
Department of Informatics, University of Zurich

Implementing Grouping Factors in Nutrient

Statistics

Self-study project

June 30, 2015

Simon Rüegg, 08-609-844

simon.rueegg@uzh.ch

Supervisor: Francesco Cafagna

1 Introduction

The Swiss Feed Database1 contains

access the database and find out which nutrients are contained in which feed types. If there

exist measurements of a certain nutrient in a certain feed type, it is also possible to see

many measurements there are

measured in g/kg) of the nutrient are

Figure 1 is a screenshot of the website and on the

are shown in a table. These statistic

the dropdown menu (red box Nr. 1 in figure 1

many regions comparison”, and

says that there exist 139 measurements of the

matter basis), the minimum value i

900.218 and the standard deviation is

types, nutrients, years, seasons, cant

the statistics. In the example on figure 1, 28

2014) were chosen. There are no fur

example will be used throughout this report.

Figure 1: Website of Feed

1 http://www.feed-alp.admin.ch/index.php (accessed on 2015

contains measurements of nutrients in animal feeds. Users can

find out which nutrients are contained in which feed types. If there

exist measurements of a certain nutrient in a certain feed type, it is also possible to see

there are, what the minimum, maximum, and average amount

nutrient are and what the standard deviation of the measurements is.

a screenshot of the website and on the right hand side, the statistics of the nutrients

statistics can be accessed by clicking on “Statistics of nutrients

red box Nr. 1 in figure 1). Other options are “scatter chart

, and “correlated nutrients”. The third row in the table

measurements of the nutrient OM (measured in g/kg on a dried

), the minimum value is 783, the maximum value is 976.474

and the standard deviation is 26.988. In the red box Nr. 2, the users can

sons, cantons or altitude of the measurements on which to compute

In the example on figure 1, 28 feed types, 237 nutrients, and

were chosen. There are no further limitations based on season, canton, or altitude.

example will be used throughout this report.

1: Website of Feed Base with an example Statistics of nutrients

ndex.php (accessed on 2015-06-24)
1

measurements of nutrients in animal feeds. Users can

find out which nutrients are contained in which feed types. If there

exist measurements of a certain nutrient in a certain feed type, it is also possible to see how

, what the minimum, maximum, and average amount (typically

and what the standard deviation of the measurements is.

the statistics of the nutrients

Statistics of nutrients” in

scatter chart”, “one-to-

in the table basically

(measured in g/kg on a dried

976.474 the average is

e users can select feed

on which to compute

d 2 years (2013 and

season, canton, or altitude. This

s of nutrients

Figure 2: Query to retrieve the measurements for the selected feed types, nutrients, and years

The underlying data is stored in a PostgreSQL database

pg_connect and pg_query2. Th

the chosen nutrients (13,77,82,84,18

seasons, cantons, and altitudes is shown in figure 2

be seen in red box Nr. 1) are used to join all the tables

the sampling process which limits the number of final results

limitation is 150 and is set in place in order t

warning is placed under the table (can be seen on figure 1) to inform the user that not all the

available data is shown. The user has the possibility to change the number of samples, but has

to be aware that a change could make the completion time of the query longer.

150 samples, the rest of the WHERE clause

In this example, that part has the selections of

(3,12,2,1,1325,…) and years

and feeds are written due to lack of space.

The result of the query is stored in a php variable

a JSON string which then can be used as parameter to create a

google.visualization.DataTable

2 http://php.net/manual/en/ref.pgsql.php

retrieve the measurements for the selected feed types, nutrients, and years

data is stored in a PostgreSQL database and accessed via

The query used for extracting all the relevant measurements for

13,77,82,84,18,…), feed types (3,12,2,1,1325,…), years

tons, and altitudes is shown in figure 2. The FROM and the WHERE clauses (can

be seen in red box Nr. 1) are used to join all the tables that are used. Red box Nr. 2 represents

the sampling process which limits the number of final results. The standard value for that

limitation is 150 and is set in place in order to avoid queries that take too long.

warning is placed under the table (can be seen on figure 1) to inform the user that not all the

available data is shown. The user has the possibility to change the number of samples, but has

hat a change could make the completion time of the query longer.

the rest of the WHERE clause is used to retrieve the data that the user requested.

In this example, that part has the selections of nutrients (13,77,82,84,18

(‘2013’,’2014’). In figure 2, not all ids of the chosen nutrients

due to lack of space.

is stored in a php variable called query_result and then converted into

ng which then can be used as parameter to create a

google.visualization.DataTable, which can be presented in HTML.

http://php.net/manual/en/ref.pgsql.php (accessed on 2015-06-20)

2

retrieve the measurements for the selected feed types, nutrients, and years

and accessed via the php-functions

relevant measurements for

, years (‘2013’,’2014’),

WHERE clauses (can

ed box Nr. 2 represents

. The standard value for that

void queries that take too long. In that case, a

warning is placed under the table (can be seen on figure 1) to inform the user that not all the

available data is shown. The user has the possibility to change the number of samples, but has

hat a change could make the completion time of the query longer. Following the

is used to retrieve the data that the user requested.

13,77,82,84,18,…), feed types

(‘2013’,’2014’). In figure 2, not all ids of the chosen nutrients

and then converted into

ng which then can be used as parameter to create a

3

The goal of this self-study project is the addition of grouping factors in nutrient statistics. It

should become possible to display nutrient statistics grouped by year, season, canton, feed

type, or altitude. This should enable users to learn more from the displayed data. For example,

after grouping by year, it becomes possible to observe the development of the measurements

over time. Additionally, the choosing of multiple grouping factors together should be

implemented, which further expands the possibilities of the users. The algorithm provided

should be scalable and fast without any size-constraint.

The second chapter of this report contains descriptions of three solutions that were

implemented. It is followed by chapter 3 which contains the detailed changes that were made

on the source code and a conclusion in chapter 4.

4

2 Solutions

In the process of solving the above mentioned problem, three different solutions were

implemented: Nested Loop, Sort and Aggregate, and Materialized Pre-Aggregates. These

solutions will be described in this chapter. While the first two solutions are applied on the

results of the already existing query from figure 2, the third solution uses a newly constructed

SQL-query which is directly applied to the database and has no size restriction.

Table 1 shows an excerpt of the above mentioned example (28 feed types, 237 nutrients, and

2 years chosen) after grouping it by year and feed type. Two new columns are introduced, one

for year, and the other for feed type. Count, minimum, maximum, average, and standard

deviation are newly calculated for every distinct combination of Nutrients, Year, and Feed

Type. The white columns represent the groups and the grey columns represent the aggregation

functions.

Nutrients Year Feed Type Count Min Max Avg σ

ADF

g/kg,DM

indi... 2013 Hay 1. cut 4 272 300.86 287.965 11.027

ADL

g/kg,DM

indi... 2013 Hay 1. cut 3 20 29 25.667 4.028

Ash

g/kg,DM

Ther... 2013 Hay 1. cut 1 66.59 66.59 66.59 0

Ash

g/kg,DM

indi... 2013 Hay 1. cut 12 66.59 136 95.216 20.256

CF g/kg,DM

indi... 2013 Hay 1. cut 12 245 312 278.802 20.797

Table 1: Part of statistics table after applying grouping on year and feed type

5

2.1 Nested Loop

The first solution starts with collecting all the existing values of every grouping factor that has

been chosen by the users from the variable query_result (the result of the query from figure

2). If the users wish to group the result on year and feed type, all the years and all the feed

types that appear in query_result are collected and stored in arrays: years[] and feeds[].

After that first step, the grouping starts by building all possible combinations of the collected

instances and the nutrients. For example, if the user chose grouping by nutrient, year and feed

type, all possible combinations of (nutrient, year, feed type) are constructed. This is

accomplished by running through all the nutrients, years[] and feeds[] with a nested loop. For

every possible combination, query_result is then scanned and if an entry matches the current

combination, it is added to the calculation process that leads to Count, Min, Max, Avg, and σ.

With the implementation of this solution, it becomes possible to display the results after

applying one or more of the grouping factors (year, season, canton, feed, and altitude) in the

style of table 1. However, this solution turned out to be very inefficient. If there are several

feed types and nutrients selected and the grouping by all five grouping factors requested, the

time to complete the calculations and displaying the results of the grouping procedure was far

too long and unlikely to be accepted by the users. That has to do with the fact that the whole

query_result has to be processed entirely for every possible combination of nutrients and the

chosen grouping factors. If any of these increases, the resulting completion time increases

quadratically. This solution has been the first to be implemented, but has been replaced by the

second solution, called Sort and Aggregate.

2.2 Sort and Aggregate

To enable the calculation to be more efficient, a new algorithm had to be implemented. This

solution is the one used when the users click on “Statistics of nutrients”. The result-table is

sorted by all the chosen grouping factors, e.g. by (nutrient, year, feed type). That way,

scanning the table several times becomes obsolete. It is just necessary to start the scanning

and collect values for the calculation of Count, Min, Max, Avg, and σ and to proceed until a

new combination of nutrient and chosen grouping factors appears. When a new combination

is reached, a new row can be added to the resulting table. For the calculation of the standard

deviation (σ), all the values of the current group have to be collected, stored in an array, and

formula 1 has to be applied.

6

� = �∑ (�� − ͞
)�
��� �

Formula 1: Standard Deviation

This process is repeated until all rows of the table are processed. Query_result just has to be

scanned once and the completion time for large selections of nutrients and feed types can be

decreased (n log n for sorting).

Figure 3 shows a comparison of the two solutions Nested Loop and Sort and Aggregate. The

chosen nutrients, feeds, and years are the same as before (nutrients (13,77,82,84,18,…), feed

types (3,12,2,1,1325,…), years (‘2013’,’2014’)). In addition, the sample size, that has a

standard value of 150, was increased to get all the 4347 results. After selecting year and feed

type as grouping factors, the completion of Nested Loop took 80 seconds, and the completion

of Sort and Aggregate took 5 seconds. Since both solutions create the same result and Sort

and Aggregate is much faster, Nested Loop was removed from the website and replaced by

Sort and Aggregate.

Figure 3: Comparison of Nested Loop and Sort and Aggregate in terms of completion time

Figure 4 represents a screenshot of the website after grouping on year and feed type (the

applied solution is Sort and Aggregate). Red box Nr. 1 shows a dropdown menu, which was

introduced for the selection of the grouping factors. Selections of any combination of the

grouping factors are possible. On figure 4, the options year and feed type are enabled, which

means that grouping is done on year and feed type.

0

10

20

30

40

50

60

70

80

90

Nested Loop Sort and Aggregate

co
m

p
le

ti
o

n
 t

im
e

 [
se

co
n

d
s]

7

Figure 4: Screenshot of the website after grouping on year and feed type

Sort and Aggregate calculates Count, Min, Max, Avg, and σ based on the result of the query

from figure 2. The limitation of the sample size, that has a standard value of 150, is restricting

the significance of the result. That means that if the user does not increase the sample size to

the number of available measurements, the results at the end are just based on 150 random

samples and not on the whole data that is available.

2.3 Materialized Pre-Aggregates

In the third solution, Materialized Pre-Aggregates, it was a goal to come up with a new

algorithm that is not dependent on the query from before (figure 2) and therefore does not

have the problem of just having sampled entries.

The idea is to pre-compute partial aggregates. Considering the finest possible grouping factor

set (nutrient, year, season, canton, feed type, altitude), the aggregates (Count, Min, Max, Avg,

and σ) are calculated and placed in a new table called partial_aggregates. In other words, the

aggregates of the finest possible grouping procedure are materialized in a table and ready to

be fetched without having to be calculated. The query to create that table is shown in figure 5

and a little excerpt of the table can be seen on table 2.

Figure 5

Calculations are made in the

max(), avg(), and stddev_pop()

box Nr. 2) as the query from figure 2

GROUP BY clause that is used to form the groups.

nutrient t_year season canton
ADF, g/kg
DM 2003 Genève
ADF, g/kg
DM 2004 Genève
ADF, g/kg
DM 2008 Autumn Genève
ADF, g/kg
DM 2003 Vaud
ADF, g/kg
DM 2008 Autumn Vaud

Table 2

The new table is called partial_aggregates

the website when all the possible grouping factors are chosen.

for the groups, the grey columns stand for the aggregation functions.

as: “There are 2 measurements for nutrient “ADF” in year “2003”,

from canton “Genève”, from feed type “Horse bean” and collected at an altitude that is lower

than “600 meters”. The minimum value of those two measurements is 111.79493, the

maximum value is 141.84, the average is 126.817465 and the st

15.022535”.

To generate other groupings (instead of the grouping by

altitude) that is shown in table 2)

GROUP BY clause are applied to the table

Figure 5: Query to create table partial_aggregates

alculations are made in the SELECT clause with the aggregate functions

stddev_pop() (red box Nr. 1). The query has the same join functions

as the query from figure 2, but not the sampling procedure. It further contains a

clause that is used to form the groups.

canton feed altitude count min Max

Genève Horse bean < 600 2 111.79493 141.84

Genève Horse bean < 600 2 107.72701 142.30052

Genève Horse bean < 600 4 107.72701 142.30052

Horse bean < 600 1 153.77757 153.77757

Horse bean < 600 1 153.77757 153.77757
Table 2: Excerpt of the new table partial_aggregates

partial_aggregates and represents the statistics table showing up o

the website when all the possible grouping factors are chosen. While the white columns stand

for the groups, the grey columns stand for the aggregation functions. The first row can be read

as: “There are 2 measurements for nutrient “ADF” in year “2003”, with unknown season,

from canton “Genève”, from feed type “Horse bean” and collected at an altitude that is lower

than “600 meters”. The minimum value of those two measurements is 111.79493, the

maximum value is 141.84, the average is 126.817465 and the standard deviation is

To generate other groupings (instead of the grouping by (nutrient, year, season, canton, feed,

that is shown in table 2), queries consisting of the chosen grouping factors in the

are applied to the table partial_aggregates. An example query that does a

8

clause with the aggregate functions count(), min(),

the same join functions (red

. It further contains a

 avg stddev

141.84 126.817465 15.022535

142.30052 125.013765 17.286755

142.30052 125.915615 16.21935762

153.77757 153.77757 0

153.77757 153.77757 0

he statistics table showing up on

While the white columns stand

The first row can be read

with unknown season,

from canton “Genève”, from feed type “Horse bean” and collected at an altitude that is lower

than “600 meters”. The minimum value of those two measurements is 111.79493, the

andard deviation is

(nutrient, year, season, canton, feed,

consisting of the chosen grouping factors in the

example query that does a

9

grouping by year and feed type is shown on figure 6. The conditional expressions (CASE) had

to be included to prevent the results from being null. In the WHERE clause are the selections

of the users in terms of the nutrients, feed types, years, seasons, cantons, and altitudes they are

interested in. The selection of the nutrients, feed types, and years are the same as in the other

examples throughout this report. The chosen grouping factors are (nutrient, year, feed type),

that is why these factors appear in the GROUP BY clause. Method is a field that is used for

building the name of the nutrients. It is added to nutrient by string-concatenation in the

SELECT clause.

Figure 6: Query on partial_aggregates to group it by year and feed

Count, Min, Max, and Avg are calculated precisely, but σ is computed from averages instead

of the real values. Therefore, the solution Materialized Pre-Aggregates creates an

approximated value for the standard deviation, while it provides an exact result for all other

aggregate-functions.

The completion time of Materialized Pre-Aggregates in comparison to Sort and Aggregate

was analyzed for two examples. The first example is the same that has been used in the whole

report, and the second example has the same selection of nutrients and feed types, but

considers in addition also the years 2010, 2011, and 2012. The first example has 4743

measurements, and the second example has 10161 measurements. Materialized Pre-

Aggregates takes 2 seconds to complete in example 1 and 7 seconds in example 2. Sort and

Aggregate takes 5 seconds in example 1 and 17 seconds in example 2. The comparison is

visualized on figure 7.

10

Figure 7: Comparison of S.a.A and M.P.-A. in terms of completion time

Materialized Pre-Aggregates is faster than Sort and Aggregate and is, in addition, also not

dependent on the query from figure 2. That means that the results are never just calculated

from 150 samples. In addition to that, any way of avoiding the query from figure 2 can be

seen as an advantage if it is possible to get the same amount of useful pieces of information

by fetching a much smaller dataset (the pre-aggregates) from the database.

Figure 8 shows a screenshot of the website when Materialized Pre-Aggregates is active and

the same example of nutrient, feed type, and year selection, as well as grouping by (nutrient,

year, feed type) is chosen. It is accessible by choosing “Complete nutrient statistics” in the

dropdown menu (red box Nr. 1).

0

2

4

6

8

10

12

14

16

18

Example with 4347

measurements

Example with 10161

measurements

co
m

p
le

ti
o

n
 t

im
e

 [
se

co
n

d
s]

Sort and Aggregate

Materialized Pre-

Aggregates

11

Figure 8: Screenshot of the website after grouping on year and feed type with M.P.-A.

12

3 Changes to the Source Code

In the process of implementing the grouping factors, some files of the source code were

edited. This chapter represents a short description of all the changes made.

index.php

Description: Contains the HTML content of the website.

Change 1: Introduction of a new <option> in the div “dd_stat_type”. That is the dropdown

menu that allows the users to choose the type of functionality (“scatter chart”, “Statistics of

nutrients”, “one-to-many regions comparison”, “Correlated nutrients”) they want to be

displayed. The new option has the name “Complete statistics of nutrients” in the English

version of the website and shows the statistic table that is generated by Materialized Pre-

Aggregates. It is called “complete” because the statistics are always generated on all the

available data, and not on a sample, which is the case on “Statistics of nutrients”.

Change 2: A new div with the name “dd_grouping_factor_select” was added. It is the

dropdown menu that enables the user to choose which grouping factors they want to be

applied on the statistics.

Change 3: The height of the div with the name “dd_stats_nutrients” had to be decreased that

there is enough space for the newly created dropdown menu (“dd_grouping_factor_select”) to

be placed above it.

Change 4: The variables “message_year”, “message_season”, “message_canton”,

“message_feed”, and “message_altitude” were added to enable the new column names of the

statistics table to be displayed in English, German, or French according to the language

currently selected.

output_results_12.js

Description: All the processing steps for the different functionalities are completed here.

13

Change 1: For all the possible selections of the div “dd_stat_type” from index.php, it had to

be determined whether the newly created div, “dd_grouping_factor_select” is displayed or

not.

Change 2: Sort and Aggregate was implemented and it had to be defined that it is called

whenever “Statistics of nutrients” was chosen on the dropdown menu “dd_stat_type”.

Change 3: Materialized Pre-Aggregates was implemented and it had to be defined that it is

called whenever “Complete statistics of nutrients” was chosen on “dd_stat_type”.

Change 4: The function clearSelected() was implemented to reset the current selection of

grouping factors if the users select a new option on “dd_stat_type”.

ajax_samples.php

Description: In this file, the query from figure 2 is created according to the selections from the

users. Then, a connection to the database is created and the query is sent via the php function

pg_query(). The returned data of that query is converted into a JSON string and sent to the

caller (inside of output_results-12.js). It can then be used to create a

google.visualization.DataTable, which can be shown on the website.

Change: Season and altitude of the measurements was added to the SELECT clause, because

they are later needed by Sort and Aggregate.

partial_aggregates.php

Description: This file was newly created and is used to create a query, connect to the

database, apply the query to the database, and convert its result into a JSON string and send it

back. The query concerned here is the one from figure 6 (the query that is applied to the new

table partial_aggregates which is used for Materialized Pre-Aggregates).

Change: Newly created file.

terms_en.php, terms_de.php, terms_fr.php

Description: All the used words on the website are saved for the corresponding language. The

website calls the file according to the language selected by the user.

Change: The terms “Grouping Factor” and “Complete statistics of nutrients” were added in

English, German, and French.

14

4 Conclusions

Three solutions to the problem of implementing grouping factors to an already existing

application of nutrient statistics were implemented and described. The first solution, Nested

Loop needed the results to be processed multiple times and therefore performed really slowly.

It was replaced by a second solution, Sort and Aggregate, which used sorting and made it

possible to reach the same results by just having to process the results once. The third

solution, Materialized Pre-Aggregates, is not processing its calculations locally, but does it

with a PostgreSQL-query and its GROUP BY clause. Therefore, it is not dependent on another

query, is always based on all the available data (not just a sample), and performs faster if

many nutrients and feed types are selected by the user.

15

List of Figures

1: Website of Feed Base with an example Statistics of nutrients 1

2: Query to retrieve the measurements for the selected feed types, nutrients, and years 2

3: Comparison of Nested Loop and Sort and Aggregate in terms of completion time 6

4: Screenshot of the website after grouping on year and feed type 7

5: Query to create table partial_aggregates 8

6: Query on partial_aggregates to group it by year and feed 9

7: Comparison of S.a.A and M.P.-A. in terms of completion time 10

8: Screenshot of the website after grouping on year and feed type with M.P.-A. 11

List of Tables

1: Part of statistics table after applying grouping on year and feed type 4

2: Excerpt of the new table partial_aggregates 8

List of Formulas

1: Standard Deviation 6

