
1 
 

Department of Informatics, University of Zürich 

 

 

 

Final Report 

 

Implementation of Approximation 
Functions for Time Series 

 

Rojomon Nagaroor 
 

Matrikelnummer: 08-707-804 
 

Email: r.nagaroor@gmail.com 

 

 

 

October 17, 2011 
supervised by Prof. Dr. M. Böhlen and M. Khayati 

 

 

 

 

 

 

 

 

 

mailto:r.nagaroor@gmail.com


2 
 

Contents 
1. Introduction ..................................................................................................................................... 4 

2. Time Series and Missing Values ..................................................................................................... 4 

3. Continuous approximation functions .............................................................................................. 5 

3.1. Continuous linear approximation ............................................................................................ 5 

3.2. Continuous cubic spline approximation .................................................................................. 6 

3.3. Extensions for the continuous approximation functions ......................................................... 8 

3.4. Comparison between linear and cubic spline approximation .................................................. 8 

4. Piecewise approximation functions ............................................................................................... 10 

4.1. Piecewise linear approximation ............................................................................................. 10 

4.1.1. Segmentation for piecewise linear approximation ........................................................ 10 

4.1.2. Algorithm for the piecewise linear approximation ........................................................ 11 

4.2. Piecewise cubic spline approximation ................................................................................... 11 

4.2.1. Segmentation for piecewise cubic spline approximation .............................................. 11 

4.2.2. Algorithm for the piecewise cubic spline approximation .............................................. 12 

4.3. Piecewise aggregate approximation ...................................................................................... 13 

4.3.1. Segmentation for the piecewise aggregate approximation ............................................ 13 

4.3.2. Algorithm for piecewise aggregate approximation ....................................................... 13 

4.4. Comparison of the piecewise approximating functions ........................................................ 13 

5. Comparison of continuous and piecewise approximation functions ............................................. 14 

6. Proposition of the database schema ............................................................................................... 15 

7. Conclusions ................................................................................................................................... 16 

8. References ..................................................................................................................................... 16 

 

 

 

 

 

 

 

 



3 
 

List of Figures 

Figure 1: Snippet of the source code containing the procedure which checks for missing values .......... 5 
Figure 2: Code Snippet of the linear interpolation procedure ................................................................. 6 
Figure 3: Code Snippet of the cubic spline interpolation procedure ....................................................... 8 
Figure 4: Linear and cubic spline interpolation of a missing segment from timestamp 286 to 342 
(Series ID = 0) ......................................................................................................................................... 9 
Figure 5: Linear and cubic spline interpolation of a missing segment from timestamp 500 to 800 
(Series ID = 0) ......................................................................................................................................... 9 
Figure 6: Code snippet of the PLA procedure ....................................................................................... 11 
Figure 7: Code snippet of the PAA procedure ...................................................................................... 13 
Figure 8: PLA, PSA and PAA on a missing segment from timestamp 284 to 342 (Series ID = 0) ...... 13 
Figure 9: Continuous and piecewise cubic spline interpolation of a missing segment from timestamp 
250 to 398 (Series ID = 0) ..................................................................................................................... 14 
Figure 10: Continuous and piecewise cubic spline interpolation of a missing segment from timestamp 
400 to 880 (Series ID = 0) ..................................................................................................................... 15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

file:///C:/Users/Nagaroor/Documents/Department%20of%20Informatics.docx%23_Toc306837757
file:///C:/Users/Nagaroor/Documents/Department%20of%20Informatics.docx%23_Toc306837758
file:///C:/Users/Nagaroor/Documents/Department%20of%20Informatics.docx%23_Toc306837759
file:///C:/Users/Nagaroor/Documents/Department%20of%20Informatics.docx%23_Toc306837760
file:///C:/Users/Nagaroor/Documents/Department%20of%20Informatics.docx%23_Toc306837760
file:///C:/Users/Nagaroor/Documents/Department%20of%20Informatics.docx%23_Toc306837761
file:///C:/Users/Nagaroor/Documents/Department%20of%20Informatics.docx%23_Toc306837761
file:///C:/Users/Nagaroor/Documents/Department%20of%20Informatics.docx%23_Toc306837762
file:///C:/Users/Nagaroor/Documents/Department%20of%20Informatics.docx%23_Toc306837763
file:///C:/Users/Nagaroor/Documents/Department%20of%20Informatics.docx%23_Toc306837764
file:///C:/Users/Nagaroor/Documents/Department%20of%20Informatics.docx%23_Toc306837765
file:///C:/Users/Nagaroor/Documents/Department%20of%20Informatics.docx%23_Toc306837765
file:///C:/Users/Nagaroor/Documents/Department%20of%20Informatics.docx%23_Toc306837766
file:///C:/Users/Nagaroor/Documents/Department%20of%20Informatics.docx%23_Toc306837766


4 
 

1. Introduction 
This report is written in the context of a summer internship at the University of Zürich. The goal of 
this internship is the implementation of various approximation functions for time series. These 
approximation functions are important regarding the prediction of a course of a time series, for which 
individual values or a set of values are not observed, respectively missing.  That is, with help of the 
approximations functions, one should be able to calculate the missing values.  In order to achieve this 
goal, the main task of implementation is divided into five smaller subtasks, representing milestones 
whose finishing status can be well measured. These five subtasks consist of: 
 

1. Proposing a relational schema for the hydrological data and creating an instance of it 
in an Oracle server. 

2. Literature research on time series approximation techniques. 
3. Implementation of continuous approximation functions (Linear interpolation, Cubic 

spline interpolation). 
4. Implementation of piecewise approximation functions (Piecewise linear 

approximation, piecewise spline approximation, piecewise aggregate approximation). 
5. Empirical precision comparison between the continuous and piecewise functions for 

approximating the hydrological time series. 
 
The implementation of all the algorithms will be in PL SQL. Chapter 2 gives a basic definition of time 
series and missing values, since they are very important with respect to the algorithms presented in the 
following chapters. The result of  task 3 and 4 are presented in chapter 3 and 4. Chapter 5 contains a 
comparison of the continuous and piecewise approximation technique addressing to task 5. Task 1 is 
handled in chapter 6. Chapter 7 contains the conclusions and a brief judgment of the accomplished 
tasks. The second task, which consists of literature research flows into each chapter, where it is 
necessary. 
 
I thank everyone who helped me in achieving the goal of this internship, especially my supervisor Mr. 
M. Khayati for giving me very valuable inputs and for correcting me when it was necessary. I also 
thank Prof. Mr. M. Böhlen for giving me this chance to work in his DBTG group at the department of 
informatics, University of Zürich. 

2. Time Series and Missing Values 
A time series is a sequence of values, where the interval between the values are defined by time and 
where they are constant.  We can imagine a time series as a set of points {(x, y)} in the Cartesian 
coordinate system, where the x-value represents the time and the y-value represents the corresponding 
value measured at that time. The x-values are also referred to as timestamps. 
 
In this project, I worked with a set of time series containing hydrological data. The whole set 
contained 80 series of observations, where each series had approximately about 36 000 observations. 
But since not all of these observations could be measured since to various reasons like technical 
malfunctioning etc., some series had less observations than other series, meaning that some series had 
values,   which   were   “missing”.   The   aim   of   this   project   was   to   implement   various   approximating  
techniques  in  order  to  approximate  the  time  series.  The  approximation  should  then  be  used  to  “guess”  
the missing values.  
 
So first, I needed to  identify the missing values before going on to writing approximating algorithms. 
For this project I used the following definition of missing value: 
 

 A missing value consists of the timestamp and its according value which the series, 
with which we are currently working, does not have, but is existent in another series. 

 



5 
 

insert into missing_values(series_id, ts) 
select series_to_find, ts 
from ( 
   select series_to_find, ts  
   from observations  
   where series_id =  series_lookup and ts not in( 
      select ts 
      from observations 
      where series_id = series_to_find)) 
where ts not in( 
   select ts 
   from missing_values 
   where series_id = series_to_find); 

Since the database of the hydrological data 
contains more than one series of observations, I 
used all given series to determine the missing 
values using the following method: 
 
Take a series of observations 𝑇  and check if all 
the timestamps of 𝑇  are contained in another 
series 𝑇  where 𝑖   ≠ 𝑗 . If there exists any 
timestamps in 𝑇  which are not contained in 𝑇 , 
then these timestamps represents missing values 
for 𝑇 . Figure 1 shows a snippet of the source 
code of the procedure which finds the missing 
value for a given series with the help of another 
series. 
 
In this fashion, I was able to detect all missing 
values for each time series. I stored the missing 
values afterwards in a table called 
“MISSING_VALUES”.  

3. Continuous approximation 
functions 

After defining the missing values, we can start to approximate the existing time series in order to 
interpolate the missing values of the given time series.  In scope of this project, I used two classes of 
approximation functions, the continuous approximation functions and the piecewise approximation 
functions, which will be explained in chapter 4.  
 
This chapter is dedicated to continuous approximation functions, that is, the approximation is done 
taking a global view of the time series, in contrast to the piecewise functions. The first section of this 
chapter is about linear interpolation. In the next section the cubic spline interpolation is discussed.  
Afterwards a small extension of both interpolation algorithms is presented. This chapter is concluded 
by a comparison of the results of the linear and cubic spline interpolation. 

3.1. Continuous linear approximation 
The continuous linear approximation is based on the formula for linear interpolation: 
 

𝑓(𝑥) = 𝑓 +  
𝑓 −  𝑓
𝑥 −  𝑥 ∗ (𝑥 − 𝑥 ) 

 
where 

𝑓 :𝑇ℎ𝑒  𝑣𝑎𝑙𝑢𝑒  𝑎𝑡  𝑡ℎ𝑒  𝑛𝑒𝑥𝑡  𝑙𝑜𝑤𝑒𝑠𝑡  𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 
𝑓 : 𝑇ℎ𝑒  𝑣𝑎𝑙𝑢𝑒  𝑎𝑡  𝑡ℎ𝑒  𝑛𝑒𝑥𝑡  ℎ𝑖𝑔ℎ𝑒𝑠𝑡  𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 

𝑥 : 𝑇ℎ𝑒  𝑛𝑒𝑥𝑡  𝑙𝑜𝑤𝑒𝑠𝑡  𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 
𝑥 : 𝑇ℎ𝑒  𝑛𝑒𝑥𝑡  ℎ𝑖𝑔ℎ𝑒𝑠𝑡  𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 

Figure 1: Snippet of the source code containing the procedure 
which checks for missing values 



6 
 

for cur_irow in cur_to_interpolate loop 
cur_cursor := cur_irow.ts; 

--getting the next highest/lowest ts and values for interpolation 
select ts, val into next_lowest_ts, next_lowest_value 
from observations 
where ts = (select max(ts) from observations where ts < cur_irow.ts  
and series_id = cur_irow.series_id) and series_id = 
cur_irow.series_id; 

select ts, val into next_highest_ts, next_highest_value 
from observations 
where ts = (select min(ts) from observations where ts > cur_irow.ts 
and series_id = cur_irow.series_id) and series_id = 
cur_irow.series_id; 

 --interpolating using the standard linear interpolation formula 
update missing_values set 
 lin_ipol_val = (next_lowest_value + ((next_highest_value - 
next_lowest_value)/(next_highest_ts - next_lowest_ts)) * 
(cur_irow.ts - next_lowest_ts)) 
where ts = cur_irow.ts and series_id = cur_irow.series_id; 
end loop; 

 

 

This formula takes two neighbor points of a 
given point x and interpolates the value at the 
point x between them. So the main goal of 
the algorithm with respect to predict missing 
values is to take the next highest and next 
lowest given value for a missing timestamp 
and to interpolate the value at the missing 
timestamp using the next highest and next 
lowest value with help of this formula. 
 
The algorithm needs two tables to work: One 
table containing all observed timestamps and 
its   values   (table   ‘OBSERVATIONS’)   ,   as  
well as another table containing all the 
timestamps, whose values are missing 
corresponding to the definition of missing 
values given in chapter 2 (table 
MISSING_VALUES).    
 
The algorithm works as follows: It loops 
over all tuples in MISSING_VALUES and 
takes the values of the next highest and next 
lowest timestamp from OBSERVATIONS 
and uses the linear interpolation formula to 
get the value at the timestamp of the missing 
value. Figure 2 shows a part of the source 
code which does this procedure. 
 

3.2. Continuous cubic spline approximation 
The cubic spline approximation works with the usage of a third degree polynomial function  between 
two   points   (so   called   “knot”-points). So, for our case of guessing missing values, the usage of the 
cubic spline approximation is the following: We define all timestamps and their values which are not 
missing as knot points. Afterwards, we try to define the third degree polynomial function (also called 
“spline”   function)   between      every   two   knot   points.   If   we   now   have   a   timestamp   with   the   value  
missing, then we look up at which spline the timestamp is located, and we then use the spline function 
at that point to interpolate the missing value. So for N given points, we will need N-1 spline functions 
𝑆 (𝑥) of the following form: 
 

𝑆 (𝑥) =   𝑎 +  𝑏 ∗ (𝑥 − 𝑥 ) +  𝑐 ∗ (𝑥 − 𝑥 ) +  𝑑 ∗ (𝑥 − 𝑥 )  
 
The characteristic of the cubic spline interpolation   is   that   it  uses  a   ‘smooth’  curve   to   interpolate   the  
missing values, smooth meaning in this context that there are so less oscillations as possible. Since 
higher degree polynomial curves tend to have a lot of oscillations between two given points, the cubic 
spline interpolation uses a third degree polynomial for the interpolation, fulfilling following four 
attributes1: 
 

(1)      𝑆 (𝑥 ) = 𝑦     𝑓𝑜𝑟  𝑖 = 0, 1, … , 𝑛 
(2)      𝑆 (𝑥 ) = 𝑆 (𝑥 )    𝑓𝑜𝑟  𝑖 = 1, 2, … , 𝑛 

(3)    𝑆 (𝑥 ) =   𝑆 (𝑥 )      𝑓𝑜𝑟  𝑖 = 1, 2, … , 𝑛 − 1 

                                                           
1
 I will not explain in detail the derivation of the formulas, since it would be beyond the scope of this report. For 

a very detailed explanation see Rauch, S. & Stockie, J. , 2008, Cubic Splines from the website 
http://www.docstoc.com/docs/69786364/Cubic-Splines, 17.10.2011 

Figure 2: Code Snippet of the linear interpolation procedure 

http://www.docstoc.com/docs/69786364/Cubic-Splines


7 
 

(4)    𝑆 (𝑥 ) =   𝑆 (𝑥 )    𝑓𝑜𝑟  𝑖 = 1, 2, … , 𝑛 − 1   
 
Taking these attributes into account, we get the following equations for the coefficients 𝑎 , 𝑏 ,𝑐  and 
𝑑 for 𝑖 = 0, 1,… , 𝑛: 
 

𝑎 = 𝑦  
 

𝑏 =   
𝑦 − 𝑦

ℎ −
ℎ
2 𝑚 −  

ℎ
6 (𝑚 −  𝑚 ) 

 
𝑐 =

𝑚
2  

 
𝑑 =   

𝑚 −𝑚
6ℎ  

 

where ℎ = 𝑥 −  𝑥  and 

 𝑚 = 𝑆 (𝑥 ) 

Taking these formulas in account, and setting 𝑚 = 0  and 𝑚 = 0 we will get the coefficients by 
solving the following (𝑛 − 1) × (𝑛 − 1) system: 

⎣
⎢
⎢
⎢
⎡ℎ0
0
⋮
0

      

2(ℎ +  ℎ )
ℎ
0

…

      

ℎ
2(ℎ +  ℎ )

ℎ
⋱
⋯

      

0
ℎ

2(ℎ + ℎ )
⋱

ℎ

      

⋯
0
ℎ
⋱

2(ℎ +  ℎ )

      

0
0
⋮
0

ℎ ⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝑚
𝑚
𝑚
⋮

𝑚 ⎦
⎥
⎥
⎥
⎤
= 6

⎣
⎢
⎢
⎢
⎢
⎢
⎡

   −   

   −   

   −
⋮

   −   
⎦
⎥
⎥
⎥
⎥
⎥
⎤

    

Since this system consists of a tridiagonal matrix,  we  can  use  the  so  called  “tridiagonal  matrix  
algorithm”,  also  known  as  “Thomas  algorithm”  (named  after  Llewellyn Thomas), to solve this matrix2.  

The result of this matrix will be the values for 𝑚 ,𝑚 ,𝑚 ,… ,𝑚 which we can use with the values for 
ℎ , ℎ , ℎ , … , ℎ  to calculate the coefficients 𝑎 , 𝑏 , 𝑐  and 𝑑  for each spline function 𝑆 (𝑥). 

                                                           
2
 Also here I will not explain the Thomas algorithm, since it would go beyond the scope of this report. For a 

detailed explanation see:  Depoutre, A., 2000, The Thomas Algorithm from website 
http://hmf.enseeiht.fr/travaux/CD0001/travaux/optmfn/hi/01pa/hyb74/node24.html, 17.10.2011 

http://en.wikipedia.org/wiki/Llewellyn_Thomas
http://hmf.enseeiht.fr/travaux/CD0001/travaux/optmfn/hi/01pa/hyb74/node24.html


8 
 

v_next_lowest_given_ts number := 0; --next lowest timestamp whose value is known 
v_next_lowest_given_a number := 0; --coefficient a of the next lowest given timestamp 
v_next_lowest_given_b number := 0; --coefficient b of the next lowest given timestamp 
v_next_lowest_given_c number := 0; --coefficient c of the next lowest given timestamp 
v_next_lowest_given_d number := 0; --coefficient d of the next lowest given timestamp 
v_current_ts number := 0; --current timestamp   
begin 
for cur_m_ts_row in cur_m_ts loop 
--assignments of values 
v_current_ts := cur_m_ts_row.ts; 
select max(ts) into v_next_lowest_given_ts from thomas_helper where ts <= v_current_ts and series_id = p_sid;     
select c_a, c_b, c_c, c_d into v_next_lowest_given_a, v_next_lowest_given_b, v_next_lowest_given_c, v_next_lowest_given_d 
from thomas_helper where ts = v_next_lowest_given_ts and series_id = p_sid; 
 --interpolating the value 
update missing_value 
set my_c_spl_val = v_next_lowest_given_a + v_next_lowest_given_b * (v_current_ts - v_next_lowest_given_ts) + v_next_lowest_given_c * 
(v_current_ts - v_next_lowest_given_ts) * (v_current_ts - v_next_lowest_given_ts) + v_next_lowest_given_d * (v_current_ts - 
v_next_lowest_given_ts) * (v_current_ts - v_next_lowest_given_ts) * (v_current_ts - v_next_lowest_given_ts)  
where ts = v_current_ts and series_id = p_sid; 

     

  end loop; 

Figure 3: Code Snippet of the cubic spline interpolation procedure 
In summary, the continuous cubic spline interpolation algorithm needs two tables to work: One table 
MISSING_VALUES where the timestamps with the missing values are stored and another table called 
THOMAS_HELPER where the helping variables like 𝑚   and ℎ are stored with the data of the knot-
points and coefficients 𝑎 , 𝑏 , 𝑐 , 𝑑 . The method to retrieve the missing value is following: First, we 
calculate with help of the Thomas algorithm, the coefficients for all spline functions. Afterwards, we 
look between which timestamps the missing value is located in order to find the correct spline function 
and its coefficients. Then we use the coefficients for the spline function to interpolate the missing 
value. Figure 3 shows and excerpt of the source code doing this procedure. 

3.3. Extensions for the continuous 
approximation functions 

In the last two sections, we looked at the linear and cubic spline interpolation algorithm. These two 
algorithms possess a major drawback: We can only interpolate the value, if the missing value is 
between two given values. For the case, that the very first or very last of the values were missing and 
are to be calculated, we cannot use these two algorithms. This sections explains a method, with which 
we’re  able  to  solve  this  problem. 

In order two solve this problem I extended the two approximation algorithms with an additional 
procedure: If the time series has a missing value which is located at the beginning or at the end of the 
series, then set the missing value equal to the next nearest neighbor. That is, if we cannot interpolate 
the missing value, because it is not between two values, then we simply assume that the missing value 
is the same as the next highest given value (if the value at the beginning is missing) or the next lowest 
given value (if the value at the end is missing).  In this fashion, we can interpolate all missing values 
of a time series using the two approximation functions.  

3.4. Comparison between linear and cubic 
spline approximation 



9 
 

Figure 4: Linear and cubic spline interpolation of a missing segment from 
timestamp 286 to 342 (Series ID = 0) 

This section briefly presents the results of the linear and cubic spline approximation function, which 
we discussed earlier. Figure 4 shows the measurements of the time series with ID = 0 from timestamps 
(ts) = 200 to ts = 400. Note that there is a missing segment from ts = 286 to ts = 342. This is the part of 
the time series, which has been 
interpolated. As we can see, the 
linear interpolation just interpolated 
the missing values with the help of 
a linear function, which connects 
the missing part with a straight line, 
whereas the cubic spline 
interpolation tries to follow the 
course, which the original curve 
had before.  For this case, the cubic 
spline function seems to 
approximate the function better 
than the linear function. 

Let us now look at Figure 5, which 
shows the same time series, but 
from ts = 400 to ts = 880. Here the 
segment of missing values is bigger, 
it goes from ts =  500 to ts = 800. 
Note that in the middle of this segment, the value at ts = 650 is given, and therefore not missing. We 
see the same behavior of the functions here, that is, the cubic spline interpolation tries to imitate the 
past behavior of the curve. However, in order to maintain the smoothness of the cubic spline curve, it 
goes into a negative range of values. This is a very dangerous behavior, because if we were working 
with   values,   which   couldn’t   be   negative   (like   a   stock-prices), then this approximation would be 
useless. So  for  this  case,  I’d  assume  that  the  linear  interpolation  is  better. 

My conclusion of these two algorithms is 
that, if the segment of missing values is not 
big, then the cubic spline approximation 
function would do better than the linear 
approximation since, the cubic spline 
function takes the history of the curve more 
or less in account which is not the case with 
the linear approximation function. However, 
if we have to deal with a big segment of 
missing values, then the results of the cubic 
spline function can perhaps be not as good as 

the linear interpolation function, depending 
on the kind  of  data  we’re working with. 

 

Figure 5: Linear and cubic spline interpolation of a missing 
segment from timestamp 500 to 800 (Series ID = 0) 



10 
 

4. Piecewise approximation 
functions 

After discussing about the continuous approximations, we discuss in this chapter about piecewise 
approximation functions. The difference between the continuous and piecewise approximations is the 
fact that piecewise approximation functions divides the time series into segments and apply the 
approximation within the segments. Therefore, we do not need to find a global approximating function 
for the whole time series, which could be a difficulty when working with streaming time series. So we 
can use a piecewise approximation in order to reduce complexity of a time series. 

The main challenge of piecewise approximation consists of finding algorithms which segments the 
time series in an efficient way regarding both performance and accuracy. Several segmenting 
techniques are proposed and analyzed regarding their performance and accuracy (Keogh et al., 2001). 
Due  to  reasons  of  simplicity,  I  didn’t  use  any  of  those  segmenting  algorithm  proposed  in  literature  for  
this report,  but  I’m  aware  of  the  fact  that  I  could  have  achieved  better  approximation  results  when  I  
used those algorithms.  

This chapter first introduces the piecewise linear approximation, followed by the piecewise cubic 
spline approximation. This chapter concludes with having a look on piecewise aggregate 
approximation. For each of the approximation techniques, I introduce the algorithm, with which I 
segment the time series. Afterwards, I explain how my approximation algorithm works. At the end, the 
results of these three piecewise approximation functions are presented. 

4.1. Piecewise linear approximation 
The piecewise linear approximation (PLA) works basically like the continuous linear approximation. 
The difference between the two types is that we do not use our linear approximation formula between 
every two points, instead, we use the formula between each starting and ending point of a segment. 
Like explained earlier, the segmentation is of much importance in consideration of accuracy and 
performance. The following section explains my segmentation. 

4.1.1. Segmentation for piecewise linear 
approximation  

To reduce the complexity of a time series in order to approximate it, I decided to segment the time 
series in such way, so that the trends are not lost. That is, I calculated all extremas (global and local) of 
the time series and  stored them in the   table  ‘SEGMENTING_POINTS_PLA’. The first row of that 
table would represent the starting point of the first segment . The next row would represent the ending 
point of the first segment, and at the same time, it would represent the starting point of the second 
segment. Using this method, I had the starting and ending point for each segment, so that I was able to 
interpolate between these two points. The reason I decided for this type of segmentation was that if I 
used any other segmentation, the local attributes like trends of the time series could have been lost.  

 

 



11 
 

for cur_ts_row in cur_ts loop 
current_ts := cur_ts_row.ts; 
 --assigning all the variables 
select max(ts) into next_lowest_ts from segmenting_points_pla where ts < current_ts and 
series_id = p_sid; 
select val into next_lowest_val from segmenting_points_pla where ts = next_lowest_ts and 
series_id = p_sid; 
select min(ts) into next_highest_ts from segmenting_points_pla where ts > current_ts and 
series_id = p_sid; 
select val into next_highest_val from segmenting_points_pla where ts = next_highest_ts and 
series_id = p_sid; 
 --interpolating using the interpolation formula 
update missing_value 
set i_val = next_lowest_val + ((next_highest_val - next_lowest_val) / (next_highest_ts - 
next_lowest_ts)) * (current_ts - next_lowest_ts) 
where ts = current_ts and series_id = p_sid; 

     

  end loop; 

4.1.2. Algorithm for the piecewise linear 
approximation 

In the last section we discussed how to get the starting and ending points of a segment. After these 
points were stored, my task was to linearly interpolate the values between the starting and ending 
points of the section. For this, I just 
reused the linear interpolation 
formula presented in chapter 3.1. 
Instead of only interpolating the 
missing values, this algorithm 
interpolates all values between the 
segment starting and ending points 
(which are extremas). Figure 6 
shows a snippet from the procedure 
of the PLA. We can see that the 
code only differs from the 
continuous linear interpolation in 
the fact that PLA takes the stored 
extremas as next highest and next 

lowest values.  

4.2. Piecewise cubic spline approximation 
The piecewise cubic spline approximation (PSA) works the same way like the continuous one, with 
the difference that the PSA does not use all given points as knot points. The first subsection  handles  
the segmentation of the time series. Afterwards we will discuss briefly the algorithm for the PSA. 

4.2.1. Segmentation for piecewise cubic spline 
approximation 

The PSA uses another segmenting algorithm than the one presented with the PLA in chapter 4.1.. 
Since we are trying to approximate the original values, we need to find a segmenting algorithm, which 
keeps more or less the main characteristics of the curve. So, we have to reduce the complexity of the 
curve without losing all too much information. I tried to define a segment so, that a segment contains 
exactly one (local) extrema, that means the segment has to contain at least one  peak or valley. Since 
we  need  to  reduce  the  complexity  of  the  curve,  it  is  not  a  good  idea  to  define  each  small  “hump”  as  a  
peak. Instead, I used a method proposed by Palshikar(2009) , which is based on the so called 
“Chebyshev  inequality”.  Palshikar states that based on the Chebyshev inequality, a point 𝑥  is a peak, 
if: 

(1)    𝑥 > 𝑚 
and 

(2)    |𝑥 −   𝑚| ≥ ℎ ∗ 𝑠 
where 𝑚 is the mean value of the distribution of points and 𝑠 is the standard deviation of the 
distribution (2009). ℎ can be any positive number which states how much standard deviations away 
from the mean  the given value 𝑥   is(Palshikar, 2009).  

With these two given conditions, we are able to check if a given point 𝑥  is whether a peak or not. 
However, we must be careful while choosing the value for ℎ. When we use a high value for ℎ, we will 

Figure 6: Code snippet of the PLA procedure 



12 
 

only get very few peaks, whereas we will get each small hump as a peak for a very low value for ℎ. I 
tried some different values for ℎ and implemented this extrema-finding procedure in a way, that the 
user is able to enter his value for ℎ as a parameter while invocating the procedure. In my opinion, a 
value between 1.2 and 1.5 gives the best results. Besides, when we change the direction of the 
inequality-operators in the two conditions above, we are able to define the valleys. 

In summary, the extrema-finding procedure works as follows: It takes a parameter for ℎ  and checks for 
each point 𝑥 in the time series whether the two conditions above are fulfilled or not (To get the 
valleys, we change the direction of the inequality-operators). If they are fulfilled, the point 𝑥  is 
considered as a peak, respectively valley, and is stored in the table  ‘PEAKS_VALLEYS’.   

Since we have now all the extremas of the time series, we must deal now with the segmentation. The 
problem here was that if we had too many peaks or valleys which were very close to another, then we 
wouldn’t  get  any  complexity  reduction for our curve, since we would then have too many segments. In 
order to solve this problem, I decided to introduce a variable called window_size, which sets the length 
of a window. Inside this window, there can only be one peak or valley, that is, if two very close peaks 
(or valleys) happens to be in the same window, only one of them, namely the higher one (in case of a 
valley, the lower one), will be regarded as a peak (or valley), the other one will be discarded from the 
table   ‘PEAKS_VALLEYS’.  Choosing the window size also seemed to have a great impact on the 
result, since when we use a large window size, a lot of information about the curve will be lost, and on 
the other side, choosing a small window size would not reduce any complexity. Like for the value of 
ℎ, I decided that the value for the window size can be given by the user as a parameter for the 
procedure. After testing some different values for the window size, in my opinion, a window size of 10 
produced the best results. 

After ensuring that there exists only one peak or valley inside of a window, I took the median 
timestamp between two neighboring peaks and/or valleys and declared the median as a segmenting 
point. I repeated this procedure for every two neighboring peaks and valleys and so I got the 
segmenting  points,  which  I  stored  in  the  table  ‘SEGMENTING_POINTS_PSA_PAA’. 

Summing up this subsection, the segmentation procedure of the PSA works as follows: First we use 
the two conditions of Palshikar to identify the peaks and valleys and store them into the table 
PEAKS_VALLEYS. Afterwards, we choose a window size and we make sure that there is only one 
peak or valley inside this window. Then we take the timestamp which lies in the middle of two 
neighboring peaks or valleys and store them as a segmenting point into the table 
SEGMENTING_POINTS_PSA_PAA. 

4.2.2. Algorithm for the piecewise cubic spline 
approximation 

After storing the segmenting points, we can now use the same algorithm which we used for the 
continuous cubic spline interpolation. The only difference is that, while we used all given points as 
knot points in the continuous cubic spline function, we now only use the segmenting points as knot 
points. I will not go in detail about the algorithm, since it is explained in chapter 3.2.. However, after 
doing some tests with this algorithm, I found that the results were too weak. So I decided to add the 
extrema-points, which we calculated in the subsection above, as additional knot points, to get better 
results. The results were much better.  



13 
 

for cur_seg_row in cur_seg loop 
   current_ts := cur_seg_row.ts; 
   select min(ts) into next_highest_ts  
   from segmenting_points_psa_paa  
   where ts > current_ts and series_id = s_id; 
 
   select avg(val) into avg_val 
   from observations 
   where ts >= current_ts and ts < next_highest_ts and series_id = 
s_id; 

   update missing_values 
   set paa_val = avg_val 
   where ts >= current_ts and ts < next_highest_ts and series_id = 
s_id; 
end loop; 

4.3. Piecewise aggregate approximation 
The piecewise aggregate approximation is an approximation technique, which simply calculates the 
average value of a given segment  and replaces all the existing values of that segment with the average 
value. This approximation could be used for various situations, where the complexity of a series 
should be reduced strongly, without losing too much information. 

This section first explains the segmentation which I used for the PAA, which is followed by the 
description of the algorithm which does the piecewise aggregate approximation.  

4.3.1. Segmentation for the piecewise aggregate 
approximation 

Like for all the other piecewise approximation functions, the segmentation is one the most important 
issues to think about. I used the same segmentation algorithm for the piecewise aggregate 
approximation (PAA),  which  I’ve  used  for  the  PSA  discussed  in  chapter 4.2.1.. Inside the segment, the 
calculation for the mean value will be done with the algorithm presented in the next subsection. 

4.3.2. Algorithm for piecewise aggregate 
approximation 

The algorithm for computing the piecewise 
aggregate approximation is fairly simple. We 
take all the values from the table 
OBSERVATIONS which lies between two 
segmenting points from the table 
SEGMENTING_POINTS_PSA_PAA and 
we take the mean of them. After taking the 
average, we replace the old values with the 
new calculated average. Figure 7 shows a 
snippet of the code, which calculates the 
mean for each segment.  

 

4.4. Comparison of the piecewise 
approximating functions 

The last three sections explained 
three kinds of piecewise 
approximation functions, namely 
PLA, PSA and PAA. In this 
section, I want to compare these 
three piecewise approximating 
techniques and discuss my 

Figure 7: Code snippet of the PAA procedure 

Figure 8: PLA, PSA and PAA on a missing segment from 
timestamp 284 to 342 (Series ID = 0) 



14 
 

conclusion of the piecewise approximating techniques.  

Figure 8 represents the time serie with the ID = 0 from ts = 80 to ts = 440. Inside this scope, the values 
from ts = 284 to ts = 342 are missing. I used all the three approximation techniques described in this 
chapter to approximate this part of the time series. As we can see, the PLA approximates the time 
series, in a very good way, but the guessing of the missing values is unfortunately not so good, since it 
only connects two given points with a straight line. On the other hand, one can ask if it is good when 
the original curve is approximated so exactly. Since the PLA approximates too good, one cannot speak 
about an approximation, since here is no complexity reduction visible. However, the opposite is the 
case by the PAA. The PAA is just represented by the mean value of a segment. In my view, the PAA 
is not suitable to guess missing values, since important informations about peaks and valleys can get 
lost when using the PAA to approximate a time series, but I certainly think that there are other 
domains where the PAA could be useful. 

The best performance in guessing the missing values is shown by the PSA, which more or less 
represents a simplified version of the original timestamp, and which assumes that the time series has a 
peak at the ts = 288. This cannot be correct, since the missing segment starts at 284 and when we look 
at the original value, there is no chance that there could be a peak. However, when we would shift the 
peak of the PSA at ts = 288 a little more to the right, then chances are high that there could be a peak. I 
conclude from this fact that the PSA could be a good technique for interpolating missing values, but 
my implementation is not yet 100% accurate.  

5. Comparison of continuous and 
piecewise approximation 
functions 

We have now discussed various continuous and piecewise approximation techniques in the last two 
chapters. We found out, that the piecewise cubic spline approximation is superior than the other 
piecewise approximation functions in terms 
of interpolating the missing values. Also for 
the continuous functions, we concluded that 
the cubic spline interpolation delivers better 
results than the continuous linear 
interpolation. In this chapter, we compare the 
piecewise and continuous cubic spline 
approximation function in order to find out, 
which one is better than the other one.  

In figure 9 we see a section of the time series 
with the series ID = 0 starting from ts = 250 
and ending at ts = 398. As we can see from 
the graphic, the continuous cubic spline 
approximation guesses the missing value 
(from ts = 286 to ts = 342) much better than 
the piecewise cubic spline approximation. The same behavior is not shown in figure 10, where we 
have the same time series, but the section starts at ts = 400 and ends at ts = 880 (missing values from ts 

Figure 9: Continuous and piecewise cubic spline interpolation of a missing 
segment from timestamp 250 to 398 (Series ID = 0) 



15 
 

= 500 to ts = 800). Here the the PSA seems to have a better approximation at the first glance, because 
the PSA approximation does not go far into the negative range of values, as the continuous cubic 

spline does. But still, if we look at the 
positioning of the peak, the continuous 
cubic spline approximations has a more 
realistical peak-positioning than the PSA. 
These two figures favor the continuous 
cubic spline approximation over the PSA, 
but I think, we can only judge them after 
doing some more comparing-tests. In the 
scope   of   my   internship,   I   didn’t   had   the  
time to do that, but I think this would be 
an interesting question to answer in a 
future research, since the PSA is 
dependent on the value for h and the 
window size and because my 
implementation of the PSA can be 
optimized. 

6. Proposition of the database 
schema 

After discussing the various approximation functions, we now know which tables we need. The final 
relation schema, which I used for my project consists of the following relations and attributes (Primary 
keys are underlined): 

OBSERVATION(SERIES_ID, TS, VAL, ADD_DT, UPD_DT)  
Relation to store all observations; with TS for timestamp, VAL for value, ADD_DT for adding date 
and UPD_DT for updating date. 

MISSING_VALUE(SERIES_ID, TS, LIN_IPOL_VAL, C_SPL_VAL) 
Relation, where the timestamps with missing values and the (continuously) interpolated values are 
stored; with LIN_IPOL_VAL for the continuously linear interpolated value and C_SPL_VAL for 
continuously cubic spline interpolated value. 

THOMAS_HELPER(SERIES_ID, TS, VAL, HELP_VAL_M, F_A, F_B, F_C, F_D, H_H, H_B, 
F_C1, F_D1, C_A, C_B, C_D, C_D) 
Relation where all the helping variables are stored in order to execute the Thomas algorithm and to 
calculate the spline interpolation; with: HELP_VAL_M, F_A, F_B, F_C, F_C, H_H, H_B and F_C1, 
F_D1 as helping values for the Thomas algorithm, and C_A, C_B, C_C, C_D as coefficients for the 
spline function. 

PEAKS_VALLEYS(SERIES_ID, TS, VAL) 
Relation to store the peaks and valleys for segmentation 

MISSING_SEGMENTS(SERIES_ID, TS, VAL, PLA_VAL, PSA_VAL, PAA_VAL) 
Relation to store the piecewise calculated segments and interpolated missing values; with VAL as the 

Figure 10: Continuous and piecewise cubic spline interpolation of a missing 
segment from timestamp 400 to 880 (Series ID = 0) 



16 
 

original value, PLA_VAL as the PLA-interpolated value, PSA_VAL and PAA_VAL as the PSA- 
respectively PAA-interpolated value. 

SEGMENTING_POINTS_PLA(SERIES_ID, TS, VAL) 
Relation to store the segmenting points needed for the PLA-interpolation. 

SEGMENTING_POINTS_PSA_PAA(SERIES_ID, TS, VAL, HELP_VAL_M, F_A, F_B, F_C, F_D, 
H_H, H_B, F_C1, F_D1, C_A, C_B, C_D, C_D) 
Relation to store the segmenting points needed for the PSA- and PAA-interpolation. The relations 
contains additionally all helping variables needed to calculate the spline functions for each segment. 

7. Conclusions 
This report is based on my informatics intership, done at the department of informatics at the 
university of Zürich. The aim of my project was to implement approximation functions, with the goal 
of approximating missing values of a give time series. This task was divided into five subtasks, as 
explained  in  the  introduction.  In  chapter  2,  we  defined  the  term  ‘missing  value’  and  in  chapter  3,  we  
discussed one class of approximation functions, namely the continuous ones. After comparing the 
continuous linear interpolation with the continuous cubic spline interpolation, we concluded that the 
continuous cubic spline interpolation was generally better than the linear interpolation, but depending 
on the data the linear interpolation could give better results. In chapter 4, we looked closely at the 
piecewise approximation functions, which segments the whole time series before approximating it. 
Also here, we found out that the piecewise cubic spline approximation was better than the piecewise 
linear approximation function and the piecewise aggregate approximation function in terms of 
interpolating the missing value. Chapter 5 compared the continuous cubic spline with the piecewise 
cubic spline approximation. The comparison favored the continuous cubic spline over the PSA, but a 
definitive answer can not be given in scope of this project, since this project was limited to 12 weeks 
and more tests were necessary. In chapter 6 we proposed the database schema, with the help of our 
knowledge gained through the previous chapters.  

All in all, the implemented approximation functions worked more or less, but there is still room for 
optimization, not only in terms of coding, but also in terms of the structure of the algorithm, especially 
the algorithm for segmenting time series. In literature, there are a variety of possibilities which could 
provide better results than the results here (for example, see Keogh et al, 2001). I think this issue is 
something, where I can work on in the future, since it shows a great potential for future research. I am 
also aware of the fact that, techniques like SVD (Singular value decomposition) provide a much better 
way to retrieve the missing values. Besides, the comparisons could be done much better when I had 
more time to test the implemented functions with all available time series. Despite of these drawbacks, 
I can look at my work with pride since this internship was my first step into a whole new matter for 
me, and I successfully managed to get a basic understanding  this matter, so that I can imagine of 
working at this topic in the future. 

8. References 
Depoutre, A., 2000, The Thomas Algorithm from website 
http://hmf.enseeiht.fr/travaux/CD0001/travaux/optmfn/hi/01pa/hyb74/node24.html, 17.10.2011 

http://hmf.enseeiht.fr/travaux/CD0001/travaux/optmfn/hi/01pa/hyb74/node24.html


17 
 

Keogh, E., Chu, S., Hard, D. & Pazzani, M. (2001). An Online Algorithm for Segmenting Time 
Series," ICDM, pp.289 

Rauch, S. & Stockie, J. , 2008, Cubic Splines from the website 
http://www.docstoc.com/docs/69786364/Cubic-Splines, 17.10.2011 

http://www.docstoc.com/docs/69786364/Cubic-Splines

