logic can be applied, if the minimal number of points to build
a cluster decreases. If epsilon increases, the number of clusters will decrease,
because some clusters will be condensed in only one, since the maximum allowed
distance for a point to belong to a cluster (epsilon) increases. This way we have
less clusters which contain more points. The same argumentation also applies
to the number of noises, which decreases, since some of them will now be part
of a cluster due to the increased distance epsilon. When epsilon decreases, the
opposite happens.

In our case we cannot say anything about the number of noises expected,
but we know that we have about 80 feed types, which can have only a couple
(in some cases also just one) of amino acids profiles. This means that it is
reasonable to set MinPts to 2. For epsilon we chose epsilon = 0.02, because
this is the value that returns the biggest number of clusters, namely 53 from
the approximately 80 different feed types that we have. In addition choosing
epsilon = 0.02 results in homogeneous clusters. Choosing a bigger epsilon would
lead us to have less but bigger and more heterogeneous clusters, which is not
good since clusters should be of the same feed type. If instead we had chosen
a smaller epsilon, we would have less clusters with less points per cluster and
much more noises. In this case a big part of the noises can be rightly classified
when epsilon is bigger. In case we had chosen a bigger MinPts, the number of
clusters would be smaller, because the small - but rightly classified - clusters
would have been put into the noises group.

The biggest cluster for MinPts = 2 and epsilon = 0.02 contains 35 points,
the second and the third ones contain 23 points and so on until the last 21
clusters that contain only 2 points each (see Table 6).
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’ #points/cluster \ #clusters

35 1
23 2
22 1
17 1
16 1
13 1
12 1
11 1
8 3
7 1
6 1
5 1
4 9
3 8
2 21

Table 6: Clusters found for MinPts=2, epsilon = 0.02

If we look at the amino acids profiles, that are clustered together, we can
notice that practically all the clusters are homogeneous, i.e. they contain exactly
the same type of feed or very close ones. For instance, the biggest cluster
contains only feed types having an elevated content of proteins, like soya beans,
soya cake, field beans or peas, which are not of the same feed type but from
very close ones. This kind of clusters - with different but close feed types - can
be found in the five biggest clusters. Starting from the sixth cluster (having 16
points), all the clusters are composed of a single or maximal two different but
close feed types.

Looking more carefully at all the clusters found, brings us to the conclusion
that no feed type of any amino acids profile seams to be misclassified. The 77
noises found with this setup are to be attributed to one of the following cases:

1. The point is an outlier or is affected by mistakes in the measurements.

Example: in the noises, there is an amino acid profile from sun flower seeds,
which has not been clustered with a big group of other sun flower seeds profiles.
In this case there were either mistakes in the measurement of the amino acids
values or the point is an outlier.

2. Values for certain amino acids are missing.
Example: in some amino acids profiles, there are missing values for some
amino acids, which precludes their clustering.

3. The point is the only one of its feed type, so is it impossible to build a cluster.

Example: there is an amino acids profile derived from tapioca root that is
the only one deriving from this kind of feed type, in this case it is impossible to
build a cluster.
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4. There are feed types, which are very heterogeneous, i.e. they have very
varying amino acids profiles. In this cases the algorithm does not manage to
cluster the points of such types of feed because the density of the points is smaller
than the one allowed by the parameter epsilon. This drawback of DBSCAN is
managed by OPTICS automatically.

Example: in the noises we found four amino acids profiles deriving from
goat whey. But if we increase epsilon to 0.04, we will find a cluster containing
the goat whey’s profiles.

After analyzing all the noises we identified the following number of points
for each case described above, Table T7:

| Case # | # of such points |

1 11
2 13
3 13
4 40

Table 7: Number of points per case

The number of outliers seams to be quite small, maybe because the dataset
we received from the researcher was previously cleaned up from outliers. In
conclusion we can say, that with DBSCAN it is possible to achieve good results
by running various experiments. A problem remains in the cases where the
dataset has large differences in densities, because in this case it is not possible
to choose a pair of epsilon and MinPts that is appropriate for all the clusters.
However this seams not to be a major issue using our dataset: from the 393
amino acids profiles, only about 40 could not be clustered because of this.

5.2 OPTICS

With OPTICS we have only one variable to set: the minimum number of points
to build a cluster (MinPts). Figure 10 reports the reachability-distance diagram
using three different MinPts.
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(a) MinPts = 2 (b) MinPts = 5

(c) MinPts = 10

Figure 10: Reachability-distance diagrams for three different MinPts values



Figure 11: The nine clusters found with MinPts = 10

Position in the list [ ID | Feed type
6 5 Ackerbohnen
7 653 Weizenkeime
8 102 Fischmehl 64%
9 105 F.poisson 999 Danemark
10 117 Fischmehl 70/72
11 118 Fischmehl 70/72
12 103 Fischmehl islaendisch
13 106 F.poisson 72% Norvege
14 108 F.poisson 72% Norvege
15 109 F.poisson 999 Danemark
16 110 F.poisson 72% Norvege
17 111 F.poisson 72% Islande
18 112 F.poisson 999 Danemark
19 113 | F.poisson 999 Danemark beh B
20 114 | F.poisson 999 Danemark beh A
21 116 Fischmehl 70/72
22 107 F.poisson 999 Danemark
23 115 F.poisson 999 Danemark
24 35 Levure de biére

Table 8: First part of the ordered list for MinPts = 10
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If we take MinPts=10, we can recognize nine gaps in the figure that represent
nine clusters, as shown in Figure 11. Looking at the ordered list of points created
by the OPTICS algorithm, we can find out that the first cluster found contains
fish flour, as shown in Table 8, starting from position 8 to position 23 in the
ordered list. After having recognized all the clusters, all the unclustered points
are classified as noises, which can be analyzed exactly like we did at the end of
Section 5.1.

Taking a smaller MinPts, like in Figure 10 a) or b), it becomes much more
difficult to recognize the gaps and classify them correctly as clusters. For in-
stance taking MinPts = 2, which is the value that we chose for DBSCAN, it
is almost impossible to visually recognize and classify each cluster. But since
we also have the ordered list with the names of the feed type for every amino
acids profile, we could also sequentially look at the list and cut out the different
clusters every time a new feed type appears. In any case, both solutions are
not practicable for big datasets where a small MinPts is required, because this
would take far too much time and we would not be sure to end up with a good
result. A good use of OPTICS with a small MinPts is to use it as a complement
to DBSCAN, i.e. to cluster points that have a different density and for this
reason have not been clustered by DBSCAN.

Example:

After running DBSCAN we could run OPTICS using the noises of DBSCAN
as the dataset, so that the clusters having different densities - which were not
found by DBSCAN - can be found by OPTICS.

5.3 Comparison

The main advantage of DBSCAN over OPTICS is that DBSCAN automatically
recognizes the clusters, while OPTICS needs manual work to build them, which
can be more or less sustainable depending on the value of MinPts that has been
chosen. When using OPTICS, the user does not need to find a good value
for epsilon and the algorithm can also identify clusters very different in density.
However, the experiments run with our dataset showed, that also with DBSCAN
it is not so difficult to set a good value for epsilon and that the cases of clusters
with very different densities is not big.

In conclusion, the use of DBSCAN is more comfortable when having very
small clusters in the dataset, while OPTICS is good for finding bigger clusters.

6 Conclusions

Clustering amino acids profiles with DBSCAN and OPTICS can be very helpful
to classify them according to their feed type. However, certain manual work and
an accurate analysis of the outcome of the algorithms is always needed to achieve
good results. Using DBSCAN; the most effort is put into finding a good value
for epsilon, while using OPTICS, the most effort is put into visually deriving the
clusters from the reachability-distances diagram. After testing both algorithms,
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we noticed that the approach of DBSCAN makes the clustering of small clusters
more comfortable and thus is a better solution for our case. In any case, the
use of OPTICS remains helpful for further analyses of the results of DBSCAN.
The tool we developed to visualize and analyze the results of the clustering
algorithms, is still a prototype and probably needs some improvements, like an
easy way to input new datasets.

This work also gave us the possibility to learn more about the characteristics
of the data. As a first important result we can now say, that it is very rare to find
misclassified or unclassified feed types (we did not find any). As a second result,
we noticed, that most of the clusters are very small - about 80% of them contain
less than ten points. Feed types generating only one amino acids profile are also
contained in the dataset (about 13 on 393 profiles). The number of outliers
is to consider as small (only 11), probably because the dataset was previously
cleaned up from them. These are the results of the analysis of a single dataset
containing 393 profiles. It would be interesting to run more experiments on
other datasets and see if these results can be validated.
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Appendix

Algorithm 1 DBSCAN(D, eps, MinPts)

input: a set of points D, a distance eps, the minimal number of points to build
a cluster MinPts

1. Noises; //the list of noises
2. Clusters; //the list of clusters

3. for each not clustered point P in dataset D

4. N = neighborhood(P,eps);

5. if (N.size()<MinPts) then

6. Noises.add(P);

7. else

8. C = newCluster();

9. expandCluster(D, P, N, eps, MinPts, C, Clusters);
10. end for
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Algorithm 2 expandCluster(D, P, N, eps,MinPts, C, Clusters)

input: a set of points D, a point P, the neighborhood N of P, a distance eps,
the minimal number of points to build a cluster MinPts, a cluster C, a list of
clusters Clusters

1. C.add(P)
2. for each point P2 in N
N2 = neighborhood(P2,eps);
if (N2.size()>=minPts) then
N = mergeGroups(N,N2);

C.add(P2);

3

4

5

6. if (P2 is not clustered) then
7

8 Noises.remove(P2); //in the case P2 was put in the noises list
9

. end for

10. Clusters.add(C);
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Algorithm 3 OPTICS(D, MinPts)
input: a set of points D, the minimal number of points to build a cluster MinPts

1. OrderedList; the ordered list of clusters//
2. eps = MAXINT; //a distance eps

3. for each unvisited point P in dataset D

4. set P as visited;

5. N = neighborhood(P,eps);

6. OrderedList.add(P);

7. Seeds = empty priority queue;

8. if (coreDistance(N,P,eps,MinPts) != UNDEFINED) then

9. update(N,P,Seeds,eps,MinPts);
10. while (Seeds.size()>0)
11. P2 = Seeds.remove(); //Remove the head of the queue
12. set P2 as visited;
13. N2 = neighborhood(P2,eps);
14. OrderedList.add(P2);
15. if (coreDistance(N,P,eps,MinPts) != UNDEFINED) then
16. update(N2,P2,Seeds,eps,MinPts);
17. end for
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Algorithm 4 update(N,P,Seeds,eps,MinPts)
input: the neighborhood N of P, a point P, a priority queue Seeds, a distance
eps, the minimal number of points to build a cluster MinPts

1. CoreDist = coreDistance(N, P, eps, MinPts);

2. for each unvisited point O in N

3. NewReachabilityDist = max(CoreDist, distance(O,P));

4. if (O.reachabilityDist == UNDEFINED) then

5. O.reachabilityDist = NewReachabilityDist;

6. Seeds.add(O);

7. else if (NewReachabilityDist < O.reachabilityDist) then
8. O.reachabilityDist = NewReachabilityDist;

9. Seeds.remove(O);

10. Seeds.add(O);

11. end for
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